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Abstract

The growing use of maobile code in downloaded appli-
cations and servlets has increased interest in robust mech-
anisms for ensuring privacy and secrecy. Information flow
control is intended to directly address privacy and secrecy
concerns, but most information flow models are too restric-
tive to be widely used. The decentralized label model is a
new information flow model that extendstraditional models
with per-principal information flow policies and also per-
mits a safe form of declassification. This paper extendsthis
new model further, making it more flexible and expressive.
We define a new formal semantics for decentralized labels
and acorresponding new rule for relabeling datathat isboth
sound and complete. We also show that these extensions
preserve the ability to statically check information flow.

1 Introduction

The growing use of maobile code in downloaded appli-
cations and servlets has increased interest in robust mech-
anisms for ensuring privacy and secrecy. A key problem
is that information must be shared with downloaded code,
whilepreventing that codefrom leaking theinformation. In-
formation flow control is intended to address these privacy
and secrecy concerns, but most information flow modelsare
too restrictive to be widely used. This paper increases the
power of a promising new model, the decentralized label
model [ML97], making it more practical and useful.

Our goal isto check information flow by a straightfor-
ward static analysis of annotated program code. The idea
isfor anode to share informati on with a downloaded appl et
or uploaded servlet, yet prevent the mobile code from leak-
ing theinformation; additionally, the appl et or servlet could
be protected from leaking its private information to other
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programs running on the same node.

The decentralized label model makes a good basis for
information flow control becauseitimproveson earlier mod-
elsin severa ways:

e It allows individual principals to attach flow policies to
pieces of data. The flow policies of al principals are
reflectedinthelabel of thedata, and the system guarantees
that all the policiesare obeyed simultaneously. Therefore,
themodel workseven when the principalsdo not trust each
other.

e Themodel alowsindividual principal sto declassify labels
by modifying their own flow policies. Arbitrary declas-
sification is not possible because flow policies of other
principals are still maintained. Declassification permits
the programmer to remove restrictions when appropriate;
for example, the programmer might determine that the
amount of information being leaked is inconsequential.
Previous work on information flow did not allow any de-
classifications within the model.

e It is compatible with static checking of information flow.
Static analysisis required to prevent leakage of informa-
tion through implicit flows, and to provide practical fine-
grained control over information flow [DD77]. However,
unlesscareistaken, static checking will besorestrictiveas
to make the model unusable. Our previouswork [ML97]
makes static analysis more expressive by supporting la-
bel polymorphism and safe run-time label checking. We
have aso demonstrated that label inference can be used
to reduce the burden of adding static information flow
annotations to a program.

This paper extends our previous work on decentralized
|abels to make the label system more flexible, while retain-
ing the advantages we have just described. We make the
following contributions here:

e We extend the model to allow safe relabelings that the
previous work does not permit.

e We provide a formal definition of the model that allows
usto define exactly what relabelings are legal. Our model



differs from earlier models [Den76, MMN90] because
earlier approaches cannot deal with some safe relabelings
that rely on relationships between different principals.

o Wedefinearulefor static checking and provethat the rule
is both sound and complete: it allows only safe relabel-
ings, and it allows all safe relabelings.

¢ We also show that label checking and label inference can
be done easily and efficiently using the new rule.

Therest of this paper is organized as follows. In Sec-
tion 2, we briefly review the decentralized label model and
show that it does not allow certain useful, intuitively safe
relabelings. Section 3 provides a formal model for labels;
it explains how a label can be interpreted as a set of flows
and usesthisto define legal relabelings. Section 4 sketches
programming language annotations that permit static flow
checking, presents the static relabeling rule and proves that
it isboth sound and complete, and shows that the relabeling
rule can be used to statically analyze code with the anno-
tations described. Related work is discussed in Section 5,
and we conclude in Section 6.

2 Decentralized labels

This section provides a brief summary of the decen-
tralized 1abel model [ML97]. It also explains why its rules
aretoo restrictive and what kinds of lessrestrictiverules are
desirable.

21 Mode

The decentralized label model is based on a notion of
labelsthat allow individual ownersof informationto express
their own policies. Ownersare principals. identifiersrepre-
senting users and other authority entities such as groups or
roles. Some principalsare authorized to act for other princi-
pals; thisinformation is maintained in aprincipal hierarchy
database. We assume that the principa hierarchy changes
over time but that revocations occur infrequently. Also, at
any moment, a process has the authority to act on behalf of
some (possibly empty) set of principals.

