
Proceedings of the IEEE Symposium on Security and Privacy, May 1998, Oakland, California

Complete, Safe Information Flow with Decentralized Labels

Andrew C. Myers Barbara Liskov

MIT Laboratory for Computer Science
545 Technology Square, Cambridge, MA 02139

andru,liskov @lcs.mit.edu

Abstract

The growing use of mobile code in downloaded appli-
cations and servlets has increased interest in robust mech-
anisms for ensuring privacy and secrecy. Information flow
control is intended to directly address privacy and secrecy
concerns, but most information flow models are too restric-
tive to be widely used. The decentralized label model is a
new information flow model that extends traditional models
with per-principal information flow policies and also per-
mits a safe form of declassification. This paper extends this
new model further, making it more flexible and expressive.
We define a new formal semantics for decentralized labels
and a corresponding new rule for relabeling data that is both
sound and complete. We also show that these extensions
preserve the ability to statically check information flow.

1 Introduction

The growing use of mobile code in downloaded appli-
cations and servlets has increased interest in robust mech-
anisms for ensuring privacy and secrecy. A key problem
is that information must be shared with downloaded code,
while preventing that code from leaking the information. In-
formation flow control is intended to address these privacy
and secrecy concerns, but most information flow models are
too restrictive to be widely used. This paper increases the
power of a promising new model, the decentralized label
model [ML97], making it more practical and useful.

Our goal is to check information flow by a straightfor-
ward static analysis of annotated program code. The idea
is for a node to share information with a downloaded applet
or uploaded servlet, yet prevent the mobile code from leak-
ing the information; additionally, the applet or servlet could
be protected from leaking its private information to other

This research is supported by DARPA Contract F30602-96-C-0303, mon-
itored by USAF Rome Laboratory. Andrew Myers is also supported by an
Intel fellowship.
Web page: www.pmg.lcs.mit.edu
Copyright 1998 IEEE. Published in the Proceedings of S&P’98, 3-6 May
1998 in Oakland, California.

programs running on the same node.
The decentralized label model makes a good basis for

information flow control because it improves on earlier mod-
els in several ways:

It allows individual principals to attach flow policies to
pieces of data. The flow policies of all principals are
reflected in the label of the data, and the system guarantees
that all the policies are obeyed simultaneously. Therefore,
the model works even when the principals do not trust each
other.

The model allows individual principals to declassify labels
by modifying their own flow policies. Arbitrary declas-
sification is not possible because flow policies of other
principals are still maintained. Declassification permits
the programmer to remove restrictions when appropriate;
for example, the programmer might determine that the
amount of information being leaked is inconsequential.
Previous work on information flow did not allow any de-
classifications within the model.

It is compatible with static checking of information flow.
Static analysis is required to prevent leakage of informa-
tion through implicit flows, and to provide practical fine-
grained control over information flow [DD77]. However,
unless care is taken, static checking will be so restrictive as
to make the model unusable. Our previous work [ML97]
makes static analysis more expressive by supporting la-
bel polymorphism and safe run-time label checking. We
have also demonstrated that label inference can be used
to reduce the burden of adding static information flow
annotations to a program.

This paper extends our previous work on decentralized
labels to make the label system more flexible, while retain-
ing the advantages we have just described. We make the
following contributions here:

We extend the model to allow safe relabelings that the
previous work does not permit.

We provide a formal definition of the model that allows
us to define exactly what relabelings are legal. Our model

1

differs from earlier models [Den76, MMN90] because
earlier approaches cannot deal with some safe relabelings
that rely on relationships between different principals.

We define a rule for static checking and prove that the rule
is both sound and complete: it allows only safe relabel-
ings, and it allows all safe relabelings.

We also show that label checking and label inference can
be done easily and efficiently using the new rule.

The rest of this paper is organized as follows. In Sec-
tion 2, we briefly review the decentralized label model and
show that it does not allow certain useful, intuitively safe
relabelings. Section 3 provides a formal model for labels;
it explains how a label can be interpreted as a set of flows
and uses this to define legal relabelings. Section 4 sketches
programming language annotations that permit static flow
checking, presents the static relabeling rule and proves that
it is both sound and complete, and shows that the relabeling
rule can be used to statically analyze code with the anno-
tations described. Related work is discussed in Section 5,
and we conclude in Section 6.

2 Decentralized labels

This section provides a brief summary of the decen-
tralized label model [ML97]. It also explains why its rules
are too restrictive and what kinds of less restrictive rules are
desirable.

2.1 Model

The decentralized label model is based on a notion of
labels that allow individual owners of information to express
their own policies. Owners are principals: identifiers repre-
senting users and other authority entities such as groups or
roles. Some principals are authorized to act for other princi-
pals; this information is maintained in a principal hierarchy
database. We assume that the principal hierarchy changes
over time but that revocations occur infrequently. Also, at
any moment, a process has the authority to act on behalf of
some (possibly empty) set of principals.

Every value used or computed in a program execution
has an associated label. A label contains a set of own-
ers, owners ; these are the principals whose data was
observed in order to obtain that value. In addition, for each
owner , the label contains a set of readers, readers ;
these are the principals that allows to observe the value.

Observations happen when values are written to output
channels. Each output channel has an associated set of
readers; these are the principals who will be able to observe
information written to that channel (e.g., the people that have
access to a printer). A value can be written to a channel only

if each reader of the channel has the authority to act for some
reader in the effective readers set of the value’s label. The
effective readers set is the intersection of all the reader sets
in the label. Restricting writing to channels like this ensures
that each owner’s policy is obeyed.

For example, for the label 1: 1 2; 2: 2 3

we have:

owners 1 2

readers 1 1 2

readers 2 2 3

effectiveReaders 2

and a value labeled by can be written to channel pro-
vided all of ’s readers can act for 2.

