
HySAT: An Efficient Proof Engine for Bounded

Model Checking of Hybrid Systems∗

Martin Fränzle and Christian Herde

Department of Computing Science, Research Group Hybrid Systems

Carl-von-Ossietzky Universität, D-26111 Oldenburg, Germany

{Fraenzle,Herde}@Informatik.Uni-Oldenburg.De

Abstract

In this paper we present HySAT, a bounded model checker for lin-
ear hybrid systems, incorporating a tight integration of a DPLL–based
pseudo–Boolean SAT solver and a linear programming routine as core en-
gine. In contrast to related tools like MathSAT, ICS, or CVC, our tool ex-
ploits the various optimizations that arise naturally in the bounded model
checking context, e.g. isomorphic replication of learned conflict clauses or
tailored decision strategies, and extends them to the hybrid domain. We
demonstrate that those optimizations are crucial to the performance of
the tool.

Keywords: verification, bounded model checking, hybrid systems,
infinite-state systems, decision procedures, satisfiability.

1 Introduction

During the last ten years, formal verification of digital systems has evolved from
an academic subject to an approach accepted by the industry, with dozens of
commercial tools now available and used by major companies. Among the most
successful methods in formal verification of discrete systems is bounded model
checking (BMC), as suggested by Groote et al. in [22] and by Biere et al. in
[8]. The idea of BMC is to encode the next–state relation of a system as a
propositional formula, unroll this to some given finite depth k, and to augment
it with a corresponding finite unravelling of the tableau of (the negation of)
a temporal formula in order to obtain a propositional SAT problem which is
satisfiable iff an error trace of length k exists. Enabled by the impressive gains

∗This work was partly supported by the German Research Council (DFG) as part of
the Transregional Collaborative Research Center “Automatic Verification and Analysis of
Complex Systems” (SFB/TR 14 AVACS). See www.avacs.org for more information.

1



in performance of propositional SAT checkers in recent years, BMC can now be
successfully applied even to very large finite-state designs.

Though originally formulated for discrete transition systems only, the basic
idea of BMC to reduce the search for an error path to a satisfiability problem
of a formula also applies to hybrid discrete–continuous systems. However, the
BMC formulae arising from such systems are no longer purely propositional,
but usually comprise complex Boolean combinations of arithmetic constraints
over real-valued variables, thus entailing the need for new decision procedures
to solve them.

Our tool HySAT provides a decision procedure that is tailored to fit the
needs of BMC of infinite–state systems with piecewise linear variable updates,
e.g. of linear hybrid automata. HySAT tightly integrates a state–of–the–art
Davis–Putnam style SAT solver for pseudo–Boolean constraints with a linear
programming routine, combining the virtues of both methods: Linear program-
ming adds the capability of solving large conjunctive systems of linear inequali-
ties over the reals, whereas the SAT solver accounts for fast Boolean search and
efficient handling of disjunctions.

The idea to combine algorithms for SAT with decision procedures for con-
junctions of numerical constraints in order to solve arbitrary Boolean combi-
nations thereof has been pursued by several groups. A tight integration of a
resolution based SAT checker with linear programming has first been proposed
and successfully applied to planning problems by Wolfman and Weld [39]. More
recently, Audemard et al. [2] have followed up with MathSAT, a tool combining
SAT solving with a Bellman–Ford algorithm for difference logic constraints and
a simplex algorithm for general linear constraints, used for applications in the
context of temporal reasoning and model checking of timed automata. Tools
supporting a more general class of formulae are CVC [5] and ICS [14], both inte-
grating decision procedures for various theories, including Boolean logic, linear
real arithmetic, uninterpreted function symbols, functional arrays, and abstract
data types.

However, except for HySAT, all tools mentioned above lack some or all of
the particular optimizations that arise naturally in the bounded model check-
ing context. As observed by Strichman [34], BMC yields SAT instances that
are highly symmetric as they comprise a k–fold unrolling of the systems tran-
sition relation. This special structure can be exploited to accelerate solving,
e.g. by copying the explanation for a conflict which was encountered during the
backtrack search performed by the SAT solver, to all isomorphic parts of the
formula in order to prune similar conflicts from the search tree. This technique,
in the following referred to as isomorphy inference, has been shown to yield
considerable performance gains when performing BMC with propositional SAT
engines. To the best of our knowledge, HySAT is the first solver that extends
isomorphy inference accross transitions, as well as other domain–specific opti-
mizations described in [34], to the hybrid domain. We will show that, compared
to purely propositional BMC, similar or even higher performance gains can be
accomplished within this context. The reason is that an inference step in the
hybrid domain is computationally much more expensive than in propositional

2



logic, as now richer logics have to be dealt with.
The paper is organized as follows. In the following two sections we explain

the logical language solved by our SAT checker and review briefly how a lin-
ear hybrid automaton can be translated into a predicative formula suitable for
bounded model checking. In section 4 we explain in detail the algorithmic in-
gredients of HySAT. In particular, we discuss the BMC–specific optimizations
implemented in our tool. In section 5 we report some experimental results, and
section 6 draws conclusions and describes directions for future research.

2 The logics

As we are aiming at automated state-exploratory analysis of linear hybrid au-
tomata [25, 24] without prior finite-state abstraction, HySAT addresses satisfi-
ability problems in a two-sorted logics entailing Boolean-valued and real-valued
variables. When encoding properties of linear hybrid automata, the Boolean
variables are used for encoding the discrete state components, while the real
variables represent the continuous state components.

The formulae are actually propositional, being conjunctions of linear zero-

one constraints [19] (also known as pseudo-Boolean constraints [6]) for the
Boolean part and of guarded linear constraints [39] for the real-valued part:

formula ::= {clause ∧}∗clause

clause ::= linear ZO constraint | boolean var =⇒ linear constraint

Here, linear constraint denotes a conjunction of linear inequalities over real-

valued variables, i.e. the constraint part of an arbitrary linear program, while
linear ZO constraint denotes a linear inequality over Boolean-valued variables.
The reason for using linear zero-one constraint clauses instead of, e.g., disjunc-
tive clauses (like in conjunctive normal forms) is that linear zero-one constraints
are much more concise than disjunctive clauses and that we have a very efficient
SAT solver —called “Goblin” [19]— for such constraint systems, yielding the
base engine for HySAT.

2.1 Zero-one linear constraints

Rewriting arbitrary propositional formulae to conjunctive normal form (CNF)
yields a worst-case exponential blowup in formula size if the number of propo-
sitional variables is to be preserved. To avoid this, all practical verification
environments take advantage of satisfiability-preserving transformations that
yield linear-size encodings through introduction of a linear number of auxiliary
variables [36, 31, 37]. The price for introducing a linear number of auxiliary vari-
ables is, however, a worst-case exponential blow-up in the size of the search tree
upon backtrack search. Yet, it has been observed that both causes of blow-up
can often be avoided, as the Davis-Putnam-Loveland-Logemann search proce-
dure for satisfying valuations generalizes smoothly to zero-one linear constraint
systems (ZOLCS), which are the constraint parts of zero-one linear programs

3



[6, 38, 1, 19]. Zero-one linear constraint systems are expressive enough to facil-
itate a linear-size encoding of, e.g., gate-level netlists without use of auxiliary
variables.