Every value used or computed in a program execution
has an associated label. A label L contains a set of own-
ers, owners(L); these are the principals whose data was
observed in order to obtain that value. In addition, for each
owner O, thelabel contains a set of readers, readers(L, O);
these are the principalsthat O allowsto observe the value.

Observations happen when values are written to output
channels. Each output channel C' has an associated set of
readers; these are the principals who will be able to observe
informationwrittento that channel (e.g., the peoplethat have
accessto aprinter). A valuecan bewrittento achannel only

if each reader of the channel hasthe authority to act for some
reader in the effective readers set of the value's label. The
effective readers set is the intersection of all the reader sets
inthelabel. Restricting writing to channelslikethisensures
that each owner’s policy is obeyed.

For example, for the label L = {o;: r1,72; 021 2,73}
we have:

owners(L) = {o1,00}
readers(L, 01) = {7‘1, 7‘2}
readers(L,0) = {rz,r3}

effectiveReaders(L) = {r}

and a value labeled by L can be written to channel C' pro-
vided all of C’sreaders can act for r».

In this model, every variable and input channel has a
label. When avalueisread from avariableor input channel,
it acquiresits label. When a value is written to a variable,
the value's current label is forgotten; instead, it acquires
the label of that variable. Therefore, assignment effectively
creates anew copy of avaluewith adifferent 1abel; to avoid
information leaks, our rule requires that the new label must
bethesameasor morerestrictivethantheold one. (Changes
in who can use information in a variable are accomplished
by modifying the principal hierarchy.)

Assignment causes a relabeling of the value that is
assigned. Thiskind of relabeling istermed arestriction. A
relabeling is a restriction if the new label contains all the
owners of the original, and the same or fewer readers for
each owner. A restriction can be performed by any process,
no matter what itsauthority. Theexpression L; C L, means
that L, islessrestrictivethan or equal to L,, and that values
can be relabeled from label L, to label Lo.

Valuesmay a so berelabeled by declassification, which
reduces restrictiveness by removing an owner or adding a
reader for an owner. Declassification can be performed only
by a process with the authority to act for the owner whose
policy isbeing changed; it requires arun-time check for the
proper authority. Theimportant point isthat declassification
cannot affect the policies of owners the process does not
act for; since reading only occurs by the consensus of all
owners, thislimited declassification is safe.

Computations (such asmultiplying two numbers) cause
joining (L) of labels; the label of the result is the least
restrictive label that reflects the policiesin the labels of the
values used in the computation:

owners(L; LU Ly) =
readers(Ly U Ly, 0) =

owners(L1) U owners(Ly)
readers(L1, O) N readers(Ly, O)

Theserulesfollow fromthe definition of C. Label inference
also requiresthat the meet (M) of two | abelsbe determinable;
A M B isthe most restrictive label that can be be relabeled
to both A and B. Its definition is dual to that of join.
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2.2 Example

This section gives an example to illustrate the model.
In the example, there are three parties with privacy con-
cerns. a patient obtaining medical services, a doctor pro-
viding the services, and an HMO that serves as an inter-
mediary. There are principals in the system for patients,
e.g., patient_A, and doctors, e.g., doctor_B; al doctors can
additionally act for doctors, which stands for the group of
doctors within the HMO. Also, there are two HMO prin-
cipals: HMO, representing maximum authority within the
HMO, and HMO _records, representing authority over the
record-keeping functions of the HMO; HMO can act for

HMO _records, and HMO _records can act for patients: each
patient must trust the HM O to keep track of itsrecords. The
resulting principal hierarchy is shownin Figure 2.

Figure 1 shows the system. The HMO maintains the
patient’s medical history; the example tracks information
flow as the patient receives medical services. The patient
record hasthreeparts: general information about the patient,
which is controlled by the patient but is readable by any
doctor, private information (such as the medical history),
which is normally not readable by doctors, and confidential
information that the HM O does not release to patients.

The first step in a patient/doctor interaction is for the
doctor to obtain a copy of the patient’s record. The record
is declassified so that the doctor can read it; this can only
happen with the authorization of the patient. The patient
makes an authenticated request to an existing program run-
ning with the authority of HMO_records; this program uses
the patient’s authority to provide the doctor with an edited
version of patient’s private information and of the HMO
confidential information.

To read the information, the doctor requires an output
channel to adisplay devicewith the singlereader, doctor_B.



All information in the edited patient record can be written
to such a channel, since doctor_B can act for doctors. The
channel iscreated by codethat authenticatesdoctor_B. Note
that the patient information cannot be written to a channel
that has any readers other than doctor_B, and that there is
no way the doctor can declassify the patient information.

