Computation Tree Logic (CTL) & Basic Model Checking Algorithms

Martin Fränzle

Carl von Ossietzky Universität Dpt. of Computing Science Res. Grp. Hybride Systeme Oldenburg, Germany

What you'll learn

- 1. Rationale behind declarative specifications:
 - Why operational style is insufficient
- 2. Computation Tree Logic CTL:
 - Syntax
 - Semantics: Kripke models
- 3. Explicit-state model checking of CTL:
 - Recursive coloring

Operational models

Nowadays, a lot of ES design is based on executable behavioral models of the system under design, e.g. using

- Statecharts (a syntactically sugared variant of Moore automata)
- VHDL.

Such operational models are good at

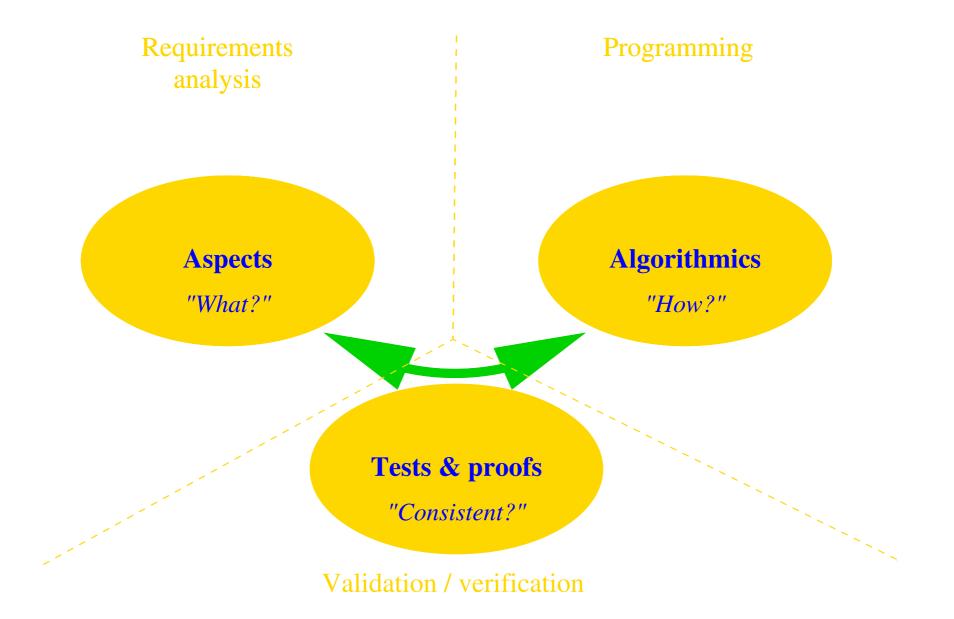
- supporting system analysis
 - simulation / virtual prototyping
- supporting incremental design
 - executable models
- supporting system deployment
 - executable model as "golden device"
 - code generation for rapid prototyping or final product
 - hardware synthesis