In a zero-one linear constraint system or linear pseudo-Boolean constraint

systems, formulae are conjunctions of linear zero-one constraints. A linear zero-

one constraint is of the form a1x1+a2x2+. . . anxn ≥ k, where the xi are literals,
i.e. positive or negated propositional variables, the ai are natural numbers, called
the weights of the individual literals, and k ∈ N is the threshold.

Given a Boolean valuation of the propositional variables, a zero-one con-
straint is satisfied iff its left hand side evaluates to a value exceeding the thresh-
old when the truth values false and true of the literals are identified with 0
and 1, respectively. Zero-one constraints can represent a wide class of mono-
tonic Boolean functions, e.g. 1a + 1b + 1c + 1d ≥ 1 is equivalent to a∨ b∨ c∨ d,
1a + 1b + 1c + 1d ≥ 4 is equivalent to a ∧ b ∧ c∧ d, and 1a + 1b + 3c + 1d ≥ 3 is
equivalent to c =⇒ (a∧b∧d). Consequently, ZOLCS can be exponentially more
concise than CNF: a CNF expressing that at least n out of k variables should
be true requires

(
n

k

)
disjunctive clauses of length n each, i.e. is of size O

((
n

k

)
n
)
,

whereas the corresponding ZOLCS has size linear in k and logarithmic in n.
Formally, the syntax of linear zero-one constraints is

linear ZO constraint ::= linear term ≥ threshold

linear term ::= {weight literal +}∗weight literal

weight ::∈ N

literal ::= boolean var | boolean var

boolean var ::∈ BV

threshold ::∈ N

where BV is a countable set of Boolean variable names.
Zero-one constraints are interpreted over Boolean valuations σB : BV

total
−→ B of

the propositional variables. σB satisfies a constraint a1x1 + a2x2 + . . . anxn ≥ k
iff a1χσB

(x1) + a2χσB
(x2) + . . . anχσB

(xn) ≥ k, where

χσB
(x) =

{
0 if x ∈ V and σB(x) = false,
1 if x ∈ V and σB(x) = true,
1 − χσB

(y) if x ≡ y for some y ∈ V.

2.2 Guarded linear constraints

Zero-one constraints can only express constraints on Boolean variables. A sec-
ond kind of clauses in our logics is Boolean-guarded linear constraints which
express (linear) constraints between real-valued variables, as well as their inter-
dependence with the Boolean valuation. A guarded linear constraint simply is
an implication

boolean var =⇒ linear constraint

between a Boolean variable and a linear constraint over real-valued variables,
i.e. a conjunction of linear inequations. Such a guarded linear constraint is

4



x

t

5

0
5 10 15 20

x ≥ 4

lx = −∞
ux = −2

lx = 1
ux = 1
x ≤ 10 x = 5/x′ = 0

true/x′ = 10

4.5 < x false

Figure 1: A linear hybrid automaton and a sample trajectory. lx and ux denote
the lower and upper bounds on the slope of x in the corresponding states, while
x ≤ 10 and x ≥ 4 are state invariants constraining x itself.

interpreted over a valuation σ = (σB, σR) ∈ (BV
total
−→ B) × (RV

total
−→ R), where

RV is the set of real variables occurring in linear constraints. The guarded
linear constraint v =⇒ c is satisfied by σ = (σB, σR) iff σR satisfies the linear
constraint c or if σB(v) = false.

2.3 Satisfaction of formulae

A formula φ is a conjunction of linear zero-one constraints and of guarded linear
constraints and is thus interpreted over valuations

σ = (σB, σR) ∈ (BV
total
−→ B) × (RV

total
−→ R) .

Obviously, φ is satisfied by σ = (σB, σR), denoted σ |= φ, iff all linear zero-one
constraints in φ are satisfied by σB and all guarded linear constraints in φ are
satisfied by (σB, σR).

When solving satisfiability problems of formulae with Davis-Putnam-like
procedures, we will build valuations incrementally such that we have to reason

about partial valuations ρ ∈ (BV
part.
−→ B) × (RV

part.
−→ R) of variables. We say

that a variable v ∈ BV ∪ RV is unassigned in ρ iff v 6∈ dom(ρB) ∪ dom(ρR). A
partial valuation ρ is called consistent for a formula φ iff there exists a total

extension σ : (BV
total
−→ B) × (RV

total
−→ R) of ρ that satisfies φ. Otherwise, we

call ρ inconsistent for φ. Furthermore, a partial valuation ρ is said to satisfy φ
iff all its total extensions satisfy φ. As this definition of satisfaction agrees with
the previous one on total valuations, we will use the same notation ρ |= φ for
satisfaction by partial and by total valuations.

3 Predicative encoding of linear hybrid automata

A linear hybrid automaton A = (Σ, T, R, inv , l, u, m, g, ass, init), as depicted in
Fig. 1, consists of

• a finite set Σ of locations,

• a finite set T of transitions,

• a finite set R of continuous state components,

5



• a family inv = (invσ)σ∈Σ of state invariants, where each state invariant
invσ is a linear predicate over R which constrains the valuations of the
continuous state components when control resides in the discrete location
σ,

• two families l = (lσ,x)σ∈Σ,x∈R and u = (uσ,x)σ∈Σ,x∈R assigning to each
location σ ∈ Σ and each continuous state component x ∈ R the minimum

and maximum slope of x while control resides in location σ. The individual
lσ,x are constants in Q ∪ {−∞} and similarly uσ,x ∈ Q ∪ {∞}.

• a mapping m : T
total
−→ Σ2 assigning to each transition the pair of source

and sink state of the transition,

• a family g = (gt)t∈T assigning to each transition a transition guard en-
abling that transition, where the transition guard is a linear predicate over
R,

• a family ass = (asst)t∈T assigning to each transition a (possibly nondeter-
ministic) assignment which is a linear predicate over R and R′, where R′

denotes primed variants of the state components in R. The interpretation
is that undecorated state components x ∈ R refer to the state immediately
before the transition, while the primed variant x′ ∈ R′ refers to the state
immediately thereafter.

• a family init = (initσ)σ∈Σ of initial state predicates, where each initσ is a
linear predicate over R which constrains the valuations of the continuous
state components when control resides initially in the discrete location σ.1

Hybrid automata engage in an alternation of continuous evolutions and discrete
transitions. A continuous evolution of A = (Σ, T, R, inv , l, u, m, g, ass, init) can
be represented by a tuple (σ, ~x, δ, ~x′) consisting of a discrete state σ ∈ Σ the

automaton resides in, a source continuous state ~x ∈ (R
total
−→ R) and a target

continuous state ~x′ ∈ (R
total
−→ R), as well as a duration δ ∈ R≥0. Such a tuple is

a continuous evolution of A iff for each y ∈ R it holds that ~x′(y) ≥ ~x(y)+ lσi,y ·δ
and ~x′(y) ≤ ~x(y)+uσi,y ·δ, and both ~x and ~x′ satisfy invσ. Thus, δ represents the
duration of A residing in state σ, and all continuous variables y evolve according
to their slope bounds, and the invariant is true in the start and the end state
(and thus, by convexity, in between). Similarly, an immediate transition can be
represented by a tuple (σ, ~x, σ′, ~x′) consisting of a discrete source state σ ∈ Σ

and a discrete target state σ′, plus a continuous source state ~x ∈ (R
total
−→ R)

and a continuous target state ~x′ ∈ (R
total
−→ R). Such a tuple is an immediate

transition iff there is a transition t ∈ T with m(t) = (σ, σ′) such that ~x satisfies
gt and such that asst is satisfied if ~x is substituted for the variables in R and ~x′

is substituted for the variables in R′.
A run r = 〈(σ0, ~x0, δ0, ~x′0), . . . , (σn, ~xn, δn, ~x′n)〉 ∈ (Σ × (R

total
−→ R) × R≥0 ×

(R
total
−→ R))∗ is a sequence of continuous evolutions of A linked by immediate

1A discrete location σ not to be taken initially takes the predicate initσ = false.

