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What you’ll learn

How to use and manipulate predicative descriptions of state sets for
• manipulating extremely large finite state spaces

(this and the next lecture)
• encoding uncountably infinite state sets (later lectures).
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The bottleneck of

explicit-state model checking

State explosion
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State explosion

• Parallel components are flattened out into a flat state graph via
product construction.

• 10 components with 8 states each yield 810 > 109 nodes in
transition graph.

• Explicit representation of transition graph with 109 nodes
requires in the order of 10 GByte memory.

⇒ Need more compact representation.

1. On-the-fly methods.

2. Partial-order reduction: Enforces an ordering for causally
independent events.

3. Symbolic model checking: Uses predicates for representing
sets of vertices and sets of edges.
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Symbolic model checking

Idea: Predicative representation of node sets and edge sets, e.g.
In⇒ Closed instead of
{

(Empty,Open), (Empty,Closing), (Empty,Closed), (Empty,Opening),

(Appr.,Open), (Appr.,Closing), (Appr.,Closed), (Appr.,Opening), (In,Closed)

}

Problem: There are various equivalent predicates, some of which are
all but compact:

(Empty ∧ Open) ∨ (Empty ∧ Closing) ∨ (Empty ∧ Closed) ∨ (Empty ∧ Opening)∨

(Appr.∧ Open) ∨ (Appr.∧ Closing) ∨ ( sfAppr.∧ Closed) ∨ . . .∨ (In ∧ Closed)
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Symbolic model checking

BDD-based:
• Based on a data structure that

assigns the same (compact)
representation to equivalent
predicates.

1 0

In

Closed

• Normalizes representation while
performing the graph traversal.

SAT-based:
• Based on efficient heuristics for

checking satisfiability of large
propositional formulae.

In⇒ Closed

(Empty∧Open)∨(Empty∧Closing)∨. . .

• No semantic analysis upon graph
traversal.
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Symbolic techniques I:

Equivalence check for
combinational circuits
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The general framework

Circuit
level

Formula
level

Valuation
− of propositional variables
− of circuit nodes
level

Translator

Combinational
Circuit I

Combinational
Circuit II

Logical
formula

Prove engine

Approval/
counterexample
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Mapping circuits to formulae

A gate is mapped to a propositional formula formalizing its invariant:

z
x
y & 7→ x∧ y⇔ z

z
x
y >= 1 7→ x∨ y⇔ z

z< 1x 7→ ¬x⇔ z

... 7→ combinations thereof.

Circuit behavior corresponds to conjunction of all its gate formulae.
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Formalizing circuit equivalence

• Given two circuits C and D, we obtain formulae φC and φD,

• furthermore, have correspondence lists I ⊂ NodeC × NodeD and
O ⊂ NodeC × NodeD for in- and outputs.

• generate formula Eq(C,D) =


φC ∧ φD ∧

∧

(i,j)∈I
(i⇔ j)


 =⇒

∧

(o,p)∈O
(o⇔ p)

¬Eq(C,D) is satisfiable if and only if circuits are not
equivalent.

Any satisfying assignment yields a counterexample.
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Efficient search for satisfying valuations
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Enumerating valuations

. . . is completely out-of-scope:
• When comparing two circuits of (only) 10.000 nodes, we need to

explore 4 · 106020 possible valuations.
• If we were able to explore 108 valuations

s
, this would take 7 · 106017

years.

Enumerating only inputs is considerably more efficient, but still
out-of-scope:
• When comparing two circuits with 100 input nodes, we need to

explore 1.3 · 1030 possible valuations.
• If we were able to explore 108 input valuations

s
, this would still take

9.6 · 1015 years.
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Alternative approach

1. Employ an efficient translation to a structurally simple subset of
propositional logic (e.g., CNF)

What does “efficient translation” mean?