In this model, every variable and input channel has a
label. When a value is read from a variable or input channel,
it acquires its label. When a value is written to a variable,
the value’s current label is forgotten; instead, it acquires
the label of that variable. Therefore, assignment effectively
creates a new copy of a value with a different label; to avoid
information leaks, our rule requires that the new label must
be the same as or more restrictive than the old one. (Changes
in who can use information in a variable are accomplished
by modifying the principal hierarchy.)

Assignment causes a relabeling of the value that is
assigned. This kind of relabeling is termed a restriction. A
relabeling is a restriction if the new label contains all the
owners of the original, and the same or fewer readers for
each owner. A restriction can be performed by any process,
no matter what its authority. The expression 1 2 means
that 1 is less restrictive than or equal to 2, and that values
can be relabeled from label 1 to label 2.

Values may also be relabeled by declassification, which
reduces restrictiveness by removing an owner or adding a
reader for an owner. Declassification can be performed only
by a process with the authority to act for the owner whose
policy is being changed; it requires a run-time check for the
proper authority. The important point is that declassification
cannot affect the policies of owners the process does not
act for; since reading only occurs by the consensus of all
owners, this limited declassification is safe.

Computations (such as multiplying two numbers) cause
joining () of labels; the label of the result is the least
restrictive label that reflects the policies in the labels of the
values used in the computation:

owners 1 2 owners 1 owners 2

readers 1 2 readers 1 readers 2

These rules follow from the definition of . Label inference
also requires that the meet () of two labels be determinable;

is the most restrictive label that can be be relabeled
to both and . Its definition is dual to that of join.

2

patient record

{ patient_A: patient_A, doctors }

{ patient_A: patient_A }

{ HMO_records: HMO }

HMO confidential

patient confidential

general information

authorized
declassification
procedure

patient_A

doctor_B

authorization

display device

{doctor_B}

doctor’s report
to HMO

{ patient_A: patient_A;
 HMO_records: doctor_B }

HMO Auditing report

{patient_A: patient_A}

HMO
logs

{HMO_records: HMO}

patient_A: patient_A, doctor_B

HMO_records: HMO, doctor_B

edited copy of patient record

patient_A: patient_A, doctors

Figure 1: The patient/doctor example

doctors

doctor_A doctor_B

HMO

HMO_records

patient_A patient_B

acts for

Figure 2: The patient/doctor principal hierarchy

2.2 Example

This section gives an example to illustrate the model.
In the example, there are three parties with privacy con-
cerns: a patient obtaining medical services, a doctor pro-
viding the services, and an HMO that serves as an inter-
mediary. There are principals in the system for patients,
e.g., , and doctors, e.g., ; all doctors can
additionally act for , which stands for the group of
doctors within the HMO. Also, there are two HMO prin-
cipals: , representing maximum authority within the
HMO, and , representing authority over the
record-keeping functions of the HMO; can act for

, and can act for patients: each
patient must trust the HMO to keep track of its records. The
resulting principal hierarchy is shown in Figure 2.

Figure 1 shows the system. The HMO maintains the
patient’s medical history; the example tracks information
flow as the patient receives medical services. The patient
record has three parts: general information about the patient,
which is controlled by the patient but is readable by any
doctor, private information (such as the medical history),
which is normally not readable by doctors, and confidential
information that the HMO does not release to patients.

The first step in a patient/doctor interaction is for the
doctor to obtain a copy of the patient’s record. The record
is declassified so that the doctor can read it; this can only
happen with the authorization of the patient. The patient
makes an authenticated request to an existing program run-
ning with the authority of ; this program uses
the patient’s authority to provide the doctor with an edited
version of patient’s private information and of the HMO
confidential information.

To read the information, the doctor requires an output
channel to a display device with the single reader, .

3

All information in the edited patient record can be written
to such a channel, since can act for . The
channel is created by code that authenticates . Note
that the patient information cannot be written to a channel
that has any readers other than , and that there is
no way the doctor can declassify the patient information.

Eventually, the doctor sends a report to the HMO of
services rendered. The report reflects all three components
of the patient’s record, so it acquires a joint label reflecting
all these sources. Note that the joint label prevents the
doctor from reading his own report, because the general
patient information does not explicitly permit as a
reader. This is an example of unnecessary restrictiveness in
the model.

The audit program runs with the authority of the
principal and thus can store the information

with the appropriate labels in the log and the patient record
database. It can also send a report to the patient; the de-
signer of the audit program must use mechanisms outside
the scope of information flow control to determine either
that no HMO-confidential information is leaked or that the
leak is acceptably small.

2.3 Limitations of the model

The rule for restrictions described earlier is not as gen-
eral as we would like; it prevents us from doing valid re-
labelings that would simplify the example just presented.
There are two kinds of such relabelings, both based on the
existence of an acts-for relationship between principals.

Adding readers. We should be able to add a reader
for some owner if already allows some reader that

acts for. This rule makes sense because allowing to
read allows all principals that act for to read.

Replacing owners. We should be able to replace an owner
with some principal that can act for . This rule

makes sense because the new label only allows a process
that acts for to declassify it, while the original label
allowed processes with weaker authority to declassify it.

If we allow adding readers, the doctor in the example
is able to view his own report. The confidential patient
information has the label ,
which allows any doctor to view the data item, and there-
fore we ought to be able to relabel the item to explicitly
allow a particular doctor to view it, e.g.,

. Since is then a reader for
every component of the joint label, he can view the report.