Operational models

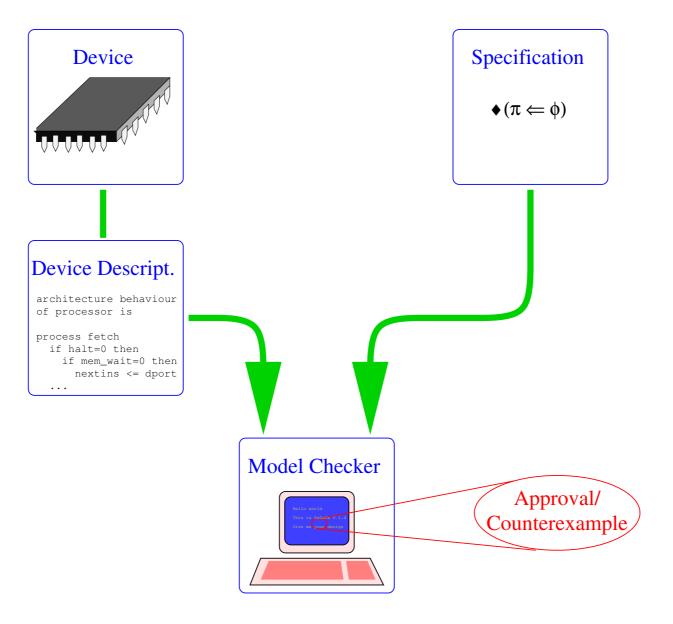
...are bad at

- supporting non-operational descriptions:
 - What instead of how.
 - E.g.: Every request is eventually answered.
- supporting negative requirements:
 - "Thou shalt not..."
 - E.g.: The train ought not move, unless it is manned.
- providing a structural match for requirement *lists*:
 - System has to satisfy R₁ and R₂ and ...
 - If system fails to satisfy R₁ then R₂ should be satisfied.