Eventually, the doctor sends a report to the HMO of
services rendered. The report reflects all three components
of the patient’s record, so it acquires ajoint label reflecting
all these sources. Note that the joint label prevents the
doctor from reading his own report, because the general
patient information does not explicitly permit doctor_B asa
reader. Thisisan example of unnecessary restrictivenessin
the model.

The audit program runs with the authority of the
HMO _records principal and thus can store the information
with the appropriate labels in the log and the patient record
database. It can also send a report to the patient; the de-
signer of the audit program must use mechanisms outside
the scope of information flow control to determine either
that no HMO-confidential information is leaked or that the
leak is acceptably small.

2.3 Limitationsof the model

Therulefor restrictions described earlier is not as gen-
era as we would like; it prevents us from doing valid re-
labelings that would simplify the example just presented.
There are two kinds of such relabelings, both based on the
existence of an acts-for relationship between principals.

e Adding readers. We should be able to add a reader r
for some owner o if o aready allows some reader r' that
r acts for. This rule makes sense because allowing ' to
read allows all principalsthat act for ' to read.

e Replacingowners. Weshould beableto replace an owner
o' with some principal o that can act for o/. This rule
makes sense because the new label only allows a process
that acts for o to declassify it, while the original |abel
allowed processes with weaker authority to declassify it.

If we allow adding readers, the doctor in the example
is able to view his own report. The confidential patient
information has the label {patient_A: patient_A,doctors},
which allows any doctor to view the data item, and there-
fore we ought to be able to relabel the item to explicitly
alow a particular doctor to view it, e.g., {patient_A: pa-
tient_A,doctor B}. Since doctor B is then a reader for
every component of the joint label, he can view the report.

If we allow replacing owners, it has the advantage that
the special rule of Section 2 is not needed for output chan-
nels; they can be treated as ordinary variables. Using the
authority of the HMO, the display device can be assigned

the label {HMO: doctor B}. This labeling will allow all
the information in the patient’s record to be transmitted to
the display device. Thelabel {HMO: doctor_B} meansthat
the HMO has certified that doctor_B is the only reader on
this channel. There is no globa notion of the readers of
the channel; data owned by an owner o can only be written
to this channd if o trusts the HMO (that is, HMO can act
for 0). The original trusted channels are easily modeled by
assigning them the owner root (i.e., ahigh-level principal).

Relabelings that add readers or replace owners can be
donealready, but only by a process with sufficient authority,
using the declassification mechanism. Sincetherelabelings
arerestrictions, they ought not to require authority (although
they do require a run-time check to determine whether a
principal can act for another principal). We can use these
relabeling to write useful procedures that run with minimal
authority, observing the principle of least privilege [Sal 74].

Providing these extensionsal so makesit easier to model
desirable security policies. For example, supposethat auser
wants to define security classesin amulti-level fashion: his
own personal unclassified, classified, and secret classes for
protecting hisdata. With these extensions, these three secu-
rity classes can be represented as principalsin the system,
where the secret principal can act for classified, and clas-
sified for unclassified. The user can then assign security
classes to other principals in the system by allowing them
to act for one of these three principals; he correspondingly
marks each dataitem asreadabl e by the appropriate security
classprincipal.

It is not trivial to extend the relabeling rule to permit
these relabelings, because we want to preserve the abil-
ity to statically analyze information flow. As pointed out
by Denning and Denning [DD77], information flow should
be checked statically (e.g., at compile time) to avoid leaks
through implicit flows. The new relabelings above depend
on the principal hierarchy as it exists at run time, and this
structure cannot be known at compiletime. Soweneedtobe
sure that any assumptions about the hierarchy that are used
during compile time checking are valid for all hierarchies
that might be encountered at run time.

We solve this problem in two steps. In Section 3 we
giveaforma model for labels that allows us to define legal
relabelings. Then in Section 4 we define the rules for static
checking and show that they are both sound and compl ete.

3 Extending and interpreting labels

The new relabelings depend on the existence of certain
acts-for relationships, and therefore we need a rule that
takes the principal hierarchy into account. In this section,
we formalize the notions of labels and principal hierarchies
and then define an intuitive condition for judging whether a
relabeling ruleis correct.



3.1 Generalizing labels

We will generalize the label model dlightly, to allow an
owner to be repeated within alabel. (In Section 2, a label
was characterized by an owner set in which each owning
principal could only appear once, with its associated reader
set) As we will see later, alowing duplicate owners is
important for maintaining the lattice structure of labels.