2. Use fast algorithms for detecting satisfiability of such
propositional formulae

Ingredients:
• inference mechanisms (to

save searching all valuations)
• heuristics (due to NP-

completeness of the problem)
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Translation to CNF: naive approach
Translation to CNF can be accomplished by iterated application of the
distributive laws (plus de Morgan etc.):

(φ∧ ψ) ∨ χ ≡ (φ∨ χ) ∧ (ψ∨ χ)

¬(φ∧ ψ) ≡ (¬φ) ∨ (¬ψ)

¬(φ∨ ψ) ≡ (¬φ) ∧ (¬ψ)

φ =⇒ ψ ≡ (¬φ) ∨ ψ

¬¬φ ≡ φ

Th latter 4 rules allow to transfer the propositional formula into an
and-or-tree in negation normal form (where negations do only occur in front
of atomic propositions), first rule allows to reshuffle ∧ and ∨ until in CNF.

This tends to provoke an exponential blowup of the formula, as the
distributive law duplicates subformulae.

At least in the worst case, this is unavoidable for any semantics-preserving
transformation of propositional formulae (unless P=NP):
Checking validity of arbitrarily structured propositional formulae is in NP,
while validity of CNF is linear.

02917: Symbolic Methods – p.14/34



Translation to CNF

? Do we really need preservation of semantics in the translation
step?

! Ultimately, we are only interested in satisfiability, thus
satisfiability-preserving translation should be good enough...

Idea: Design a translation that
1. translates arbitrary propositional formulae to

equi-satisfiable CNFs
(Validity etc. need not be preserved!)

2. permits simple retrieval of a satisfying valuation of the
original formula from any satisfying valuation of the CNF
(Otherwise, counterexample generation wouldn’t work!)
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Tseitin Transformation [Tseitin 1968]

Idea: Introduce a fresh propositional variable for each subformula in order to
represent its truth value;
axiomatize the relation between satisfaction of a (sub-)formula and
satisfaction of its immediate subformulae via CNF clauses.

Alg.: Given a propositional formula φ generate a CNF η as follows:
1. For each subformula ψ of φ take a fresh propositional variable [ψ],
2. translate the topmost operator of each subformula ψ by

ψ = ψ1 ∨ ψ2  (¬[ψ] ∨ [ψ1] ∨ [ψ]2)

∧ ([ψ] ∨ ¬[ψ1])

∧ ([ψ] ∨ ¬[ψ2])

ψ = ψ1 ∧ ψ2  (¬[ψ] ∨ [ψ1])

∧ (¬[ψ] ∨ [ψ2])

∧ ([ψ] ∨ ¬[ψ1] ∨ ¬[ψ]2)

ψ = ¬ψ1  (¬[ψ] ∨ ¬[ψ1]) ∧ ([ψ] ∨ [ψ1])

ψ = v ∈ V  (¬[ψ] ∨ v) ∧ ([ψ] ∨ ¬v)

3. collect all the CNF fragments thus obtained; conjoin them by ∧,
4. add (i.e., conjoin it using ∧) the “goal” [φ].
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Tseitin Transformation: Properties
Let φ be a propositional formula and ψ the formula obtained from it
through Tseitin transformation.

Thm: φ and ψ are equi-satisfiable.

Prf: Follows immediately from the following lemmata.

Lemma: If σ : V → B is a satisfying valuation for ψ then σ is a
satisfying valuation for φ, and so is any other valuation σ ′ that
coincides with σ on free (φ) (i.e. σ ′(v) = σ(v) for each
v ∈ free (φ)).

Lemma: If σ : V → B is a satisfying valuation for φ then there is a
valuation σ ′ which satisfies ψ and which coincides with σ on
free (φ).

...and ψ can be obtained from φ in linear time!
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Tseitin Transformation: Optimizations

There are various optimizations which make the formula obtained
even smaller:

1. Common subexpression elimination:
If a subformula occurs more than once, the CNF clauses for all
but the first occurrence can be saved through reuse of the
Tseitin variable.
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Tseitin Transformation: Optimizations

2. Polarity optimization: If a subformula occurs in positive
(negative) context then we can drop the left-to-right (right-to-left)
implication in the “definition” of its Tseitin variable without
enhancing satisfiability, i.e. without impeding equi-satisfiability:
• in positive context

ψ = ψ1 ∨ψ2  (¬[ψ] ∨ [ψ1] ∨ [ψ]2)

ψ = ψ1 ∧ψ2  (¬[ψ] ∨ [ψ1]) ∧ (¬[ψ] ∨ [ψ2])