Multiple viewpoints

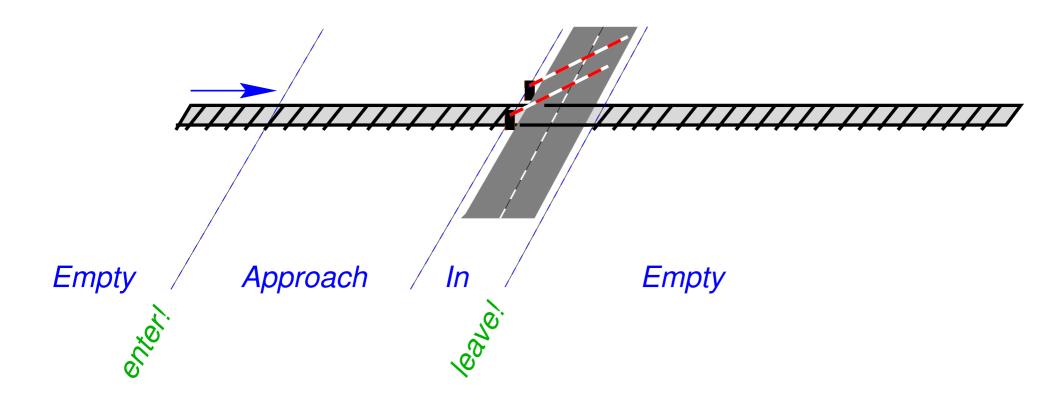


Model checking



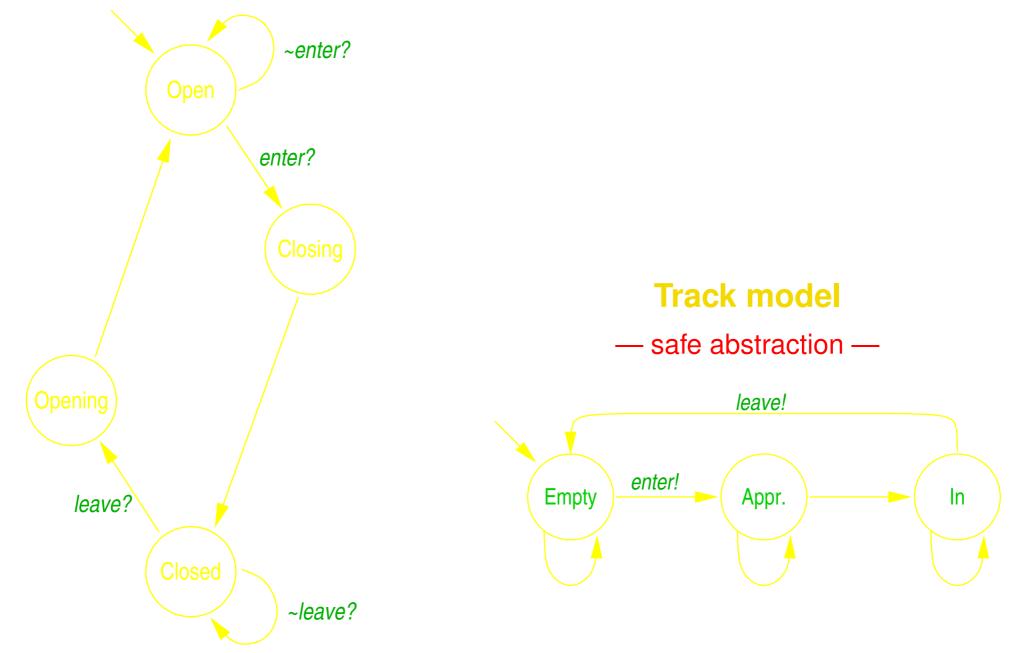
Exhaustive state-space search

Automatic verification/falsification of invariants

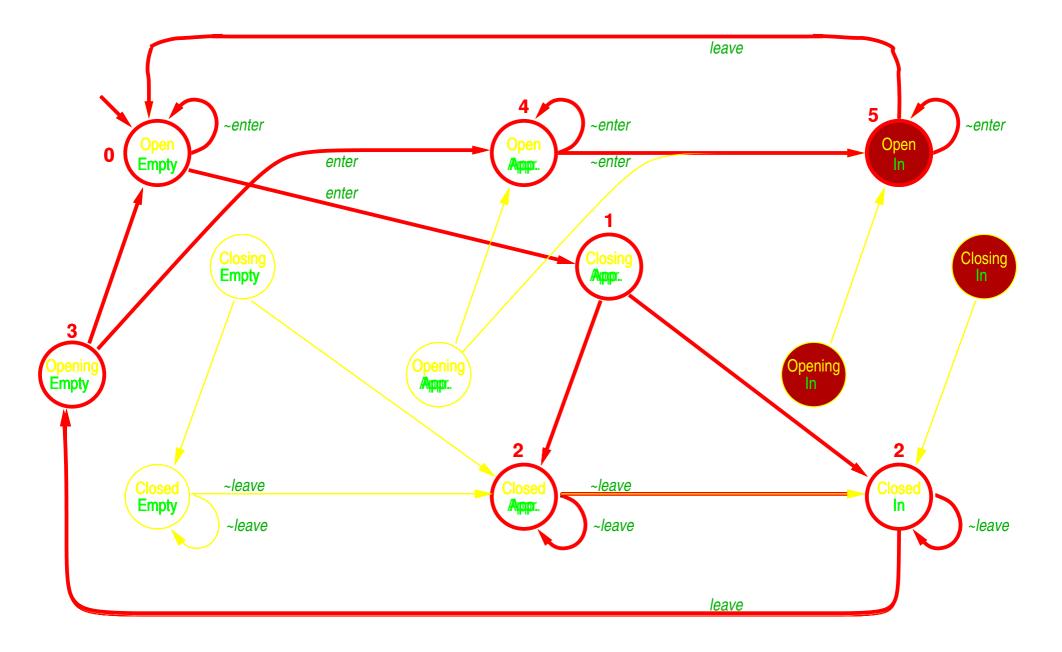


Safety requirement: Gate has to be closed whenever a train is in "In".