6



transitions and grounded in a viable initial state. I.e., a run r satisfies the
following properties:

• Initialization: ~x0 satisfies initσ0 .

• Progression by continuous evolution: for all i, the tuple (σi, ~xi, δi, ~x′i) is
a continuous evolution of A.

• Progression by immediate transitions: the tuple (σi, ~x′i, σi+1, ~xi+1) is an
immediate transition of A for all i < n.

In order to perform bounded model checking (BMC) [8] with HySAT, i.e.
checking of validity of temporal properties on finite unrollings of a transition
system, we need to encode all runs of a given length k ∈ N in HySAT’s log-
ics. There are various ways of doing this, all with specific strengths and weak-
nesses. Yet all the reasonable ones share the property of featuring a plethora
of structurally similar sub-formulae stemming from the iterated application of
the transition relation and from the iterated continuous evolution in the k-fold
unrolling. In order to exemplify this, we present here one particular form of
such an unrolling which is very similar to the one used by Audemard et al. for
MathSAT-based BMC of linear hybrid automata [3] and by Bemporad et al. for
MILP-based BMC of linear hybrid automata [7].

Let A = (Σ, T, R, inv , l, u, m, g, ass, init) be a linear hybrid automaton. In
order to encode a transition sequence of A of some given length k ∈ N, we
proceed as follows:

1. For each discrete state σ ∈ Σ we take k + 1 Boolean variables σi, with
0 ≤ i ≤ k. The value of σi encodes whether the automaton A is in state
σ in step i. Here, we take “one-hot” encoding, i.e. σi = true iff A is in
state σ in step i. With one-hot encoding, there consequently is, for any
i ≤ k, exactly one σ ∈ Σ such that σi holds, which is enforced in the BMC
formula by the 2k + 2 linear zero-one constraints

k∧

i=0

(
∑

σ∈Σ

1σi ≤ 1

)
∧

k∧

i=0

(
∑

σ∈Σ

1σi ≥ |Σ| − 1

)

2. For each transition t ∈ T we take k Boolean variables ti, with 1 ≤ i ≤ k.
The value of ti encodes via one-hot encoding whether the ith move in
the run is transition t. Wellformedness of the unrolling in the sense that
exactly one transition is taken in each step is guaranteed by conjunctively
adding the 2k linear zero-one constraints

k∧

i=1

(
∑

t∈T

1ti ≤ 1

)
∧

k∧

i=1

(
∑

t∈T

1ti ≥ |T | − 1

)

to the formula.

7



3. For each continuous state component x ∈ R we take k + 1 real-valued
variables xi and another k + 1 real-valued variables x′i, with i ≤ k. The
value of xi encodes the value of x immediately after the ith transition in
the run, whereas x′i represents the value immediately before transition
(i + 1). For each i ≤ k we do, furthermore, take one real-valued variable
δi representing the time spent in the ith state of the run. This allows us
to formalize the continuous evolutions by conjoining the guarded linear
constraint

σi =⇒ (x′i ≥ xi + lσ,xδi ∧ x′i ≤ xi + uσ,xδi)

for each σ ∈ Σ and each i ≤ k to the formula.2 Furthermore, we have
to keep track of the state invariants, which are enforced by the guarded
linear constraints

σi =⇒ (invσi [xi
1, . . . , x

i
n/x1, . . . , xn] ∧ invσi [x′i

1 , . . . , x′i
n/x1, . . . , xn]) ,

where {x1, . . . , xn} = R.

4. The interplay between discrete states and transitions requires that ti im-
plies σi−1 and σ̃i for (σ, σ̃) = m(t). With linear zero-one constraints, this
can be expressed by a single constraint

2ti + 1σi−1 + 1σ̃i ≥ 2

for each t ∈ T and each 1 ≤ i ≤ k. Furthermore, enabledness of the
transition, i.e. validity of the transition guard, is enforced through the
guarded linear constraint

ti+1 =⇒ gt[x
′i
1 , . . . , x′i

n/x1, . . . , xn] .

Likewise, assignments are dealt with by

ti+1 =⇒ ass t[x
i
1, . . . , x

i
n/x1, . . . , xn][x′i

1 , . . . , x′i
n/x′

1, . . . , x
′
n]

5. Finally, we have to add constraints describing the allowable initial states
through the guarded linear constraint system

∧

σ∈Σ

(
σ0 =⇒ initσ

)

Satisfying valuations of the formula thus obtained are in one-to-one correspon-
dence to the runs of A of length k. As in BMC [8], satisfaction of temporal
properties on all runs of depth k can thus be checked by adding to the formula
the k-fold unrolling of a tableaux of the (negated) property, then checking the re-
sulting formula for unsatisfiability. Using standard techniques from predicative
semantics [23], the translation scheme can be extended to both shared variable

2If lσ,x = −∞ or uσ,x = ∞, the corresponding part of the constraint is left out.

8



and synchronous message-passing parallelism, thereby yielding formulae of size
linear in the number of parallel components.

Note that, except for step (5) of above encoding scheme, all steps gener-
ate multiple copies of the same basic formula, where the k or k + 1 individual
copies differ just in a consistent renaming of the variables. Therefore, a satis-
fiability checker tailored towards BMC of hybrid automata should exploit such
isomorphies between subformulae for accelerating satisfiability checking, which
is the distinguishing feature of HySAT. In order to simplify detection of isomor-
phic copies, HySAT is in fact fed with just a single copy of the transition and
evolution predicates and performs the unrolling itself.

4 Ingredients of HySAT

The predicative encoding outlined above yields formulae which are Boolean com-
binations of linear arithmetic contraints. To deal with such formulae, HySAT’s
main components are

• the solver core, consisting of a tight integration of a SAT solver with a
linear programming routine, described in section 4.1, and enhanced with
domain-specific optimizations for BMC, as explained in section 4.2,

• an API to the solver core, providing methods for formula generation,
simplification, common subexpression eliminiation, and for rewriting the
resulting formula into a conjunctive form, namely a conjunction of zero-
one linear constraints and guarded linear constraints, which is the input
format of the solver core,

• a frontend, consisting of HySAT’s input language and a bounded model
checker, which performs the unwinding of the transition relation and con-
trols the solver core via API calls.

To fit the needs of BMC, which involves checking the same system on different
unrolling depths, the solver core and the API are designed to work in an incre-
mental fashion in the sense that they allow to add (as well as delete) successively
sets of constraints to (from) an existing problem and then redo the satisfiability
check without starting SAT search from scratch each time.

4.1 Integration of DPLL-SAT and Linear Programming

Before addressing the integration of a propositional SAT solver with linear pro-
gramming, we first briefly review some basics of the individual methods.