If we allow replacing owners, it has the advantage that
the special rule of Section 2 is not needed for output chan-
nels; they can be treated as ordinary variables. Using the
authority of the HMO, the display device can be assigned

the label . This labeling will allow all
the information in the patient’s record to be transmitted to
the display device. The label means that
the HMO has certified that is the only reader on
this channel. There is no global notion of the readers of
the channel; data owned by an owner can only be written
to this channel if trusts the HMO (that is, can act
for). The original trusted channels are easily modeled by
assigning them the owner (i.e., a high-level principal).

Relabelings that add readers or replace owners can be
done already, but only by a process with sufficient authority,
using the declassification mechanism. Since the relabelings
are restrictions, they ought not to require authority (although
they do require a run-time check to determine whether a
principal can act for another principal). We can use these
relabeling to write useful procedures that run with minimal
authority, observing the principle of least privilege [Sal74].

Providing these extensions also makes it easier to model
desirable security policies. For example, suppose that a user
wants to define security classes in a multi-level fashion: his
own personal , , and classes for
protecting his data. With these extensions, these three secu-
rity classes can be represented as principals in the system,
where the principal can act for , and

for . The user can then assign security
classes to other principals in the system by allowing them
to act for one of these three principals; he correspondingly
marks each data item as readable by the appropriate security
class principal.

It is not trivial to extend the relabeling rule to permit
these relabelings, because we want to preserve the abil-
ity to statically analyze information flow. As pointed out
by Denning and Denning [DD77], information flow should
be checked statically (e.g., at compile time) to avoid leaks
through implicit flows. The new relabelings above depend
on the principal hierarchy as it exists at run time, and this
structure cannot be known at compile time. So we need to be
sure that any assumptions about the hierarchy that are used
during compile time checking are valid for all hierarchies
that might be encountered at run time.

We solve this problem in two steps. In Section 3 we
give a formal model for labels that allows us to define legal
relabelings. Then in Section 4 we define the rules for static
checking and show that they are both sound and complete.

3 Extending and interpreting labels

The new relabelings depend on the existence of certain
acts-for relationships, and therefore we need a rule that
takes the principal hierarchy into account. In this section,
we formalize the notions of labels and principal hierarchies
and then define an intuitive condition for judging whether a
relabeling rule is correct.

4

3.1 Generalizing labels

We will generalize the label model slightly, to allow an
owner to be repeated within a label. (In Section 2, a label
was characterized by an owner set in which each owning
principal could only appear once, with its associated reader
set.) As we will see later, allowing duplicate owners is
important for maintaining the lattice structure of labels.

A label is a set of components, each of which expresses
a policy for a single owner. The policy specifies a set of
readers that are permitted by the owner to read the data.
Different components of the label may have the same owner.
The intuitive meaning of a label is that every component
must be obeyed. If a component is part of the label

, then we will use the notation to denote the
owner of that component, and the notation to denote the
set of readers specified by that component. In the equations
in this paper, the letters , , will always denote label
components.

3.2 Principal hierarchy

The principal hierarchy is defined by the acts-for re-
lations between principals in the system. If can act for

, we will denote this fact by the expression . The
binary relation is reflexive and transitive, but not anti-
symmetric: two distinct principals may act for each other,
in which case we say that the principals are equivalent. We
use the notation to indicate that in the principal
hierarchy , the principal can act for the principal .

A principal hierarchy is a binary relation on principals,
and can therefore be treated as a set of ordered pairs of
principals that specifies all relations that exist. With this
interpretation, is equivalent to .
When one principal hierarchy contains more acts-for
relations than another, , we will say that extends ,
which we will write as .

This model of principals is easily generalized. One
obvious extension is to divide acts-for into more finely-
grained (but transitive) authorizations. For example, all
individual doctors might be able to read information for
which is an allowed reader, but they might not all
be able to declassify information owned by that principal.
This would help control the information if a doctor were
ejected from the group. Similarly, the ability to act
for a principal does not imply the ability to change who
may act for . We do not explore these extensions here for
lack of space.

3.3 Interpreting labels

Intuitively, a relabeling is allowed if it does not create
new ways for the relabeled information to flow. However,

to specify this rule precisely, we need a simple way to in-
terpret a label: that is, to decide what information flows are
described by a label.

It is useful to think of a label as describing a set of
flows, where a flow is an (owner, reader) pair. If a label
has a component with owner , then it describes flows

for every reader in the set . If a principal is
not an owner in the label, describes flows for every
principal . Intuitively, this means that has not expressed
a flow policy for the labeled data, so it permits flows to any
principal.

Under the interpretation of labels as sets of flows, the
earlier relabeling rules described in Section 2 can be ex-
pressed quite simply. Relabeling is permitted from 1 to

2 (i.e., 1 2) exactly when 1 2 — when 2 is at
least as restrictive as 1. In other words, the partial order on
labels is exactly the partial order on sets of flows. For this
reason, we call the relabeling rule of Section 2 the subset
relabeling rule. Similarly, the join of two labels, 1 2, is
simply their intersection, 1 2. The meet of two labels,

1 2, is the same as the union of the labels, 1 2.

3.4 Flow set constraints

The subset relabeling rule is too restrictive because it
does not take the principal hierarchy into account. By think-
ing about the label as a set of flows, we will observe that
there are two constraints that a set of flows ought to satisfy
in a particular principal hierarchy — one constraint on read-
ers, and one on owners. We will use these constraints to
construct a less restrictive relabeling rule.