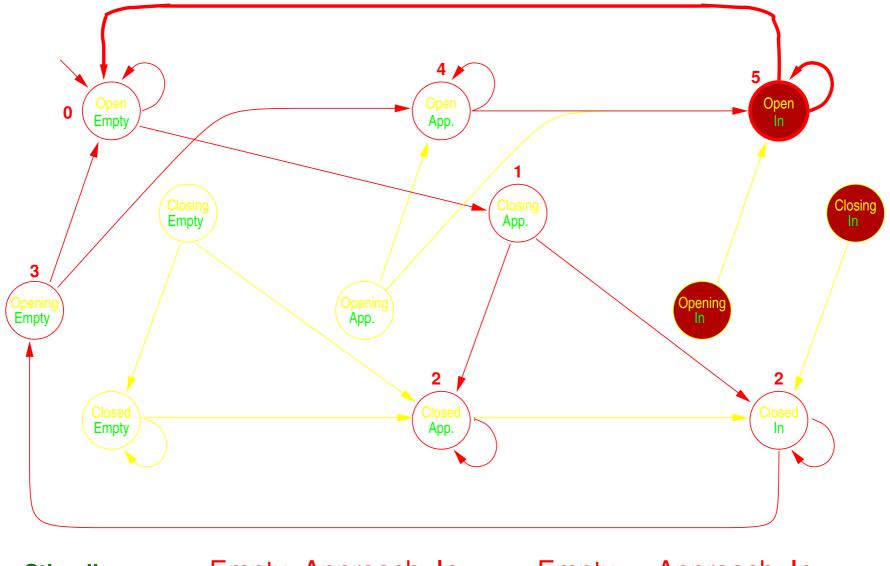
The gate model



Automatic check



Verification result



Stimuli:Empty, Approach, InEmptyApproach, In.Gate reaction:OpenClosingClosed, Opening, OpenOpen.

Computation Tree Logic

Syntax of CTL

We start from a countable set AP of atomic propositions. The CTL formulae are then defined inductively:

- Any proposition $p \in AP$ is a CTL formula.
- The symbols \perp and \top are CTL formulae.
- If ϕ and ψ are CTL formulae, so are $\neg \phi, \phi \land \psi, \phi \lor \psi, \phi \rightarrow \psi$ EX $\phi, AX \phi$ EF $\phi, AF \phi$ EG $\phi, AG \phi$
 - $\phi \text{EU}\psi, \phi \text{AU}\psi$

Semantics (informal)

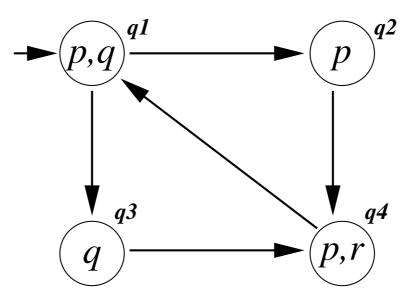
- E and A are path quantifiers:
 - A: for all paths in the computation tree ...
 - E: for some path in the computation tree ...
- X, F, G und U are temporal operators which refer to the path under investigation, as known from LTL:
 - $x\phi$ (Next) : evaluate ϕ in the next state on the path
 - $F \varphi$ (Finally) : φ holds for some state on the path
 - $G\varphi$ (Globally) : φ holds for all states on the path
 - $\phi \cup \psi$ (Until) : ϕ holds on the path at least until ψ holds

N.B. Path quantifiers and temporal operators are compound in CTL: there never is an isolated path quantifier or an isolated temporal operator. There is a lot of things you can't express in CTL because of this...

Semantics (formal)

CTL formulae are interpreted over Kripke structures.: A Kripke structure K is a quadruple K = (V, E, L, I) with

- V a set of vertices (interpreted as system states),
- $E \subseteq V \times V$ a set of edges (interpreted as possible transitions),
- $L \in V \rightarrow \mathcal{P}(AP)$ labels the vertices with atomic propositions that apply in the individual vertices,
- $I \subseteq V$ is a set of initial states.



Paths in Kripke structures

A path π in a Kripke structure K = (V, E, L, I) is an edge-consistent infinite sequence of vertices:

- $\pi \in V^{\omega}$,
- $(\pi_i, \pi_{i+1}) \in E$ for each $i \in N$.

Note that a path need not start in an initial state!

The labelling L assigns to each path π a propositional trace

$$\operatorname{tr}_{\pi} = \operatorname{L}(\pi) \stackrel{\text{def}}{=} \langle \operatorname{L}(\pi_0), \operatorname{L}(\pi_1), \operatorname{L}(\pi_2), \ldots \rangle$$

that path formulae $(X\phi, F\phi, G\phi, \phi U\psi)$ can be interpreted on.

Semantics (formal)

Let K = (V, E, L, I) be a Kripke structure and $v \in V$ a vertex of K.