A label isaset of components, each of which expresses
a policy for a single owner. The policy specifies a set of
readers that are permitted by the owner to read the data.
Different components of thelabel may havethe sameowner.
The intuitive meaning of a label is that every component
must be obeyed. If a component K is part of the label L
(K € L), then we will use the notation ox to denote the
owner of that component, and the notation Rk to denotethe
set of readers specified by that component. In the equations
in this paper, the letters 1, J, K will aways denote label
components.

3.2 Principal hierarchy

The principal hierarchy is defined by the acts-for re-
lations between principals in the system. If 2 can act for
y, we will denote this fact by the expression z = y. The
binary relation > is reflexive and transitive, but not anti-
symmetric: two distinct principals may act for each other,
in which case we say that the principals are equivalent. We
use the notation P I z > y to indicate that in the principal
hierarchy P, the principal z can act for the principal y.

A principal hierarchy isabinary relation on principals,
and can therefore be treated as a set of ordered pairs of
principals that specifies all relations that exist. With this
interpretation, P + z > y is equivalent to (z,y) € P.
When one principal hierarchy P’ contains more acts-for
relations than another, P, we will say that P’ extends P,
which we will writeas P! D P.

This model of principals is easily generalized. One
obvious extension is to divide acts-for into more finely-
grained (but transitive) authorizations. For example, all
individual doctors might be able to read information for
which doctors is an allowed reader, but they might not all
be able to declassify information owned by that principal.
This would help control the information if a doctor were
gjected from the doctors group. Similarly, the ability to act
for a principal p does not imply the ability to change who
may act for p. We do not explore these extensions here for
lack of space.

3.3 Interpretinglabels

Intuitively, arelabeling is allowed if it does not create
new ways for the relabeled information to flow. However,

to specify this rule precisely, we need a simple way to in-
terpret alabel: that is, to decide what information flows are
described by alabel.

It is useful to think of a label as describing a set of
flows, where a flow is an (owner, reader) pair. If alabel L
has a component K with owner og, then it describes flows
(ok, ) for every reader r inthe set Ry . If aprincipal o' is
not an owner in thelabel, L describesflows (o, ) for every
principa r. Intuitively, this meansthat o' has not expressed
aflow policy for the labeled data, so it permits flowsto any
principal.

Under the interpretation of labels as sets of flows, the
earlier relabeling rules described in Section 2 can be ex-
pressed quite simply. Relabeling is permitted from L, to
L, (i.e, L1 C L) exactly when Ly D L, — when L, isat
least asrestrictiveas L;. In other words, the partial order on
labels is exactly the partial order on sets of flows. For this
reason, we call the relabeling rule of Section 2 the subset
relabeling rule. Similarly, the join of two labels, L1l Ly, is
simply their intersection, L; N L,. The meet of two labels,
L, Ly, isthe same as the union of the labels, L1 U Lo.

3.4 Flow set constraints

The subset relabeling rule is too restrictive because it
doesnot takethe principal hierarchy into account. By think-
ing about the label as a set of flows, we will observe that
there are two constraints that a set of flows ought to satisfy
in aparticular principal hierarchy — one constraint on read-
ers, and one on owners. We will use these constraints to
construct alessrestrictive relabeling rule.

The reader constraint is as follows. If a set of flows
contains a flow (o,7), and 7' is a principal that can act
for r, then the set must also contain the flow (o,7'). For
example, thelabel {patient_A: doctors} isequivalent to the
label {patient_A: doctors, doctor_B}, since the principal
doctor_B can act for the principal doctors.

The idea here is that athough a label explicitly states
some set of flows, the actual flows denoted by the label de-
pend on the principal hierarchy. We call the set of denoted
flows the label’s interpretation in the principal hierarchy.
Wewill defineafunction X that mapsalabel toitsinterpre-
tation. Using the definition of X, all of theintuitively sound
relabelings described in Section 2 are easily described. The
function X takes the current principal hierarchy as a (for
now) implicit argument. Thus, the label X L represents the
interpretation of label L in the current principal hierarchy.
Thereader constraint just described can be stated more for-
mally asfollows:

=1 & (o,r) € XL — (0,r") € XL

However, the reader constraint is not sufficient, be-
cause we also want to alow relabelings that change the



label’s owners. Consider the relabeling from {patient_A:
doctor B} to {HMO_records: doctor_B}. This relabel-
ing effectively transfersthe responsibility of controlling the
flow of the data from the principa patient_A to the prin-
cipal HMO_records. This transfer restricts the data's flow,
since HMO_records can act for patient_A. The key insight
to allowing thiskind of relabeling is an owner constraint:

o' =0& (o,r) € XL — (o',r) € XL

The symmetry of thisruleto thereader constraint might
seem incorrectly to imply that the inferior principal o can
dictate the addition of readers to the reader set of o’. The
interpretation is different: when a superior owner states
that a flow must not occur, this flow is removed from the
reader sets of al inferior owners. However, if a superior
owner does not try to prevent a flow, inferior owners may
still prevent it. Thus, the inferior owner’s policy must be
at least as restrictive as the superior owner’s policy. The
owner constraint can be written in an equivaent, negative
form that captures this intention more directly:

o >=0& (o,r) € XL — (o,7) € XL

Using this constraint, the label {HMO_records: doc-
tor_B} is seen to be equivalent to the label {HMO _records:
doctor_B; patient_A: doctor_B}, in the principa hierarchy
of Figure 2. Whilethefirst |abel would seemto alow flows
from patient_A to al readers, the owner constraint prevents
the reader set of patient_A from being larger than that of
HMO _records.

3.5 Labe functions

To help construct the label interpretation function X,
we define two functions that establish the reader and owner
congtraints. First, we define afunction R that expands a set
of readerstoincludetheimplicitly allowed readersdescribed
by the reader constraint. It adds to the readers Ry of a
component I to produce an expanded reader set RRy:

RR;={r|3ver, 7 =1}

We aso define a function O that converts a label into
a set of flows by restricting it so that it obeys the owner
congtraint. Itsform isroughly dual to that of R:

OL:{(OaT) |VIEL:OIEO—>TERI}

As we would expect, both R and O are monatonic in
theset or label they manipulate, inthesensethat if R, O Ry,
then RR; D) RR, and|le D) Lo, then OL, D) OL,. How-
ever, the two functions differ in their behavior as the princi-
pal hierarchy changes. Making the principal hierarchy P an
explicit argument to the functions, we have the following:

if the principal hierarchy P’ isan extensionof P (P’ D P),
then R(R, P') D R(R, P), but O(L,P") C O(L,P): O
is anti-monotonic in the P argument.

By composing the R and O functions, we obtain the
label interpretation function X, which maps alabel to a set
of flows, given a particular principal hierarchy:

XL ={(o,r) | Vier : o1 = 0o - r € RRy}

The result of XL satisfies both the reader and owner con-
straints, since O preservesthe reader constraint established
in each component by R. Intuitively, the effect of applying
both R and O isthefollowing: aflow (o, ) isimplied by a
label L if every owner who can act for o permitsthe flow —
either explicitly, by allowing r to read it, or implicitly, by
allowing some principal that » can act for to read it.

Using thefunction X, we can now write the correctness
condition for relabeling in the presence of an arbitrary prin-
cipal hierarchy. The relabeling from L, to L, in principal
hierarchy P is valid as long as no new flows are added.
Making the principal hierarchy an explicit argument to X,
the correctness condition is the following:

X(L1, P) D X(Ly, P)

We can apply this rule to show that the relabeling from
Ly = {patient_A: doctors} to L, = {HMO_records: doc-
tor B} isvalid. Applying X to L, gives us a set containing
the flow (HMO_records, doctor_B) and the flows (p, doc-
tor_B) for every patient p (since HMO actsfor all patients),
as well as other flows (o, r) for unrelated owners o and all
readers r. Applying X to L; gives us a set containing all
these pairs and more: (HMO_records, r) for every r, for
example. Because XL; D XL, the relabeling from L; to
Lyislegal.

Becausethe function X isacompositionof R and O, it
is monotonic with respect to L, but neither monotonic nor
anti-monotonic with respect to P. It also has some other
interesting properties. We can interpret the set produced by
applying X to alabel as alabel itself (although one that is
probably too largeto write down!); thisisthelabel in which
every flow is mentioned explicitly. With thisinterpretation,
we can seethat like O and R, thefunction X isidempotent;
thatis, XL = XXL.

The function X can also be thought of as a closure
operator that convertsalabel to aclosed set of flows. In ac-
cordance with this interpretation, the set of |abels produced
by X isclosed under intersection and union of labels.

4 Checkingrelabeling statically

We wish to support static checking of programs con-
taining label annotations, because static checking allows
precise, fine-grained analysis of information flows, and can



capture implicit flows properly [DD77], whereas dynamic
label checks create information channels that must be con-
trolled through additional static checking [ML97]. How-
ever, the correctness condition (XL; O XLy) derived in
Section 3 cannot be used directly in static checking since
it depends on the principa hierarchy at the time that the
relabeling takes place, while static checking is done earlier,
perhapsas part of compilation. The principal hierarchy may
have changed between checking and execution, so the full
run-time principal hierarchy is not available when relabel-
ingischecked. Therefore, relabeling must be checked using
only partial information about the principal hierarchy.