The reader constraint is as follows. If a set of flows
contains a flow , and is a principal that can act
for , then the set must also contain the flow . For
example, the label is equivalent to the
label , since the principal

can act for the principal .
The idea here is that although a label explicitly states

some set of flows, the actual flows denoted by the label de-
pend on the principal hierarchy. We call the set of denoted
flows the label’s interpretation in the principal hierarchy.
We will define a function X that maps a label to its interpre-
tation. Using the definition of X, all of the intuitively sound
relabelings described in Section 2 are easily described. The
function X takes the current principal hierarchy as a (for
now) implicit argument. Thus, the label X represents the
interpretation of label in the current principal hierarchy.
The reader constraint just described can be stated more for-
mally as follows:

& X X

However, the reader constraint is not sufficient, be-
cause we also want to allow relabelings that change the

5

label’s owners. Consider the relabeling from
to . This relabel-

ing effectively transfers the responsibility of controlling the
flow of the data from the principal to the prin-
cipal . This transfer restricts the data’s flow,
since can act for . The key insight
to allowing this kind of relabeling is an owner constraint:

& X X

The symmetry of this rule to the reader constraint might
seem incorrectly to imply that the inferior principal can
dictate the addition of readers to the reader set of . The
interpretation is different: when a superior owner states
that a flow must not occur, this flow is removed from the
reader sets of all inferior owners. However, if a superior
owner does not try to prevent a flow, inferior owners may
still prevent it. Thus, the inferior owner’s policy must be
at least as restrictive as the superior owner’s policy. The
owner constraint can be written in an equivalent, negative
form that captures this intention more directly:

& X X

Using this constraint, the label
is seen to be equivalent to the label

, in the principal hierarchy
of Figure 2. While the first label would seem to allow flows
from to all readers, the owner constraint prevents
the reader set of from being larger than that of

.

3.5 Label functions

To help construct the label interpretation function X,
we define two functions that establish the reader and owner
constraints. First, we define a function R that expands a set
of readers to include the implicitly allowed readers described
by the reader constraint. It adds to the readers of a
component to produce an expanded reader set :

:

We also define a function O that converts a label into
a set of flows by restricting it so that it obeys the owner
constraint. Its form is roughly dual to that of R:

:

As we would expect, both R and O are monotonic in
the set or label they manipulate, in the sense that if 1 2,
then 1 2 and if 1 2, then 1 2. How-
ever, the two functions differ in their behavior as the princi-
pal hierarchy changes. Making the principal hierarchy an
explicit argument to the functions, we have the following:

if the principal hierarchy is an extension of (),
then , but : O
is anti-monotonic in the argument.

By composing the R and O functions, we obtain the
label interpretation function X, which maps a label to a set
of flows, given a particular principal hierarchy:

X :

The result of X satisfies both the reader and owner con-
straints, since O preserves the reader constraint established
in each component by R. Intuitively, the effect of applying
both R and O is the following: a flow is implied by a
label if every owner who can act for permits the flow —
either explicitly, by allowing to read it, or implicitly, by
allowing some principal that can act for to read it.

Using the function X, we can now write the correctness
condition for relabeling in the presence of an arbitrary prin-
cipal hierarchy. The relabeling from 1 to 2 in principal
hierarchy is valid as long as no new flows are added.
Making the principal hierarchy an explicit argument to X,
the correctness condition is the following:

X 1 X 2

We can apply this rule to show that the relabeling from
1 to 2

is valid. Applying X to 2 gives us a set containing
the flow (,) and the flows (,

) for every patient (since acts for all patients),
as well as other flows (,) for unrelated owners and all
readers . Applying X to 1 gives us a set containing all
these pairs and more: (,) for every , for
example. Because X 1 X 2, the relabeling from 1 to

2 is legal.
Because the function X is a composition of R and O, it

is monotonic with respect to , but neither monotonic nor
anti-monotonic with respect to . It also has some other
interesting properties. We can interpret the set produced by
applying X to a label as a label itself (although one that is
probably too large to write down!); this is the label in which
every flow is mentioned explicitly. With this interpretation,
we can see that like O and R, the function X is idempotent;
that is, X XX .

The function X can also be thought of as a closure
operator that converts a label to a closed set of flows. In ac-
cordance with this interpretation, the set of labels produced
by X is closed under intersection and union of labels.

4 Checking relabeling statically

We wish to support static checking of programs con-
taining label annotations, because static checking allows
precise, fine-grained analysis of information flows, and can

6

capture implicit flows properly [DD77], whereas dynamic
label checks create information channels that must be con-
trolled through additional static checking [ML97]. How-
ever, the correctness condition (X 1 X 2) derived in
Section 3 cannot be used directly in static checking since
it depends on the principal hierarchy at the time that the
relabeling takes place, while static checking is done earlier,
perhaps as part of compilation. The principal hierarchy may
have changed between checking and execution, so the full
run-time principal hierarchy is not available when relabel-
ing is checked. Therefore, relabeling must be checked using
only partial information about the principal hierarchy.

In this section, we develop a general rule for check-
ing relabelings statically using partial information about the
principal hierarchy. We begin by giving a sketch of how
programs are annotated. Then we define the relabeling rule
and show that it is both sound and complete. Then we dis-
cuss the practicality of the system, arguing that both label
checking and label inference are practical.

4.1 Annotations

We assume that programs are statically annotated with
information about the labels of data that they manipulate,
and that programs are checked by a static label checker that
statically analyzes information flows to determine whether
the program follows the information flow rules.

In [ML97], a set of language annotations is described
that permits static information-flow checking. Here we sum-
marize the important features to give an idea of the frame-
work, and describe new annotations needed to support the
extended relabeling rule.

All variables, arguments, and procedure return values have
labeled types. For example, a labeled integer variable
might be declared as . The
label may be omitted from a local variable, causing it to
be inferred automatically. If the label is omitted from a
procedure argument, it is an implicit parameter, and the
procedure is generic with respect to it.