4.1.1 Boolean SAT

The best currently known procedures for deciding Boolean SAT problems imple-
ment variants of the classical Davis-Putnam-Loveland-Logemann (DPLL) pro-
cedure [13] and are based on backtracking in the space of partial value assign-
ment. Given a Boolean formula Φ in conjunctive normal form (CNF) and a

9



partial valuation ρ, which is empty at the start, the DPLL procedure incremen-
tally extends ρ until either ρ |= φ holds or ρ turns out to be inconsistent for
φ, in which case another extension is tried through backtracking. Extensions
are constructed by performing decision steps, which entail selecting an unas-
signed variable “blindly” and assigning a truth-value to it, each followed by a
deduction phase, involving the search for propagating clauses that require cer-
tain assignments in order to preserve their satisfiability, where execution of the
implied assignments might cause the need for further such assignments, in this
context also referred to as implications. However, deduction may also yield a
conflicting clause which has all its literals assigned false, indicating the need for
backtracking.

Like all pure backtracking algorithms, the classical DPLL procedure suf-
fers from thrashing, i.e. repeated failure due to the same reason. To overcome
this problem, modern SAT solvers implement a technique called conflict-driven

learning [40], which attempts to derive sufficiently general reasons for conflicts
being encountered and stores them for future guidance of the search. The stan-
dard scheme traces the reason back to a small (ideally minimal) number of
assignments that triggered the particular conflict, and stores this reason by
adding the negation of that assignment as as clause, termed conflict clause, to
the clause database. Besides learning, state-of-the-art SAT solvers, as the one
being integrated in HySAT, enhance the basic DPLL procedure by sophisticated
heuristics for selecting the assignment performed at decision steps [27, 29], and
add various algorithmic refinements, among them non-chronological backtrack-
ing [28, 29], random restarts [4] and lazy clause evaluation [29], to accelerate
the proof search.

A pecularity of HySAT’s SAT solver is its ability to directly handle linear
zero-one constraint systems, a considerably more concise language than CNF.

DPLL on linear zero-one constraints. The DPLL procedure can easily
be generalized from CNF to ZOLCS through adapting its deduction procedure
to the following propagation rule for linear zero-one constraints: A zero-one
constraint

∑
aixi ≥ k propagates a literal xj iff setting this literal to false

would make the constraint unsatisfiable, i.e. iff (
∑

ai) − aj < k.
Note, that in contrast to a CNF clause, a zero-one constraint can propagate

several literals simultaneously. As an example consider the constraint

5a + 3b + 3c + 1d + 1e ≥ 7

which propagates b and c immediately after setting a to false. Carrying out the
assignments b 7→ false and c 7→ true reduces the constraint to

1d + 1e ≥ 1

which shows that, as opposed to CNF-SAT, a zero-one constraint is not nec-
essarily satisfied after propagation, and might thus become propagating more
than once.

10



+

4a 1f1e1d2c3b + 5++++

b 7→ false

c 7→ false

+

Propagate a 7→ true

≥1f1e1d 1++

≥

1d4a ≥1f1e3b 5++

1e1d2c3b 5++++++

1e 1f4a ≥

1f

g 7→ false

+ + + 51d

4a ≥1g

Figure 2: Changes of the set of watched literals when successively setting g, c
and b to false. Watched literals are marked with grey boxes.

Generalization of lazy clause evaluation. While the above generalization
of the DPLL procedure to ZOLCS has already been proposed by Barth [6], its
acceleration through lazy clause evaluation for zero-one constraints is a recent
addition by Chai and Kuehlmann [10] and the authors of this paper [20].

A naive implementation of the deduction phase of DPLL would identify
propagating clauses by visiting, after each assignment, all clauses containing the
literal falsified by that assignment, as such clauses might have become propagat-
ing. The key idea of the enhanced algorithm is to watch only a subset of literals
in each clause, and not to visit the clause when any other literal is assigned, as
the watched set provides evidence for the clause to be non-propagating.

To apply lazy clause evaluation to zero-one constraints we have to determine
a subset of unassigned literals from each constraint such that watching these
literals is sufficient for detecting change of clause state from normal to propa-
gating. Obviously, we are looking for minimal sets with this property in order
to avoid unnecessary visits of constraints.

To this end, we arrange the literals of each constraint with respect to their
weights, such that the literal with the largest weight is the leftmost one. Then
we read the constraint from left to right and select the literals to be watched as
follows:

1) The leftmost unassigned literal is selected.

2) The following literals are selected from the remaining unassigned ones
until the sum of their weights, not including the weight of the leftmost
unassigned literal, is greater than or equal to the constant on the righthand
side of the constraint.

If a watched literal of a zero-one constraint is assigned false, our algorithm
tries to re-establish a set of literals which is in accordance to rules 1) and 2).

11



This requires the search for a minimal set of literals which are either unassigned
or true and whose weights sum up to a value that at least equals that of the
watched literal which has been assigned false. If such a set exists then it is added
to the set of watched literals to replace the one which has dropped out. If no such
set exists then this indicates that the constraint has become a propagating one.
The resulting propagations are determined by application of the propagation
rule from the previous paragraph. Figure 2 illustrates the actions performed by
the lazy clause-evaluation scheme by means of an example clause.

4.1.2 Linear programming

Linear programming deals with finding extremal values of a linear objective
function when the variables are constrained by linear (in)equations, i.e. with
problems that can be put in the general form

maximize ~cT ~x

subject to A~x ≥ ~b
(1)

where ~x is the vector of variables to be solved for, and A, ~b and ~c are given
matrices or vectors of known coefficients. The linear expression ~cT ~x is called
the objective function, (1) is referred to as a linear program.

HySAT uses LP as a black-box method to decide the feasibility of a set of
linear constraints, i.e. to check whether for a given system of inequations A~x ≥ ~b
the set of solutions {~x ∈ R | A~x ≥ ~b} is non-empty, as well as a means for
efficiently deriving explanations for infeasibility. The main reason for preferring
LP over other methods of detecting feasibility of linear constraint systems (e.g.,
Fourier-Motzkin Elimination [18, 30, 9]) is that linear programming is known
to be polynomial and scales extremely well in practice, even though the most
frequently used codes are actually based on the non-polynomial Simplex method.
Commercial codes like CPLEX tackle instances with more than 106 variables. In
HySAT, however, we use the free LP library glpk3 by Andrew Makhorin which
provides a simplex solver, an interior point solver, and a solver supporting mixed
integer linear programming (MILP), where some of the variables are required
to be integer.

Checking feasibility of a system of linear inequations by linear programming
is straightforward and requires only a hand-over of the unmodified or slightly
modified (in case of strict inequations being entailed) linear constraint system
to the LP, plus generation of a trivial (in case of only equations and non-strict
inequations) or very simple objective function. To cope with systems containing
strict inequations, which cannot be handled by LP directly, we use the standard
trick of introducing a fresh slack variable ε and of replacing each strict inequation∑n

j=1 Ai,j~xj > ~bi by
∑n

j=1 Ai,j~xj − ε ≥ ~bi. Instrumenting the resultant linear
constraint system with the objective function ε to be maximized yields an LP
which is feasible with strictly positive optimum iff the original constraint system
is feasible.