In this section, we develop a genera rule for check-
ing relabelings statically using partial information about the
principal hierarchy. We begin by giving a sketch of how
programs are annotated. Then we define the relabeling rule
and show that it is both sound and complete. Then we dis-
cuss the practicality of the system, arguing that both label
checking and label inference are practical.

41 Annotations

We assume that programs are statically annotated with
information about the labels of data that they manipulate,
and that programs are checked by a static label checker that
statically analyzes information flows to determine whether
the program follows the information flow rules.

In [ML97], a set of language annotations is described
that permitsstati cinformation-flow checking. Herewe sum-
marize the important features to give an idea of the frame-
work, and describe new annotations needed to support the
extended relabeling rule.

o All variables, arguments, and procedure return valueshave
labeled types. For example, a labeled integer variable
might be declared as int{patient_A: doctors} x;. The
label may be omitted from alocal variable, causing it to
be inferred automatically. If the label is omitted from a
procedure argument, it is an implicit parameter, and the
procedure is generic with respect to it.

e The actsFor statement allows a run-time test of whether
the process running the code can act for a principal. In
actsfor (p) S the statement Sis executed only if the pro-
cess can act for principal p; the label checker will allow
declassifications on behalf of p within S,

e The expression declassify(e, L) relabels the value e with
the label L. Label L may add readers to the label of e
for some owners O;, or remove some owners O;; the
statement is legal only if a containing actsFor statement
has established that the process can act for each of O;.

e Procedures are assigned a principal when they are com-
piled; this principa derives from the user who is running

the compilation. When a procedure is caled it always
runs under this authority. Callers can additionally grant
the called procedurethe authority to act for principal sthey
act for (recall that a process may act on behalf of several
principals), but this must be done explicitly.

¢ Variablesand arguments may be declared to have the spe-
cial base type label, which permits run-time label check-
ing. Variables of type label and argument-label param-
eters may be used to label variables that are mentioned
within the procedure body. They aso may be used in
declassify expressions.

e A labelcase statement can be used to determine the run-
time label of avalue, and a special type protected conve-
niently encapsulates avalue along with itsrun-timelabel.

The following extensions to this previous framework
enabl e static reasoning about the principal hierarchy:

o Variablesof the special type principal may also beusedin
labelsand in actsFor statements. Also, when a procedure
is granted the authority of some principal by itscaller, the
identity of the principal is placed in an argument of type
principal.

o A second kind of actsFor statement: InactsFor(p1,p2) S,
the statement S is executed only if arun-time test deter-
mines that principal p; can act for principal p,. The
label checker then uses the knowledgethat p; = p, when
checking relabelings that occur within S.

For example, using the actsFor extension, in

int{patient: doctors} x;
int{patient: doctor_B} y;
actsFor (doctor_B, doctors) y = x;

the assignment is legal because within the body of the
actsFor statement the checker knows that doctor_B can act
for doctors.

For each program statement that the label checker ver-
ifies, some acts-for relations can be determined to exist,
based on thelexical nesting of theactsFor statements. These
relations form a subset of the true principal hierarchy that
existsat run time; al that is known statically isthat the true
principal hierarchy containsthe explicitly stated acts-for re-
lations.

Using this fairly general model for programming with
staticinformation flow annotations, the challengeisto define
asound (conservative) rule for checking relabelings. In the
next section, we show that defining such a rule is not as
simple as one might expect. We then present arule that is
not only sound but also complete, in that it permits every
relabeling that cannot be used to leak information.



4.2 Static correctnesscondition

When aprogram assignsavalueto avariable, it relabels
the databeing assigned, sincethe value'slabel ischangedto
be the same as the label on the variable. Thisrelabelingis
sound aslong asit does not create new waysfor the assigned
data to flow. One example of a sound relabeling rule isthe
original subset relabeling rule; if Ly O L, (L1 isthevalue's
label and L, is the variable's label), the monotonicity of X
guarantees that the correctness condition holds, regardiess
of the principal hierarchy. However, the subset relabeling
rule, aswe've seen, isexcessively restrictive. Wewould like
arulethat recognizes the principal hierarchy.