- $\nu, K \models \top$
- $\nu, K \not\models \bot$
- $\nu, K \models p \text{ for } p \in AP \text{ iff } p \in L(\nu)$
- $\nu, K \models \neg \phi \text{ iff } \nu, K \not\models \phi$,
- $\nu, K \models \phi \land \psi$ iff $\nu, K \models \phi$ and $\nu, K \models \psi$,
- $\nu, K \models \phi \lor \psi$ iff $\nu, K \models \phi$ or $\nu, K \models \psi$,
- $\nu, K \models \varphi \Rightarrow \psi \text{ iff } \nu, K \not\models \varphi \text{ or } \nu, K \models \psi.$

Semantics (contd.)

- $\nu, K \models EX \varphi$ iff there is *a path* π in K s.t. $\nu = \pi_1$ and $\pi_2, K \models \varphi$,
- $\nu, K \models AX \phi$ iff all paths π in K with $\nu = \pi_1$ satisfy $\pi_2, K \models \phi$,
- $\nu, K \models EF \varphi$ iff there is *a path* π in K s.t. $\nu = \pi_1$ and $\pi_i, K \models \varphi$ for some i,
- ν, K ⊨ AF φ iff all paths π in K with ν = π₁ satisfy π_i, K ⊨ φ for some i (that may depend on the path),
- $\nu, K \models EG \phi$ iff there is a path π in K s.t. $\nu = \pi_1$ and $\pi_i, K \models \phi$ for all i,
- $\nu, K \models AG \phi$ iff all paths π in K with $\nu = \pi_1$ satisfy $\pi_i, K \models \phi$ for all i,
- $\nu, K \models \phi \in U \psi$, iff there is a path π in K s.t. $\nu = \pi_1$ and some $k \in N$ s.t. $\pi_i, K \models \phi$ for each i < k and $\pi_k, K \models \psi$,
- $\nu, K \models \phi AU \psi$, iff all paths π in K with $\nu = \pi_1$ have some $k \in N$ s.t. $\pi_i, K \models \phi$ for each i < k and $\pi_k, K \models \psi$.

A Kripke structure K = (V, E, L, I) satisfies ϕ iff all its initial states satisfy ϕ , i.e. iff is, $K \models \phi$ for all is $\in I$.

CTL Model Checking

Explicit-state algorithm

Rationale

We will extend the idea of verification/falsification by exhaustive state-space exploration to full CTL.

- Main technique will again be breadth-first search, i.e. graph coloring.
- Need to extend this to other modalities than AG...
- Need to deal with nested modalities.

Model-checking CTL: General layout

Given: a Kripke structure K = (V, E, L, I) and a CTL formula φ

Core algorithm: find the set $V_{\varphi} \subseteq V$ of vertices in K satisfying φ by

- 1. for each atomic subformula p of $\varphi,$ mark the set $V_p\subseteq V$ of vertices in K satisfying φ
- 2. for increasingly larger subformulae ψ of φ , synthesize the marking $V_{\psi} \subseteq V$ of nodes satisfying ψ from the markings for ψ 's immediate subformulae

until all subformulae of φ have been processed (including φ itself)

Result: report " $K \models \varphi$ " iff $V_{\varphi} \supseteq I$

Reduction

The tautologies

$$\begin{split} \varphi \lor \psi & \Leftrightarrow \neg (\neg \varphi \land \neg \psi) \\ & \text{AX} \varphi & \Leftrightarrow \neg \text{EX} \neg \varphi \\ & \text{AG} \varphi & \Leftrightarrow \neg \text{EF} \neg \varphi \\ & \text{EF} \varphi & \Leftrightarrow \neg \text{EF} \neg \varphi \\ & \text{EG} \varphi & \Leftrightarrow \neg \text{AF} \neg \varphi \\ & \varphi \text{AU} \psi & \Leftrightarrow \neg ((\neg \psi) \text{EU} \neg (\varphi \lor \psi)) \land \text{AF} \psi \end{split}$$

indicate that we can rewrite each formula to one only containing atomic propositions, $\neg, \land, \text{EX}, \text{EU}, \text{AF}$.

After preprocessing, our algorithm need only tackle these!