3http://www.gnu.org/software/glpk/glpk.html

12



Extraction of explanations for infeasibility of a linear constraint system, on
the other hand, can be performed by analyzing the solutions to adequately
instrumented duals of the original constraint system. What we actually want
to obtain is, in case that the original constraint system

C =

( ∧k

i=1

∑n

j=1 Ai,j~xj ≥ ~bi

∧
∧n

i=k+1

∑n

j=1 Ai,j~xj > ~bi

)

is infeasible, a subset I ⊆ {1, . . . , n} such that the subsystem C|I of the con-
straint system containing only the conjuncts from I also is infeasible, yet the
subsystem is irreducible in the sense that any proper subset J of I designates
a feasible system C|J . Such an irreducible infeasible subsystem (IIS) is a prime
implicant of all the possible reasons for failure of the constraint system C, and
is thus a natural counterpart to the conflict clauses in the propositional setting
as it prevents the proof search from visiting the same or related inconsistent
constraint sets again. In case that the constraint system C contains only non-
strict inequations (i.e., k = n), it is a well-known fact of linear programming
(closely related to Farkas’ Lemma) that extraction of irreducible infeasible sub-
systems can be reduced to finding extremal solutions of a dual system of linear
inequations [21, 32]. We use the LP

maximize ~wT ~y
subject to AT ~y = 0

~bT ~y = 1
~y ≥ 0

where ~wi =

{
−1 if bi ≤ 0,

0 if bi > 0

where the objective function together with the choice of ~w guarantees bound-
edness such that an optimal solution exists whenever the LP is feasible. For
such a solution, I = {i | ~yi 6= 0} is an IIS. I.e., in case of systems containing
only non-strict (in)-equations, we extract an IIS by just a single call to the LP
procedure. In case k < n, we do first relax the strict inequations to non-strict
ones, then search an IIS I of the relaxed system by solving the above dual sys-
tem,4 and finally apply a deletion filter [11, 12] to CI (i.e., the reduction to I
of the original constraint system entailing strict inequations) to further reduce
I, if possible.5 Such deletion filters entail multiple calls to the constraint solver
in order to check for satisfiability of the constraint system with individual con-
straints being “switched off” (i.e., removed from I), thus requiring a worst-case
linear number of calls to the LP. By applying deletion filters only to the (in

4Note that the relaxed system may turn out to be satisfiable. In this case, the following
phase pursuing a deletion filter can be started on the full constraint system C instead of C|I .

5Actually, application of the deletion filter is optional in HySAT, as the subsystems ob-
tained from the first, LP-based phase are often tight enough (i.e., only marginally larger than
the prime implicants) such that the overhead incurred from deletion-filtering is not amortized
by the reduction in search space of the SAT procedure.

13



general, substantially) reduced subsystem CI instead of the original system C,
HySAT does, however, gain considerable performance compared to traditional
deletion-filter methods.

4.1.3 Coupling SAT and LP

The basic idea of the integration is to guard each non-propositional constraint
occuring in the input formula with a new Boolean variable and to pass the
corresponding constraint to the linear programming routine whenever the SAT
solver assigns that variable to true. In turn, constraints are removed from the
LP-solver’s database when their guard variables are unassigned again due to
backtracking. The integration thus is an instance of the lazy theorem proving

paradigm [16].
After each deduction phase in which no Boolean conflict was encountered,

the SAT solver checks if new constraints have been added to the linear program
since its last evaluation. If so, the linear programming routine is called to
decide the feasibility of the set of constraints residing in its database. If the
linear program turns out to be inconsistent, a conflict is reported to the SAT
solver. Otherwise the SAT solver can proceed with the next decision step.

In case of a conflict, however, HySAT invokes a conflict-analysis routine
that extracts an irreducible infeasible subsystem from the constraint set, as de-
scribed in the previous section. The IIS, providing a minimal (however in general
not unique) reason for the conflict, is communicated back to the SAT solver,
which uses the guard variables of the linear constraints involved to construct a
conflict clause which prevents that particular combination of constraints to be
investigated again. The resulting interaction between DPLL proof search and
feasibility check via LP is illustrated in Figure 3.

Besides learning from arithmetic conflicts, HySAT is also able to perform for-
ward arithmetic inference, thereby deriving new arithmetic facts from feasible
sets of linear constraints. Given a set C = {C1, . . . , Cn} of currently active arith-
metic constraints, HySAT employs linear programming to determine for each
continuous variable x occurring in C the minimum value xmin and the maximum
value xmax consistent with

∧n

i=1 Ci. If either of these values exists, HySAT adds
the respective bound constraint, i.e. x ≥ xmin or x ≤ xmax, guarded by a fresh
boolean variable p, to its database, together with a propositional clause which is
responsible for triggering the activation of the new constraint. To this end, the
propositional clause is of form pCi1

∧. . .∧pCim
→ p, where the variables pCij

are

the guard variables of a minimal set of constraints Cij
∈ C whose conjunction

implies the new bound constraint6.
When learning a new bound constraint, HySAT also adds boolean clauses

capturing all propositional dependencies between bound constraints concerning
the same continuous variable, i.e. implicative dependencies between bounds as
induced by the linear order on the reals. If the solver e.g. learns that in a certain

6It’s noteworthy that the extraction of the minimal set {Cij
| 1 ≤ j ≤ m} ⊆ C does

not entail any computational overhead, but is delivered by the LP solver as a byproduct of
determining the bound on the respective continuous variable.

14



Linear Programming

y

x

Davis Putnam

Davis Putnam

y

x

Davis Putnam Linear Programming

y

x

Linear Programming

DeduceDeduce from conflict clause
Deduce

Deduce

Davis Putnam

y

x

Linear Programming

D

C

Davis Putnam Linear Programming

y

x

D

C

Davis Putnam Linear Programming

y

x

B
C

A D

Conflict !

Davis Putnam Linear Programming

y

Conflict !

xC

D

Minimal infeasible subsystem is 

Solver learns conflict clause

DeduceDeduce

Input formula:

Davis Putnam Linear Programming

y

x

Linear ProgrammingDavis Putnam

y

x

B

A D

C

D

∧
(
f → A ∧ B

)

∧
(
f ∨ g ∨ e

)

∧
(
g ∨ f

)

∧ (e → (C ∨ D) ∧ g)

∧ (A → (4x − 2y ≥ 9))

∧ (B → (2x − 4y ≤ −7))

∧ (C → (x + y ≤ 5))

∧ (D → (x ≤ 7))

2e + C + D ≥ 2

2f + A + B ≥ 2

f + g + e ≥ 1

3e + 2g + C + D ≥ 3

g + f ≥ 1

C + D ≥ 2

2f + A + B ≥ 2

f + g ≥ 1

g + f ≥ 1

2g + C + D ≥ 3

g + f ≥ 1

2f + A + B ≥ 2

CC,D

g, f,A,B

D

A + B ≥ 2

g ≥ 1

g ≥ 1

{A,B,C}

A ∨ B ∨ C

A,Bg, g

Φ = (e → C ∧ D)

ee

2f + A + B ≥ 2

f + g ≥ 1

g + f ≥ 1

f f

Figure 3: Backtrack-search tree arising in a tight integration of DPLL proof
search with linear programming. x and y are real-valued, while e, f, g and
A, B, C, D are Boolean. A, B, C, D are, furthermore, guard variables for arith-
metic facts.

branch of the search tree x ≥ 5 holds, it will therefore immediately exclude all
combination of assignments to guard variables that would cause the activation
of bound constraints x ≤ c with c < 5, thereby considerably pruning the search
tree.