Let P be a principal hierarchy that contains only the
acts-for relationsthat are statically known based on the con-
taining actsFor statements. We will refer to this principal
hierarchy asthe static principal hierarchy. The actual prin-
cipal hierarchy at run time is an extension of P; it must
contain al of the acts-for relationsin P, plus possibly ad-
ditiona relations. If P’ is the actua principal hierarchy,
we have P! D P. Using this notation, and introducing the
principal hierarchy as an explicit argument to the function
X, we can express the static correctness condition: it issafe
to relabel from L, to L, in P if the following holds:

Vpiop @ X(Ly, P') 2 X(La, P')

One might expect that to check whether arelabelingis
valid, we should check whether X(L,, P) D X(L, P), i.e.
apply the correctness condition for the principal hierarchy
P. By construction, thisrule allows al valid relabelingsto
take place; if arelabeling is not allowed by this rule, then
it creates new flowsin the principal hierarchy P. However,
the following example will show that this rule is not sound.

Consider the following (bad) relabeling from L1 to L,

Ly = { doctors: patient_A; doctor_B: patient_A, patient_B }
L = { doctors: doctors, patient_A ;
doctor_B: patient_A, patient_B }

Now, consider what happens when we apply X to both of
these labels while assuming that the principal hierarchy P’
contains the single relation doctor_B > doctors:

XLi = { doctors: patient_A; doctor_B: patient_A, patient_B }
XL; = { doctors: patient_A; doctor_B: patient_A, patient_B }

Note that X L, does not contain the flow (doctors, doctors)
because the superior owner doctor B rules it out. Since
these two label interpretations are equal, it would seem that
therelabelingiscorrect. However, if welearnthat patient_B
is also a doctor (patient_B > doctors), applying X to both
labels leads to a quite different conclusion:

XL; = { doctors: patient_A; doctor_B: patient_A, patient_B }
XL; = { doctors: patient_B, patient_A;
doctor_B: patient_A, patient_B }

The relabeling is invalid under the principal hierarchy P’,
because it adds the flow (doctors, patient_B). This exam-
ple shows that the correctness condition cannot be applied
directly asarelabeling rule.

4.3 A sound and completerelabeling rule

Thecorrect rulefor checking arelabeling from label L1
to label L, isintuitive: for every component I in L1, there
must be a corresponding component J in L, that is at least
asrestrictiveas I. The component J isat least asrestrictive
aslifoy = orandR; C RR;. If Ly canberelabeledto L,
under principa hierarchy P, we will write P + Ly C L.
This condition is defined formally as follows:

Vier,dser, [P+ o5 = or & Ry CR(Ry, P)]

Expanding the definition of R, we obtain the following
equivalent and more symmetrical formulation:

Vier,3ser, [PF oy = or & Vr,cr,3ricr, t PFrj =1y

The binary relation C is defined for any principal hi-
erarchy P. Therelation is a pre-order: it is transitive and
reflexive, but not anti-symmetric, since two labels may be
equivalent without being equal. If A and B are equivalent,
wewrite A~ Btomean AC B & B C A. For example,
with the hierarchy of Figure 2, the labels {HMO: doctors}
and {HMO: doctors, doctor_A} areequivaent. Every prin-
cipal hierarchy generates a pre-order on labels, defining the
legal relabelings.

The nature of the relabeling rule can be understood by
considering theincremental relabelingsthat it permits. It al-
lowsan arbitrary sequenceof any of thefollowing four kinds
of relabelings, each of whichis clearly sound individually:

o A reader may be dropped from some owner’s reader set.

e A new owner may be added to the label, with an arbitrary
reader set.

e A reader may be added as long as it can act for some
member of the reader set.

e Anowner may be replaced by an owner that acts for it.

Interestingly, theseincremental relabelingsal so capture
all of thesound relabelings. That is, therulefor C, whichwe
will call thecompleterelabeling rule, isboth sound and com-
plete. When we say that the rule is compl ete, we mean that
it exactly captures the set of valid relabelings, with respect
to the static correctness condition defined in Section 4.2,
and using our assumptions about the static checking envi-
ronment. We now provide sketches of our formal proofsfor
these claims. (Therule has also been checked for soundness
using Nitpick, a counterexample generator [JD96].)