Model-checking CTL: Atomic propositions

Given: A finite Kripke structure with vertices V and edges E and a labelling function L assigning atomic propositions to vertices.

Furthermore an atomic proposition p to be checked.

Algorithm: Mark all vertices that have p as a label.

Complexity: O(|V|)

Model-checking CTL: $\neg \varphi$

Given: A set V_{φ} of vertices satisfying formula φ . Algorithm: Mark all vertices not belonging to V_{φ} . Complexity: O(|V|)

Model-checking CTL: $\varphi \wedge \psi$

Given: Sets V_{ϕ} and V_{ψ} of vertices satisfying formulae ϕ or ψ , resp. Algorithm: Mark all vertices belonging to $V_{\phi} \cap V_{\psi}$. Complexity: O(|V|)

Model-checking CTL: $\mathsf{EX}\,\varphi$

Given: Set V_{ϕ} of vertices satisfying formulae ϕ . Algorithm: Mark all vertices that have a successor state in V_{ϕ} . Complexity: O(|V| + |E|)

Model-checking CTL: $\phi EU\psi$

Given: Sets V_{ϕ} and V_{ψ} of vertices satisfying formulae ϕ or ψ , resp.

Algorithm: Incremental marking by

- 1. Mark all vertices belonging to V_{ψ} .
- 2. Repeat

if there is a state in V_{ϕ} that has some successor state marked then mark it also until no new state is found.

Termination: Guaranteed due to finiteness of $V_{\Phi} \subset V$.

Complexity: O(|V| + |E|) if breadth-first search is used.

Model-checking CTL: AF φ

Given: Set V_{Φ} of vertices satisfying formula ϕ .

Algorithm: Incremental marking by

- 1. Mark all vertices belonging to V_{φ} .
- 2. Repeat

if there is a state in V that has *all* successor states marked then mark it also

until no new state is found.

Termination: Guaranteed due to finiteness of V.

Complexity: $O(|V| \cdot (|V| + |E|)).$

Model-checking CTL: EG ϕ , for efficiency

Given: Set V_{Φ} of vertices satisfying formula ϕ .

Algorithm: Incremental marking by

- 1. Strip Kripke structure to V_{Φ} -states:
 - $(V, E) \rightsquigarrow (V_{\phi}, E \cap (V_{\phi} \times V_{\phi})).$
- \rightsquigarrow Complexity: O(|V| + |E|)
- 2. Mark all states belonging to loops in the reduced graph.
- → Complexity: $O(|V_{\varphi}| + |E_{\varphi}|)$ by identifying *strongly connected components*.
- 3. Repeat

if there is a state in V_{ϕ} that has *some* successor states marked then mark it also

until no new state is found.

 $\rightsquigarrow \text{ Complexity: } O(|V_{\varphi}| + |E_{\varphi}|)$

Complexity: O(|V| + |E|).

Model-checking CTL: Main result

Theorem: It is decidable whether a finite Kripke structure (V, E, L, I)satisfies a CTL formula ϕ . The complexity of the decision procedure is $O(|\phi| \cdot (|V| + |E|))$, i.e.

- linear in the size of the formula, given a fixed Kripke structure,
- linear in the size of the Kripke structure, given a fixed formula.

However, size of Kripke structure is exponential in number of parallel components in the system model.

Appendix

Fair Kripke Structures & Fair CTL Model Checking

Fair Kripke Structures

A fair Kripke structure is a pair (K, \mathcal{F}) , where

- K = (V, E, L, I) is a Kripke structure
- $\mathcal{F} \subseteq \mathcal{P}(V)$ is set of vertice sets, called a fairness condition.

A fair path π in a fair Kripke structure $((V, E, L, I), \mathcal{F})$ is an edge-consistent infinite sequence of vertices which visits each set $F \in \mathcal{F}$ infinitely often:

- $\pi \in V^{\omega}$,
- $(\pi_i,\pi_{i+1})\in E$ for each $i\in N$,
- $\forall F \in \mathcal{F}. \exists^{\infty} i \in N. \pi_i \in F.$

Note the similarity to (generalized) Büchi acceptance!