4.2 Optimizations for BMC

Compared to related tools like ICS which aim at being general-purpose decision
procedures suitable for arbitrary formulae, HySAT’s decision procedure has been
tuned to exploit the unique characteristics of BMC formulae.

As observed by Strichman [34], the highly symmetric structure of the k-fold

15



unrolling as shown in section 3 as well as the incremental nature of BMC can
both be exploited for various optimizations in the underlying decision procedure.
Currently, HySAT implements three optimizations which are described below.

4.2.1 Isomorphy inference

The learning scheme employed in propositional SAT solvers accounts for a sub-
stantial fraction of the solver’s running time as it entails a non-trivial analysis
of the implications that led to an inconsistent valuation. The creation of a con-
flict clause is in general even considerably more expensive in a combined solver
like HySAT, as the analysis of a conflict involving non-propositional constraints
requires the computationally expensive extraction of an IIS.

Isomorphy inference uses the (almost) symmetric structure of a BMC for-
mula in order to add isomorphic copies of a conflict clause to the problem, thus
multiplying the benefit taken from the time-consuming reasoning process which
was required to derive the original conflict clause.

The concept is best illustrated using an example. Suppose that while solving
a BMC instance the solver has encountered a conflict which yields the conflict
clause C0 = (xj1

3 ∨ xj2
4 ∨ xj3

9 ), relating three variables from cycles j1, j2 and
j3. The solver then not only adds C0 to φk, but also all possible clauses Ci =
(xj1±i

3 ∨ xj2±i
4 ∨ xj3±i

9 ), i = 1, 2, . . ., obtained from C0 simply by index shifting.
Note, however, that BMC is not fully symmetric because of the initializa-

tion properties of runs (clause (5) of the translation scheme of section 3) and
perhaps the verification goal. This implies that only conflict clauses inferred
from facts which are independent from such asymmetric formula parts may
be soundly replicated. Such dependency can be traced cheaply by marking
initialization/goal predicates and dominantly inheriting such marks upon all
inferences, inhibiting isomorphy inference whenever a mark is encountered.

4.2.2 Constraint sharing

When carrying out BMC incrementally for longer and longer unrollings, the
consecutive formulae passed to the solver share a large number of clauses. Thus,
when moving from the k-instance to the (k +1)-instance, we can simply conjoin
the conflict clauses derived when solving k-instance to the formula for step k+1.
However, this is only allowed for conflict clauses that were inferred from clauses
which are common to both instances. We do currently decide this based on
simple syntactic criteria, namely that the conflict clause was inferred purely from
clauses stemming from the automaton. I.e. the inference may not involve the
verification goal, which tends to become a weaker predicate on longer instances,
as it usually entails reachability or recurrence. More elaborate schemes have,
however, been investigated for propositional BMC in [26].

4.2.3 Tailored decision strategy

When applying general-purpose decision strategies to BMC formulae one can
observe the phenomenon described in [34] that during the SAT search large sets

16



of constraints belonging to distant cycles of the transition relation are being
satisfied independently, until they finally turn out to be incompatible, often
entailing the need for backtracking over long distances in the search tree.

In HySAT we adopt the solution proposed by Strichman [34] to avoid this
problem: The heuristics of the SAT solver selects the decision variables in the
natural order induced by the variable dependency graph of the BMC formula,
i.e. either using a forward scheme, starting with variables from ~x0, then from
~x1, etc., or vice versa, engaging in a backward scheme. This allows conflicts to
be detected and resolved more locally, speeding up the search, as witnessed by
the results shown in figure 8.

5 Benchmark results

For an evaluation of HySAT we conducted a series of experiments on BMC
problems of hybrid automata in which we a) compared our tool with the ICS
solver [14], and b) investigated the impact of the individual optimizations by
comparing the computation times of our tool when running with and without
the respective optimization beeing enabled. The unwindings fed to ICS were
obtained through SRI’s infinite-state BMC frontend to ICS as distributed in the
SAL tool-set [15]. Our benchmarks are

• The “leaking gas burner” and “water-level monitor” included in the SAL
distribution,

• An elastic approach to distance control of trains running on the same
track, similar to the car platooning system used in the PATH project.
Here, trains can accelerate or decelerate freely if they do not violate their
mutual safety envelopes, yet an automatic speed control takes authority
over a train if another train gets close, thereby controlling acceleration
proportional (within physical limits) to the front and/or back proximity
of the neighboring trains.

• A hybrid model of a car equipped with robotized five-speed transmis-
sion and a cruise control system which aims at maintaining a certain pre-
set speed by actuating throttle and brake using two PI controllers. We
adopted the model as reported in [35] and modified it by adding a realistic
clutch behaviour in the initial acceleration phase.

The results of our experiments are shown in figures 4 – 8, with each data
point representing a single BMC instance solved by two engines. Points lying on
the diagonal, which is drawn as a solid line in all figures, indicate equal running
times of both tools; points lying above (below) the diagonal represent instances
that were solved faster by the engine whose running times can be read off from
the x-axis (y-axis). Note the logarithmic scaling of the axes in figures 4 and 5.

It can be seen that the individual optimizations yield consistent performance
benefits, with the merits becoming more evident with increasing unrolling depth,
corresponding to computationally more costly SAT instances.

17



a)
HySAT [s]

ICS [s]

HySAT with Isomorphy Inference

HySAT without Isomorphy Inference

Ratio < 200

Ratio < 100

Ratio < 50

 0.01

 0.1

 1

 10

 100

 1000

 0.01  0.1  1 b)

Ratio < 10

Ratio < 40Ratio < 20

HySAT without Isomorphy Inference

HySAT with Isomorphy Inference

ICS [s]

HySAT [s] 0.01

 0.1

 1

 10

 100

 1000

 0.01  0.1  1  10

Figure 4: Performancs of HySAT relative to ICS: BMC times for a) gasburner
model, b) water-level monitor.

a)
HySAT with Isom. Inf. [s]

HySAT without Isomorphy Inference [s]

Ratio < 20Ratio < 10

Ratio < 40

 0.01

 0.1

 1

 10

 100

 1000

 0.01  0.1  1  10 b)

Ratio < 4

Ratio < 8

HySAT with Isom. Inf. [s]

HySAT without Isomorphy Inference [s]

Ratio < 2

 0.01

 0.1

 1

 10

 100

 1000

 10000

 0.01  0.1  1  10  100

Figure 5: Impact of isomorphy inference: BMC times for a) water-level monitor,
b) train distance control model, involving 5 trains.

This holds in particular for isomorphy inference, an exception being however
the extremely deterministic gasburner model, see figure 5 a), where a strict
state alternation is enforced by the discrete part such that learning of infeasible
subsystems provides negligible extra information.

With respect to the decision strategy it turns out that there is no single
optimal strategy. Depending on the specific shape of the initial state set and
the target region, forward or backward strategies, though in general both better
than the standard strategy, may be more beneficial. We are experimenting with
randomized approaches to on-the-fly strategy switch to overcome the problem
of selecting an appropriate strategy a priori.