The statement allows a run-time test of whether
the process running the code can act for a principal. In

p S, the statement S is executed only if the pro-
cess can act for principal p; the label checker will allow
declassifications on behalf of p within S.

The expression (e, L) relabels the value e with
the label L. Label L may add readers to the label of e
for some owners , or remove some owners ; the
statement is legal only if a containing statement
has established that the process can act for each of .

Procedures are assigned a principal when they are com-
piled; this principal derives from the user who is running

the compilation. When a procedure is called it always
runs under this authority. Callers can additionally grant
the called procedure the authority to act for principals they
act for (recall that a process may act on behalf of several
principals), but this must be done explicitly.

Variables and arguments may be declared to have the spe-
cial base type , which permits run-time label check-
ing. Variables of type and argument-label param-
eters may be used to label variables that are mentioned
within the procedure body. They also may be used in

expressions.

A statement can be used to determine the run-
time label of a value, and a special type conve-
niently encapsulates a value along with its run-time label.

The following extensions to this previous framework
enable static reasoning about the principal hierarchy:

Variables of the special type may also be used in
labels and in statements. Also, when a procedure
is granted the authority of some principal by its caller, the
identity of the principal is placed in an argument of type

.

A second kind of statement: In 1 2 ,
the statement is executed only if a run-time test deter-
mines that principal 1 can act for principal 2. The
label checker then uses the knowledge that 1 2 when
checking relabelings that occur within .

For example, using the extension, in

the assignment is legal because within the body of the
statement the checker knows that can act

for .
For each program statement that the label checker ver-

ifies, some acts-for relations can be determined to exist,
based on the lexical nesting of the statements. These
relations form a subset of the true principal hierarchy that
exists at run time; all that is known statically is that the true
principal hierarchy contains the explicitly stated acts-for re-
lations.

Using this fairly general model for programming with
static information flow annotations, the challenge is to define
a sound (conservative) rule for checking relabelings. In the
next section, we show that defining such a rule is not as
simple as one might expect. We then present a rule that is
not only sound but also complete, in that it permits every
relabeling that cannot be used to leak information.

7

4.2 Static correctness condition

When a program assigns a value to a variable, it relabels
the data being assigned, since the value’s label is changed to
be the same as the label on the variable. This relabeling is
sound as long as it does not create new ways for the assigned
data to flow. One example of a sound relabeling rule is the
original subset relabeling rule; if 1 2 (1 is the value’s
label and 2 is the variable’s label), the monotonicity of X
guarantees that the correctness condition holds, regardless
of the principal hierarchy. However, the subset relabeling
rule, as we’ve seen, is excessively restrictive. We would like
a rule that recognizes the principal hierarchy.

Let be a principal hierarchy that contains only the
acts-for relations that are statically known based on the con-
taining statements. We will refer to this principal
hierarchy as the static principal hierarchy. The actual prin-
cipal hierarchy at run time is an extension of ; it must
contain all of the acts-for relations in , plus possibly ad-
ditional relations. If is the actual principal hierarchy,
we have . Using this notation, and introducing the
principal hierarchy as an explicit argument to the function
X, we can express the static correctness condition: it is safe
to relabel from 1 to 2 in if the following holds:

: X 1 X 2

One might expect that to check whether a relabeling is
valid, we should check whether X 1 X 2 , i.e.
apply the correctness condition for the principal hierarchy

. By construction, this rule allows all valid relabelings to
take place; if a relabeling is not allowed by this rule, then
it creates new flows in the principal hierarchy . However,
the following example will show that this rule is not sound.

Consider the following (bad) relabeling from 1 to 2

1 =
2 = ;

Now, consider what happens when we apply X to both of
these labels while assuming that the principal hierarchy
contains the single relation :

X 1 =
X 2 =

Note that X 2 does not contain the flow (,)
because the superior owner rules it out. Since
these two label interpretations are equal, it would seem that
the relabeling is correct. However, if we learn that
is also a doctor (), applying X to both
labels leads to a quite different conclusion:

X 1 =
X 2 = ;

The relabeling is invalid under the principal hierarchy ,
because it adds the flow (). This exam-
ple shows that the correctness condition cannot be applied
directly as a relabeling rule.

4.3 A sound and complete relabeling rule

The correct rule for checking a relabeling from label 1

to label 2 is intuitive: for every component in 1, there
must be a corresponding component in 2 that is at least
as restrictive as . The component is at least as restrictive
as if and . If 1 can be relabeled to 2

under principal hierarchy , we will write 1 2.
This condition is defined formally as follows:

1 2 &

Expanding the definition of R, we obtain the following
equivalent and more symmetrical formulation:

1 2 & :

The binary relation is defined for any principal hi-
erarchy . The relation is a pre-order: it is transitive and
reflexive, but not anti-symmetric, since two labels may be
equivalent without being equal. If and are equivalent,
we write to mean & . For example,
with the hierarchy of Figure 2, the labels
and are equivalent. Every prin-
cipal hierarchy generates a pre-order on labels, defining the
legal relabelings.

The nature of the relabeling rule can be understood by
considering the incremental relabelings that it permits. It al-
lows an arbitrary sequence of any of the following four kinds
of relabelings, each of which is clearly sound individually:

A reader may be dropped from some owner’s reader set.

A new owner may be added to the label, with an arbitrary
reader set.

A reader may be added as long as it can act for some
member of the reader set.

An owner may be replaced by an owner that acts for it.

Interestingly, these incremental relabelings also capture
all of the sound relabelings. That is, the rule for , which we
will call the complete relabeling rule, is both sound and com-
plete. When we say that the rule is complete, we mean that
it exactly captures the set of valid relabelings, with respect
to the static correctness condition defined in Section 4.2,
and using our assumptions about the static checking envi-
ronment. We now provide sketches of our formal proofs for
these claims. (The rule has also been checked for soundness
using Nitpick, a counterexample generator [JD96].)