Fair CTL: Semantics

- $\nu, K, \mathcal{F} \models_F EX \varphi$ iff there is a fair path π in K s.t. $\nu = \pi_0$ and $\pi_1, K, \mathcal{F} \models_F \varphi$,
- $\nu, K, \mathcal{F} \models_F AX \varphi$ iff all fair paths π in K with $\nu = \pi_0$ satisfy $\pi_1, K, \mathcal{F} \models_F \varphi$,
- ν, K, F ⊨_F EF φ iff there is a fair path π in K s.t. ν = π₀ and π_i, K, F ⊨_F φ for some i,
- ν, K, F ⊨_F AF φ iff all fair paths π in K with ν = π₀ satisfy π_i, K, F ⊨_F φ for some i (that may depend on the fair path),
- ν, K, F ⊨_F EG φ iff there is a fair path π in K s.t. ν = π₀ and π_i, K, F ⊨_F φ for all i,
- ν, K, F ⊨_F AG φ iff all fair paths π in K with ν = π₀ satisfy π_i, K, F ⊨_F φ for all i,
- $\nu, K, \mathcal{F} \models_F \varphi \in U \psi$, iff there is a fair path π in K s.t. $\nu = \pi_0$ and some $k \in N$ s.t. $\pi_i, K, \mathcal{F} \models_F \varphi$ for each i < k and $\pi_k, K, \mathcal{F} \models_F \psi$,
- $\nu, K, \mathcal{F} \models_F \varphi AU \psi$, iff all fair paths π in K with $\nu = \pi_0$ have some $k \in N$ s.t. $\pi_i, K, \mathcal{F} \models_F \varphi$ for each i < k and $\pi_k, K, \mathcal{F} \models_F \psi$.

A fair Kripke structure $((V, E, L, I), \mathcal{F})$ satisfies ϕ , denoted $((V, E, L, I), \mathcal{F}) \models_F \phi$, iff all its initial states satisfy ϕ , i.e. iff is, $K, \mathcal{F} \models_F \phi$ for all is $\in I$.

Model-checking CTL: Fair states

- **Lemma:** Given a fair Kripke structure $(((V, E, L, I), \mathcal{F}))$, the set *Fair* \subseteq V of states from which a fair path originates can be determined algorithmically.
- **Alg.:** This is a problem of finding adequate SCCs:
 - 1. Find all SCCs in K.
 - 2. Select those SCCs that do contain at least one state from each fairness set $F \in \mathcal{F}$.
 - 3. Find all states from which at least one of the selected SCCs is reachable.

Model-checking fair CTL: $EX \varphi$

Given: Set V_{ϕ} of vertices fairly satisfying formulae ϕ .

Algorithm: Mark all vertices that have a successor state in $V_{\Phi} \cap Fair$.

Note that the intersection with *Fair* is necessary even though the states in V_{Φ} *fairly* satisfy ϕ :

- ϕ may be an atomic proposition, in which case fairness is irrelevant;
- φ may start with an A path quantifier that is trivially satisfied by nonexistence of a fair path.

Model-checking fair CTL: $\phi EU\psi$

Given: Sets V_{ϕ} and V_{ψ} of vertices fairly satisfying formulae ϕ or ψ , resp.

Algorithm: Incremental marking by

- 1. Mark all vertices belonging to $V_{\psi} \cap Fair$.
- 2. Repeat

if there is a state in V_{ϕ} that has some successor state marked then mark it also until no new state is found.

Model-checking fair CTL: EG φ

Given: Set V_{Φ} of vertices fairly satisfying formula ϕ .

Algorithm: Incremental marking by

- 1. Strip Kripke structure to V_{Φ} -states: (V, E) $\rightsquigarrow (V_{\Phi}, E \cap (V_{\Phi} \times V_{\Phi})).$
- 2. Mark all states that can reach a *fair* SCC in the *reduced* graph.

(Same algorithm as for finding the set *Fair*, yet applied to the reduced graph.)