6 Conclusion and further work

The benchmarks performed so far indicate a very competitive performance of
HySAT when used for bounded model checking of linear hybrid systems. They
do thus provide evidence for the effectiveness of HySAT’s basic design decisions,
which are

18



a)
HySAT, IIS via Dual LP [s] 

HySAT, IIS via Deletion Filter [s]

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0  5  10  15  20  25 b)
HySAT, IIS via Dual LP [s] 

HySAT, IIS via Deletion Filter [s] 

 0

 100

 200

 300

 400

 500

 600

 700

 0  20  40  60  80  100  120  140  160  180

Figure 6: Comparison of deletion filter method for extraction of irreducible
infeasible subsystems with method using the dual LP. Graphics show results for
a) train distance control model, b) car model.

a)

HySAT without Sharing [s]

HySAT with Sharing [s]
 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0  2  4  6  8  10  12  14  16  18  20 b)

HySAT without Sharing [s]

HySAT with Sharing [s]
 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 0  20  40  60  80  100  120  140

Figure 7: Impact of constraint sharing on BMC runtimes for a) train distance
control model, b) car model.

1. the exploitation of structural properties of the formulae arising in bounded
model checking and

2. the use of a non-clausal and thus more concise base logics.

With the current case studies, which are reachability properties in hybrid au-
tomata, measures of the first kind clearly have the predominant effect. Yet
experiments with bounded model construction for the metric-time temporal
logic Duration Calculus provide evidence that the conciseness gain from using
linear zero-one constraint systems instead of CNF formulae will be essential to
tractability once observers for metric-time temporal-logic formulae come into
play [17].

HySAT’s techniques for exploiting the particular structure of the verification
conditions arising in bounded model checking (BMC) include inheritance of
inference results along the temporal axis within an BMC instance, sharing of
inference results across BMC instances, and decision heuristics in the SAT-
solver that pay attention to the causal relationship between problem variables
by doing chaining along the transition sequence. These algorithms have been
inspired by similar optimizations developed by Strichman for finite-state BMC
[34]; however such optimizations exhibit an even better payoff on the two-sorted

19



a)

HySAT, General Purpose Strategy [s]

HySAT, Backward Strategy [s]
 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0  5  10  15  20  25 b)
HySAT, Forward Strategy [s]

HySAT, General Purpose Strategy [s]

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 0  10  20  30  40  50  60  70  80  90

Figure 8: Impact of tailored decision strategies: a) For the train model the
backward strategy clearly outperforms the general purpose decision strategy,
whereas a forward scheme (not shown) slows down the solver. b) Conversely,
for the car model the forward strategy is superior.

logics used here, as the price for copying inferences increases only marginally
while the computational cost of the individual inference grows dramatically in
the hybrid-state case. Consequently, the individual optimization yield speedups
of up to, and sometimes even considerably exceeding, an order of magnitude.

An interesting aspect of isomorphically copying inference results, as in inher-
itance along the temporal axis or in sharing across BMC instances, is that even
extremely costly inferences may amortize, provided that their results can be
reused sufficiently often. Future versions of HySAT will thus incorporate more
advanced —and computationally more costly— inference techniques combined
with heuristics deciding when to use them. The rationale is here that a costly
inference is more beneficial when there is sufficient chance for reuse of its result,
i.e. when it is performed in early phases of the proof search, thus providing
aggressive proof-tree pruning.

Another direction for future development is the extension of HySAT to non-
linear arithmetic constraints, including transcendental functions, thereby ex-
tending the lazy theorem proving approach to undecidable domains which arise
naturally in the verification of hybrid discrete-continuous systems. While un-
decidable theories are in general out-of-scope of the lazy theorem proving ap-
proach, as their processing requires extremely frequent calls to interactive the-
orem provers as subordinate procedures of the satisfiability solver, we exploit
structural and topological properties of typical engineering problems to extend
this approach far into undecidable arithmetic domains without entering into
interactive verification schemes. Specifically addressing robust verification con-
ditions, i.e. proof obligations that do not change their truth value under minor
variation of the constants involved, we will integrate robust constraint solving
procedures (e.g. those of [33]) with the lazy theorem proving paradigm. Given
the ability of robust constraint solving to decide truth of robust formulae in
real arithmetic including transcendental and other smooth functions, we thus
obtain a fully symbolic procedures for the analysis of hybrid systems with large
discrete state spaces and rich continuous dynamics.

20



Acknowledgements. The authors are grateful for the tight cooperation within the

project area “Hybrid Systems” of the Transregional Research Action “AVACS” funded

by the Deutsche Forschungsgemeinschaft. Special thanks go to Bernd Becker, Erika

Ábrahám, Felix Klaedtke, and Jan-Georg Smaus for their kind hospitality and for many

fruitful discussions during research visits to Freiburg, as well as to Fritz Eisenbrand

and Markus Behle for their help in finding an efficient solution to the IIS extraction

problem.

References

[1] F. A. Aloul, A. Ramani, I. L. Markov, and K. A. Sakallah. Generic ILP versus
specialized 0-1 ILP: An update. In Proc. ACM/IEEE Intl. Conf. Comp.-Aided
Design (ICCAD), pages 450–457, Nov. 2002.

[2] G. Audemard, P. Bertoli, A. Cimatti, A. Kornilowics, and R. Sebastiani. A
SAT-based approach for solving formulas over boolean and linear mathematical
propositions. In A. Voronkov, editor, Proc. of the 18th International Conference
on Automated Deduction, volume 2392 of Lecture Notes in Artificial Intelligence,
pages 193–208. Springer-Verlag, 2002.

[3] G. Audemard, M. Bozzano, A. Cimatti, and R. Sebastiani. Verifying industrial
hybrid systems with MathSAT. ENTCS, 89(4), 2004.

[4] L. Baptista, I. Lynce, and J. Marques-Silva. Complete search restart strategies for
satisfiability. In Proc. of the IJCAI’01 Workshop on Stochastic Search Algorithms
(IJCAI-SSA), August 2001.

[5] C. Barrett, D. Dill, and A. Stump. Checking satisfiability of first-order formulas by
incremental translation to SAT. In 14th International Conference on Computer-
Aided Verification, 2002.

[6] P. Barth. A Davis-Putnam based enumeration algorithm for linear pseudo-
boolean optimization. Technical Report MPI-I-95-2-003, Max-Planck-Institut für
Informatik, Saarbrücken, Germany, 1995.

[7] A. Bemporad and M. Morari. Verification of hybrid systems via mathematical
programming. In F. W. Vaandrager and J. H. van Schuppen, editors, Hybrid
Systems: Computation and Control (HSCC’99), volume 1569 of Lecture Notes in
Computer Science, pages 31–45. Springer-Verlag, 1999.

[8] A. Biere, A. Cimatti, and Y. Zhu. Symbolic model checking without BDDs. In
TACAS’99, volume 1579 of Lecture Notes in Computer Science. Springer-Verlag,
1999.

[9] A. Bik and H. Wijshoff. Implementation of Fourier-Motzkin elimination. Techni-
cal Report TR94-42, Dpt. of Computer Sceince, University of Leiden, The Nether-
lands, 1994.