8

Soundness. We must show that if the relabeling rule
holds for some principal hierarchy , the correctness con-
dition holds for all possible extensions :

1 2 : X 1 X 2

Suppose that 1 can be relabeled to 2, , and
X 1 does not contain some flow . We will show
that cannot be in X 2 either. If is not in
X 1 , there must be some owner in 1 that sup-
presses it (i.e., and). Since

1 2, there is a corresponding owner in 2

such that and . Since
, we have , and transitively

. We now show that this prevents
from appearing in 2 .

Let be an arbitrary reader such that .
We know that . (If , we would have a
contradiction: , so , and
therefore .) Since for all such , ,
we have . Since we also know ,
this means X 2 . Since this was true for
arbitrary and , any flow not in X 1 is also not in
X 2 . Therefore, the relabeling rule is sound.

Completeness. We must show the converse:

: X 1 X 2 1 2

We prove this statement by contradiction: if a relabeling is
rejected by the rule (1 2), we can find a such that

but X 1 X 2 . In other words, if a
relabeling is rejected, it might result in a leak.

If 1 2 , there must be some owner in
1 such that for every component in 2 where ,

. Consider an arbitrary such component in
2 (if there is no such , the relabeling leaks even in).

The component must have a reader where but
. We will now use the readers of every such

to construct a principal hierarchy that extends and
results in a leak.

Consider a principal hierarchy that is exactly like
, except that there is an additional principal that in is

unrelated to any of the owners or readers in 1 and 2. We
form by adding a relation for each and taking
the transitive closure:

:

Using this definition, we find that X 2 but
X 1 , which shows that the relabeling causes

a leak in . Therefore, the relabeling rule is complete.
This completeness result can be strengthened further:

our rule is complete even in the presence of negative in-
formation about the principal hierarchy. We could imagine

acquiring negative information by allowing an clause
in the statement. Since tests whether one
principal can act for another, in the body of the clause
we would be able to determine statically that the specified
principal relationship does not exist. This static information
could be used to establish an upper bound on the dynamic
principal hierarchy. However, an upper bound is not use-
ful in checking relabelings: the proof for completeness still
holds in the presence of an upper bound on , since we
can simply choose an arbitrary that is not mentioned in
the upper bound.

4.4 Static checking

Now we consider what is involved in doing static check-
ing. We have already explained how to check assignments:
we use the complete relabeling rule. But the labels being
compared may be the results of joins (to account for compu-
tations), and meets (if the checker is doing label inference).
Therefore, we need to define join and meet.

Labels form a pre-order rather than a lattice or even
a partial order, because two labels can be equivalent with-
out being equal. However, labels do preserve the important
properties of a lattice that make static reasoning about infor-
mation flow feasible: any pair of elements possesses least
upper bounds and greatest lower bounds, which are unique
to within an equivalence class. In addition, the join and
meet operations distribute over each other.

Below we define join and meet. Our definitions have
the desirable properties that they are easy to evaluate and
that the resulting labels are easy to deal with when applying
the complete relabeling rule.

4.4.1 Join. The join, or least upper bound, is useful in
assigning a label to the result of an operation that combines
several values, such as adding two numbers. The result
of adding two numbers ought in general to be restricted
at least as much as the numbers being added. However,
we would also like not to restrict the sum unnecessarily;
therefore, it is assigned the least restrictive label that is no
less restrictive than both input labels. In a lattice, there is
a unique least label; however, uniqueness is not important
for our purposes. Any label within an equivalence class is
acceptable as long as it can be relabeled to every label that
is at least as restrictive as the input labels.

The join of two label expressions can be defined quite
simply: it is the concatenation of all their components. The
following are examples of join expressions, where , ,
and are principals unrelated by the acts-for relation:

: : : ; : (1)

: : : (2)

: : : ; : (3)

9

After doing a join, the compiler can sometimes simplify
the label expression by removing redundant components, so
that future checking steps run more efficiently. This sim-
plification has been performed in the second example. A
component is redundant if the relabeling rules behave iden-
tically for the label regardless of whether the component is
present. One component : makes another component

: redundant if and . In all
possible relabelings involving such a label, the presence of
component will not affect the validity of a relabeling.

The third example illustrates the difference between this
join operator and the earlier one defined in Section 2, based
on the subset relabeling rule. The earlier join definition
results in the label : , since reader sets for the same
owner are intersected. The difference between the two join
results may seem inconsequential; however, if ; then
the label : ; : can be relabeled to the label : ,
but : cannot. Therefore, the difference in the rules is
significant.

We can now see why it is important that owners be
repeatable in labels: it completes the lattice of equivalence
classes. If repeated owners were not allowed, there would
be no least upper bound for many pairs of labels. Consider
the third example again, but disallowing repeated owners. If

is another principal with , then the least restrictive
labels that both : and : could be relabeled to
would include : , : ; : , and : ; : ,
none of which can be relabeled to any other. There would
be no least upper bound for these two labels.

The join operation just described produces the least
upper bound of two labels. This can be seen by interpreting
a join result as a set of flows, in an extended principal
hierarchy . It follows directly from the definition of X
that for all such hierarchies ,

X X X

This equation means that there is no label less restrictive than
that both and can be relabeled to. Therefore,

the join operator produces the least upper bound of the two
labels, to within an equivalence class.

4.4.2 Reasoning about joins. Components of a join
can be independently relabeled or declassified. The prop-
erty is important because it allows checking of code that is
generic with respect to some of the labels that appear in it.
In the case of declassification, there are no surprises for the
declassifying principal: the set of flows that are added by
declassifying a join is always a subset of the set of flows
that would be added by declassifying the individual compo-
nents. There are no interactions between the two parts of
the join that create new, unexpected flows.