ψ = ¬ψ1  (¬[ψ] ∨ ¬[ψ1])

• in negative context

ψ = ψ1 ∨ψ2  ([ψ] ∨ ¬[ψ1]) ∧ ([ψ] ∨ ¬[ψ2])

ψ = ψ1 ∧ψ2  ([ψ] ∨ ¬[ψ1] ∨ ¬[ψ]2)

ψ = ¬ψ1  ([ψ] ∨ [ψ1])
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Efficient satisfiability check

for CNFs
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Davis-Putnam-Loveland-Logemann algorithm

Given a CNF (x∨ y∨ z) ∧ (x∨ y) ∧ (z) ∧ . . .),

1. Perform unit propagation:
Search for unit clauses (l) or (l).
If present then
• infer appropriate truth value for l (e.g., l = true),
• propagate it into all clauses:

(l∨ y∨ z)  (y∨ z)

(l∨ y∨ z)  ε

Repeat this until no further unit literals are present.

(x∨ y ∨z ) ∧ (x∨ y) ∧(z)(z) ∧ . . .

↓ [propagate z := true]

(x∨ y∨ z ) ∧ (x∨ y) ∧ (z) ∧ . . .
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Davis-Putnam-Loveland-Logemann algorithm

Given a CNF (x∨ y∨ z) ∧ (x∨ y) ∧ (z) ∧ . . .),

2. Perform choice:
Select an unassigned propositional variable l occurring in the formula.
If there is one then
• freely choose a truth value for l (e.g., l = false),
• propagate it into all clauses,
• go back to unit propagation (there might be new units now).

If no variables are left in the formula then a satisfying assignment has been
found; if only assigned var.s are left then go to next phase.

(x∨y) ∧ (x∨y ) ∧ . . .

↓ [choose x := false]

( y) ∧ ( y ) ∧ . . .

↓ [propagate y := false]

( y ) ∧ . . .
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Davis-Putnam-Loveland-Logemann algorithm

Given a CNF (x∨ y∨ z) ∧ (x∨ y) ∧ (z) ∧ . . .,

3. Upon conflict, perform backtracking:
• Find the most recently assigned (by choice) propositional variable l that

has a yet unexplored truth-value,
• unassign all variables that have been assigned after l,
• complement l’s assignment,
• go back to unit propagation (there might be new units now).

If no variable with an unexplored truth value is found then the formula is
unsatisfiable.

↓ [unassign y, x]
(x∨y) ∧ (x∨y ) ∧ . . .

↓ [assign x := true]

. . .
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DPLL: Main ingredients
1. Manipulates partial truth value assignments.

2. checks consistency of partial assignment with clause set,

3. each individual clause can be
• satisfied (doesn’t impose constraints on further completion of

the assignment)
• unsatisfied (proves inconsistency of the partial assignment,

and thus of all possible completions)
• unresolved (to be re-explored upon extension of the

assignment)
• propagating (determines certain extensions of the partial)

4. if partial assignment is inconsistent then all extensions are
refuted,

5. if consistent then extended through
• Boolean constraint propagation (in DPLL: unit resolution)
• choice.
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Why DPLL works in practice

In practice, only a small fraction of the possible assignments is
tested, as unit propagation often derives a contradiction from a
partial assignment.

DPLL can (and is) extended by conflict analysis and learning,
which derives a minimal reason for a conflict and learns this s.t.
the same conflict is never again encountered — despite
backtracking.

Practical procedures tackle instances with� 100.000

propositions.
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DPLL: Algorithmic enhancements

Backjumping: Strictly chronological backtracking, i.e.
• unassign the most recently assigned (by choice) propositional variable l

that has a yet unexplored truth-value, plus all younger assignments,
• assign the complement value to l,

does
safely avoid revisits to an already explored truth assignment,

often flips variables that weren’t involved into the actual conflict.