[10] D. Chai and A. Kuehlmann. A fast pseudo-boolean constraint solver. In Proc. of
the 40th Design Automation Conference (DAC 2003), pages 830–835, Anaheim
(California, USA), June 2003. ACM.

[11] J. W. Chinneck. Finding a useful subset of constraints for analysis in an infeasible
linear program. INFORMS Journal on Computing, 9(2):164–174, 1997.

21



[12] J. W. Chinneck and E. W. Dravnieks. Locating minimal infeasible constraint sets
in linear programs. ORSA Journal on Computing, 3(2):157–168, 1991.

[13] M. Davis, G. Logemann, and D. Loveland. A machine program for theorem
proving. Communications of the ACM, 5:394–397, 1962.

[14] L. de Moura, S. Owre, H. Ruess, J. Rushby, and N. Shankar. The ICS deci-
sion procedures for embedded deduction. In 2nd International Joint Conference
on Automated Reasoning (IJCAR), volume 3097 of Lecture Notes in Computer
Science, pages 218–222, Cork, Ireland, July 2004. Springer-Verlag.

[15] L. de Moura, S. Owre, H. Rueß, J. Rushby, N. Shankar, M. Sorea, and A. Tiwari.
SAL 2. In R. Alur and D. Peled, editors, Computer-Aided Verification, CAV
2004, volume 3114 of Lecture Notes in Computer Science, pages 496–500, Boston,
MA, July 2004. Springer-Verlag.

[16] L. de Moura, H. Rueß, and M. Sorea. Lazy theorem proving for bounded model
checking over infinite domains. In Proceedings of the 18th International Confer-
ence on Automated Deduction, volume 2392 of Lecture Notes in Computer Science,
pages 438–455. Springer-Verlag, July 2002.

[17] J. Enslev, A.-S. Nielsen, M. Fränzle, and M. R. Hansen. Bounded model con-
struction for duration calculus. In N. Jones et al., editor, Proceedings of the 17th
Nordic Workshop on Programming Theory (NWPT 05). Københavns Universitet,
Oct. 2005.

[18] J. Fourier. Solution d‘une qestion particulière du calcul des inégalités. Nouveau
Bulletin par la Société Philomathique des Paris, pages 99–100, 1826.

[19] M. Fränzle and C. Herde. Efficient SAT engines for concise logics: Accelerating
proof search for zero-one linear constraint systems. In M. Vardi and A. Voronkov,
editors, Logic for Programming, Artificial Intelligence, and Reasoning (LPAR
2003), volume 2850 of Lecture Notes in Artificial Intelligence. Springer-Verlag,
2003.

[20] M. Fränzle and C. Herde. Efficient SAT engines for concise logics: Accelerating
proof search for zero-one linear constraint systems. In A. V. Moshe Y. Vardi, ed-
itor, Logic for Programming, Artificial Intelligence and Reasoning (LPAR 2003),
volume 2850 of LNCS, subseries LNAI, pages 302–316. Springer Verlag, 2003.

[21] J. Gleeson and J. Ryan. Identifying minimally infeasible subsystems of inequali-
ties. ORSA Journal on Computing, 2(1):61–63, 1990.

[22] J. F. Groote, J. W. C. Koorn, and S. F. M. van Vlijmen. The safety guaranteeing
system at station hoorn-kersenboogerd. In Compass ’95: 10th Annual Conference
on Computer Assurance, pages 57–68, Gaithersburg, Maryland, 1995. National
Institute of Standards and Technology.

[23] E. C. R. Hehner. Predicative programming. Communications of the ACM, 27:134–
151, 1984.

[24] T. A. Henzinger, P.-H. Ho, and H. Wong-Toi. HyTech: The next generation.
In 16th Annual IEEE Real-time Systems Symposium (RTSS 1995), pages 56–65.
IEEE Computer Society Press, 1995.

[25] T. A. Henzinger, P. W. Kopke, A. Puri, and P. Varaiya. What’s decidable about
hybrid automata. In Proceedings of the Twenty-Seventh Annual ACM Symposium
on the Theory of Computing, pages 373–382. ACM, 1995.

22



[26] H. Jin and F. Somenzi. An incremental algorithm to check satisfiability for
bounded model checking. In A. Biere and O. Strichman, editors, Preliminary
Proceeding of BMC’04. ETH Zürich, 2004.

[27] J. P. Marques-Silva. The impact of branching heuristics in propositional sat-
isfiability algorithms. In Proc. of the 9th Portuguese Conference on Artificial
Intelligence (EPIA), Sept. 1999.

[28] J. P. Marques-Silva and K. A. Sakallah. GRASP: A search algorithm for proposi-
tional satisfiability. IEEE Transactions on Computers, 48(5):506–521, May 1999.

[29] M. W. Moskewicz, C. F. Madigan, Y. Zhao, L. Zhang, and S. Malik. Chaff:
Engineering an Efficient SAT Solver. In Proc. of the 38th Design Automation
Conference (DAC’01), June 2001.

[30] T. S. Motzkin. Beiträge zur Theorie der linearen Ungleichungen. Doctoral dis-
sertation, Universität Zürich, 1936.

[31] A. Nonnengart and C. Weidenbach. Computing small clause normal forms. In
A. Robinson and A. Voronkov, editors, Handbook of Automated Reasoning. Else-
vier Science B.V., 1999.

[32] M. E. Pfetsch. The Maximum Feasible Subsystem Problem and Vertex-Facet In-
cidences of Polyhedra. Doctoral dissertation, TU Berlin, 2002.

[33] S. Ratschan. Continuous first-order constraint satisfaction with equality and
d isequality constraints. In P. van Hentenryck, editor, Proc. 8th International
Conference on Principles and Practice of Constraint Programming, volume 2470
of Lecture Notes in Computer Science, pages 680–685. Springer, 2002.

[34] O. Strichman. Tuning SAT checkers for bounded model checking. In E. A.
Emerson and A. P. Sistla, editors, Computer Aided Verification (CAV 2000),
volume 1855 of Lecture Notes in Computer Science, pages 480–494. Springer-
Verlag, 2000.

[35] F. D. Torrisi. Modeling and Reach-Set Computation for Analysis and Optimal
Control of Discrete Hybrid Automata. Doctoral dissertation, ETH Zrich, 2003.

[36] G. Tseitin. On the complexity of derivations in propositional calculus. In
A. Slisenko, editor, Studies in Constructive Mathematics and Mathematical Log-
ics, 1968.

[37] J. P. Warners. A linear-time transformation of linear inequalities into conjunctive
normal form. Information Processing Letters, 68(2):63–69, 1998.

[38] J. Whittemore, J. Kim, and K. Sakallah. SATIRE: A new incremental satisfia-
bility engine. In Proc. of the Design Automation Conference (DAC 2001), pages
542–545, Las Vegas (Nevada, USA), June 2001.

[39] S. A. Wolfman and D. S. Weld. The LPSAT engine & its application to resource
planning. In T. Dean, editor, Proc. 16th International Joint Conference on i
Artificial Intelligence, pages 310–315. Morgan Kaufmann Publishers, 1999.

[40] L. Zhang, C. F. Madigan, M. W. Moskewicz, and S. Malik. Efficient conflict
driven learning in a Boolean satisfiability solver. In Proc. of the International
Conference on Computer-Aided Design (ICCAD01), pages 279–285, Nov. 2001.

23