For example, if label 1 can be relabeled to 2, then
1 3 can be relabeled to 2 3, regardless of what

3 is. 3 may be an opaque label, or even a label that is
determined at run time, without invalidating the relabeling.
Similarly, if 1 can be declassified to 2, then 1 3 can
be safely declassified to 2 3. These relabelings and
declassifications work because the join guarantees that all
components in 3 will be respected.

4.4.3 Meet. The meet or greatest lower bound of two
labels is the most restrictive label that can be relabeled to
both of them. The meet of two labels is not produced by
computations during the program’s execution,but it is useful
in defining algorithms for automatic label inference [DD77,
ML97]. The meet is useful to automatically infer labels for
inputs, just as the join is useful to produce labels for outputs.
For example, in the following code, the most restrictive label

could have can be expressed by using a meet:

In this example, the variables and have labels of and
respectively. The variable can be assigned any label

so long as it can be relabeled to both and . Therefore,
is an upper bound on the label for . The simple

algorithm for inferring variable labels that we have described
elsewhere [ML97] uses a succession of meet operations in
this fashion to refine unknown variable labels downward
until either all variables have consistent assignments, or a
contradiction is reached.

To construct the meet of two labels, let us first con-
sider the meet of two components and . If there is no
statically known relation between the owners of these com-
ponents, the meet is . This is the result obtained when
either or is uninterpreted (e.g., is a label parameter), or
when both have known owners but there is no static relation-
ship established between them (by some containing
statement). Otherwise, suppose that : 1

and : 1 . if can act for (which includes
the case where they are equal), then the meet of the two
components is : 1 1 .

Now, consider the meet of two arbitrary labels. Since
a label containing several components is really the join of
these components, the meet can be computed by distributing
the meet over both joins. The result of the meet is the join
of all pairwise meets of components, using one component
from each label. Some of these pairwise meets may produce
the label , which of course can be dropped from the join.

As with the formula for join, the validity of this for-
mula for meet can be seen by using the label interpretation
function. If is some extension of the principal hierarchy
used to compute the meet of labels and , then

10

X X X

The formula for meet is sound, but unlike the formula
for join, it does not always produce the most restrictive
label for all possible extensions . This happens because
the rule for joining two components must return when
the owners are not known to have a relationship, though
in the real hierarchy, a relationship may exist. The result
is that label inference must be conservative in some cases,
which does not seem to be a significant problem since even
explicit label declarations do not work in those cases.

It can also be shown straightforwardly that join and
meet distribute over each other in the expected way, produc-
ing equivalent labels:

This means that a static checker doing label inference as
described elsewhere [ML97] can rely on the properties of
meet and join to simplify label expressions.

5 Related work

There has been much work on information flow control
and on the static analysis of security guarantees. The lattice
model of information flow comes from the early work of
Bell and LaPadula[BL75] and Denning [Den76].

The decentralized label model has several similarities to
the ORAC model [MMN90]: both models provide some ap-
proximation of the “originator-controlled release” labeling
used by the U.S. DoD/Intelligence community. Both also
support the joining of labels as computation occurs, though
the ORAC model lacks some important lattice properties.
Unlike our model, ORAC is intended to be dynamically
checked. Dynamic checks result in storage and run-time
overhead, and data can become more and more stringently
labeled as it is used. Further, the label checks themselves
can become a covert channel. We have shown that static
checking can be used to control this channel [ML97]. Inter-
estingly, ORAC does allow owners to be replaced in label
components (based on ACL checks that are analogous to

checks); however, it does not support declassifica-
tion or the new relabelings described in this paper.

Other work on information flow policies has exam-
ined complex aggregation policies for commercial applica-
tions [CW87, BN89, Fol91]. We have not addressed poli-
cies that capture conflicts of interest, though our fine-grained
tracking of ownership information seems applicable. Many
of these information control models are not designed to
be checked statically. IX [MR92] is a good example of a
real-world information flow control system that used dy-
namic checking. Recent work by Ferrari et. al [FSBJ97]

introduces a form of dynamically-checked declassification
through special waivers to strict flow checking. Some of
the need for declassification in their framework would be
avoided with fine-grained static analysis. Because waivers
are applied dynamically and mention specific data objects,
they seem likely to have administrative and run-time over-
heads.

Static analysis of security guarantees also has a long his-
tory. It has been applied to information flow [DD77, AR80]
and to access control [JL78, RSC92]. There has recently
been more interest in provably-secure programming lan-
guages, treating information flow checks in the domain
of type checking. Some of this work has focused on
formally characterizing existing information flow and in-
tegrity models [PO95, VSI96, Vol97]. Smith and Vol-
pano have recently examined the difficulty of statically
checking information flow in a multithreaded environ-
ment [SV98]; we have not addressed this problem. Heintze
and Riecke [HR98] have shown that information-flow-like
labels can be used in a simple functional language to stat-
ically check an integrated model of access control, infor-
mation flow control, and integrity. Their model does not,
however, allow declassification of information flows or run-
time flow checking. Also, Abadi [Aba97] has examined
the problem of achieving secrecy in security protocols, also
using typing rules, and has shown that encryption can be
treated as a form of safe declassification through a primitive
encryption operator.

6 Conclusions

The decentralized label model is a promising approach
for making information flow a practical way to guarantee
secrecy and privacy. It provides considerable flexibility by
allowing individual principals to attach flow policies to in-
dividual values manipulated by a program. These more
flexible labels then permit values to be declassified by an
owner of the value. This declassification is safe because
it does not affect the secrecy guarantees to other principals
who have an interest in the secrecy of the data. This sup-
port for multiple principals makes the label model ideal for
mutually distrusting principals.