The solution is
1. to maintain an implication graph recording the reasons for assignments,
2. to traverse this graph upon conflicts, thereby revealing the reasons for

the conflict,
3. do backjumping upon conflicts:
• find the most recently assigned (by choice) propositional variable l

that is a reason for the conflict and has a yet unexplored truth-value,
• unassign all variables that have been assigned after l,
• complement l’s value.
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DPLL: Algorithmic enhancements

Conflict-driven learning: The basic DPLL scheme tends to run into the same
inconsistency again and again:
• only part of the chosen variables may contribute to the conflict,
• when backtracking unassigns all of these (due to a reassignment to an

older choice variable) then all recorded information about the conflict
gets lost,

⇒ same conflict may be rebuilt in the new branch of the backtracking tree,
the overall search tree can contain multiple copies of more-or-less
isomorphic failing subtrees.

The solution is
1. to cut the implication graph between the conflict and those choices

which are reasons,
2. to collect the assignments immediately left to the cut (the conjunction of

these assignments is a reason of the conflict)
3. to add the disjunction of the complements of these assignments to the

clause database (this disjunction s called a “conflict clause”)
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DPLL: Algorithmic enhancements

Non-chronological backtracking: If learning is employed then there is
no need to explictly reassign choice variables unbound during
backtracking:
• conflict clauses learned prevent us from reconstructing an

already visited assignment (they become propagating before
completing such an assignment),

⇒ after unassignment, we can simply start in phase 1 of DPLL
again: backtracking rule is modified to
• diagnose and learn conflict,
• find the most recently assigned (by choice) propositional variable l

that is a reason and has a yet unexplored truth-value,
• unassign all variables that have been assigned after l,
• unassign (instead of complement) l’s assignment,
• go back to unit propagation (there might be new units now).

If no variable with an unexplored truth value is found then the formula is
unsatisfiable.
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DPLL: Algorithmic enhancements

Random restart: The longer a SAT solver runs, the longer and more
specific get conflicts detected. A SAT solver getting stuck in the
“wrong” part of the search tree thus learns unimportant conflicts.
Random restart avoids this by
• interrupting the first few runs of the SAT solver after a while

(preferably before it starts learning long conflicts)
• restarting it from scratch, yet preserving the conflicts learned

Efficient manipulation of clause database: A lot of optimizations
accelerate access to the clause database by appropriate data
structures. Particularly effective is to avoid unnecessary visits to
clauses (e.g. to any clause whose satisfaction and propagation
properties didn’t change since the last visit: watched literal
scheme of CHAFF [Moskewicz e.a. 2001]).

Structural SAT: Traverse circuit structure rather than CNF
representation.
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Non-monolithic proofs

Automatic discovery of lemmas

for divide-and-conquer approaches

02917: Symbolic Methods – p.31/34



Divide-and-conquer

C

c

Cc

Eq?

c

Cc D

d

d

Eq?

D

D

d

d

Eq?

dc

C’ D’

Given conjectured equivalence between nodes c and d of circuits C and D,

1. use equivalence checking to prove or disprove Eq(Cc, Dd),

2. if Eq(Cc, Dd) holds then Cc and Dd are cut out, thereby adding nodes c and
d as a new pair of corresponding inputs

3. check Eq(C ′, D ′) for the remaining circuits.

Eq(Cc, Dd) and Eq(C ′, D ′) can be considerably cheaper than Eq(C,D).
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Obtaining conjectured equivalences

Randomized divide-and-conquer:

Finds conjectures for node equivalences by a randomized procedure:

1. Randomly generate input vectors and apply them to circuits C and D;

2. find nodes c ∈ NodeC and d ∈ Noded which had the same value under all
vectors.

Structure-based divide-and-conquer:

Searches for structural matches in the circuits:

1. Candidate nodes c and d depend on the same inputs,

2. building blocks of Cc and Dd can be matched.

These heuristics search for possible cuts in the circuits.
There are similar divide-and-conquer techniques based
on cutting the proof tree.

02917: Symbolic Methods – p.33/34



State of the art

Using divide-and-conquer, multiform decision procedures can be
combined.

Circuits with millions of gates have been tackled!
[cf. Becker, Fujita, Meinel, Somenzi; Dagstuhl-Seminar 297, 2001.]

Hardware vendors do directly promote development of such
tools, e.g.
• Intel made investment in Prover Technology, Sweden
• Siemens develops BOOST engine in-house
• . . .
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