However, while the original model contained a principal
hierarchy, the hierarchy was not fully integrated into the
relabeling rules, making the rules unnecessarily restrictive.
This paper has defined a complete relabeling rule for the
decentralized label model. The new rule precisely captures
all the legal relabelings that are allowed when knowledge
about the principal hierarchy is available statically. We
have shown that the rule is both sound and complete, and
furthermore that it is easy to apply. We have formalized
the relabeling rule as a pre-order relation with distributive
lattice properties: join and meet operators can be defined on

11

these labels, which means that a compiler or static checker
can use them to check information flow statically, to support
label polymorphism, and to do label inference.

The new rules for relabeling, join, and meet make the
decentralized label model more practical and more usable.
They make it easier to model common security paradigms,
allowing control of information flow in a system with group
or role principals. They also allow individual principals to
model their own multilevel security classes conveniently.

Acknowledgments

The authors would like to acknowledge the many help-
ful comments they have received about this work, including
suggestions from Martı́n Abadi, Kavita Bala, Phillip Bogle,
Chandrasekhar Boyapati, Miguel Castro, Stephen Garland,
Jason Hunter, and the reviewers. We would also like to
thank Daniel Jackson for his help with Nitpick.

References

[Aba97] Martı́n Abadi. Secrecy by typing in security protocols.
In Proc. Theoretical Aspects of Computer Software:
Third International Conference, September 1997.

[AR80] Gregory R. Andrews and Richard P. Reitman. An ax-
iomatic approach to information flow in programs.
ACM Transactions on Programming Languages and
Systems, 2(1):56–76, 1980.

[BL75] D. E. Bell and L. J. LaPadula. Secure computer
system: Unified exposition and Multics interpreta-
tion. Technical Report ESD-TR-75-306, MITRE Corp.
MTR-2997, Bedford, MA, 1975. Available as NTIS
AD-A023 588.

[BN89] D. F. Brewer and J. Nash. The Chinese wall security
policy. In Proc. IEEE Symposium on Security and
Privacy, pages 206–258, May 1989.

[CW87] David Clark and David R. Wilson. A comparison of
commerical and military computer security policies.
In Proc. IEEE Symposium on Security and Privacy,
pages 184–194, 1987.

[DD77] Dorothy E. Denning and Peter J. Denning. Certifica-
tion of programs for secure information flow. Comm.
of the ACM, 20(7):504–513, 1977.

[Den76] Dorothy E. Denning. A lattice model of secure in-
formation flow. Comm. of the ACM, 19(5):236–243,
1976.

[Fol91] Simon N. Foley. A taxonomy for information flow
policies and models. In Proc. IEEE Symposium on
Security and Privacy, pages 98–108, 1991.

[FSBJ97] Elena Ferrari, Pierangela Samarati, Elisa Bertino, and
Sushil Jajodia. Providing flexibility in information
flow control for object-orientedsystems. In Proc. IEEE
Symposium on Security and Privacy, pages 130–140,
Oakland, CA, USA, May 1997.

[HR98] Nevin Heintze and Jon G. Riecke. The SLam calcu-
lus: Programming with secrecy and integrity. In Proc.
ACM Symp. on Principles of Programming Languages
(POPL), San Diego, California, January 1998.

[JD96] Daniel Jackson and Craig A. Damon. Elements of
style: Analyzing a software design feature with a coun-
terexample detector. IEEE Transactions on Software
Engineering, 22(7):484–495, July 1996.

[JL78] Anita K. Jones and Barbara Liskov. A language exten-
sion for expressing constraints on data access. Comm.
of the ACM, 21(5):358–367, May 1978.

[ML97] Andrew C. Myersand Barbara Liskov. A decentralized
model for information flow control. In Proc. 17th ACM
Symp. on Operating System Principles (SOSP), pages
129–142, Saint-Malo, France, 1997.

[MMN90] Catherine J. McCollum, Judith R. Messing, and
LouAnna Notargiacomo. Beyond the pale of MAC
and DAC — defining new forms of access control. In
Proc. IEEE Symposium on Security and Privacy, pages
190–200, 1990.

[MR92] M. D. McIlroy and J. A. Reeds. Multilevel security in
the UNIX tradition. Software—Practice and Experi-
ence, 22(8):673–694, August 1992.

[PO95] Jens Palsberg and Peter Ørbæk. Trust in the -calculus.
In Proc. 2nd International Symposium on Static Analy-
sis, number 983 in Lecture Notes in Computer Science,
pages 314–329. Springer, September 1995.

[RSC92] Joel Richardson, Peter Schwarz, and Luis-Felipe Cabr-
era. CACL: Efficient fine-grained protection for ob-
jects. In Proceedings of the 1992 ACM Conference on
Object-Oriented Programming Systems, Languages,
and Applications, pages 154–165, Vancouver, BC,
Canada, October 1992.

[Sal74] J. H. Saltzer. Protection and the control of information
sharing in Multics. Comm. of the ACM, 17(7):388–402,
July 1974.

[SV98] Geoffrey Smith and Dennis Volpano. Secure informa-
tion flow in a multi-threaded imperative language. In
Proc. ACM Symp. on Principles of Programming Lan-
guages (POPL), San Diego, California, January 1998.

[Vol97] Dennis Volpano. Provably-secure programming lan-
guages for remote evaluation. ACM SIGPLAN Notices,
32(1):117–119, January 1997.

[VSI96] Dennis Volpano, Geoffrey Smith, and Cynthia Irvine.
A sound type system for secure flow analysis. Journal
of Computer Security, 4(3):167–187, 1996.

12