Soundness. We must show that if the relabeling rule
holds for some principal hierarchy P, the correctness con-
dition holdsfor al possible extensions P’:

(P L C Lz) — [Vp:;p : X(Ll,Pl) D) X(Lg,Pl)]

Suppose that L; can be relabeled to L, P! O P, and
X(L1, P") does not contain some flow (o, ). We will show
that (o,7) cannot bein X (L, P') either. If (o,7) isnotin
X(L4, P"), there must be some owner oy in L; that sup-
pressesit (i.e, r ¢ R(R;,P') and P' - or > 0). Since
P+ L; C Ly, there is a corresponding owner oy in Ly
such that R; C R(R;,P)and P  o; = o;. Since
Pt oy = o, we have P' + o5 = oj, and transitively
P' F o; = o. We now show that this o; prevents (o,r)
from appearing in X (L, P').

Let »' be an arbitrary reader such that P' + r > r'.
We know that ' € Ry. (If ' € R;, we would have a
contradiction: ' € R(Ry,P), sor' € R(R,P'), and
thereforer € R(Ry, P').) Sincefor al suchr', ' &€ Ry,
wehaver € R(Rs, P'). Sinceweasoknow P' + oy > o,
this means (o,7) ¢ X(L2, P'). Since this was true for
arbitrary o and r, any flow not in X(L1, P’) is aso not in
X(Ly, P"). Therefore, the relabeling rule is sound.

Completeness. We must show the converse:
I:VPIQP : X(Ll,P’) ) X(Lz,P’)] — (P F L C Lz)

We prove this statement by contradiction: if arelabeling is
rejected by the rule (L1 IZ L), we can find a P’ such that
P' D P but X(L1, P') 2 X(L2, P"). In other words, if a
relabeling is rejected, it might result in aleak.

If =(P F L1 C L), there must be some owner oy in
L1 such that for every component J in L, whereoy > oy,
R; ¢ RR;. Consider an arbitrary such component J in
L, (if there is no such J, the relabeling leaks even in P).
The component J must have areader r; wherer; € Ry but
r; ¢ RR;. We will now use the readers r; of every such
J to construct a principal hierarchy P’ that extends P and
resultsin aleak.

Consider a principa hierarchy P’ that is exactly like
P, except that there is an additional principal r that in P is
unrelated to any of the ownersor readersin L; and L,. We
form P’ by adding arelation (r,r;) for each r; and taking
the transitive closure:

P'=PU{(r,r") | 3r;: (r;,r') € PYU{(r,7)}

Using this definition, we find that (or,r) € X(Lz, P') but
(or,7) € X(L1, P"), which showsthat the relabeling causes
aleak in P'. Therefore, therelabeling ruleis complete.
This completeness result can be strengthened further:
our rule is complete even in the presence of negative in-
formation about the principa hierarchy. We could imagine

acquiring negative information by allowing an else clause
in the actsFor statement. Since actsFor tests whether one
principal can act for another, in the body of the else clause
we would be able to determine statically that the specified
principal relationship doesnot exist. Thisstaticinformation
could be used to establish an upper bound on the dynamic
principal hierarchy. However, an upper bound is not use-
ful in checking relabelings: the proof for completeness still
holds in the presence of an upper bound on P’, since we
can simply choose an arbitrary r that is not mentioned in
the upper bound.

4.4 Static checking

Now we consider what isinvolved in doing static check-
ing. We have already explained how to check assignments:
we use the complete relabeling rule. But the labels being
compared may betheresults of joins (to account for compu-
tations), and meets (if the checker isdoing label inference).
Therefore, we need to define join and meet.

Labels form a pre-order rather than a lattice or even
a partia order, because two labels can be equivalent with-
out being equal. However, labels do preserve the important
properties of alatticethat make static reasoning about infor-
mation flow feasible: any pair of elements possesses least
upper bounds and greatest lower bounds, which are unique
to within an equivalence class. In addition, the join and
meet operations distribute over each other.

Below we define join and meet. Our definitions have
the desirable properties that they are easy to evaluate and
that the resulting labelsare easy to deal with when applying
the complete relabeling rule.

4.4.1 Join. Thejoin, or least upper bound, is useful in
assigning alabel to the result of an operation that combines
severa values, such as adding two numbers. The result
of adding two numbers ought in general to be restricted
at least as much as the numbers being added. However,
we would aso like not to restrict the sum unnecessarily;
therefore, it is assigned the least restrictive label that is no
less restrictive than both input labels. In alattice, thereis
a unique least label; however, uniqueness is not important
for our purposes. Any label within an equivalence classis
acceptable as long as it can be relabeled to every label that
isat least asrestrictive as the input labels.

The join of two label expressions can be defined quite
simply: it isthe concatenation of all their components. The
following are examples of join expressions, where 4, B,
and C are principal s unrelated by the acts-for relation:

{A:B}u{B:C} = {A:B;B:C} (1)
{A:B}u{A:B,C} = {A:B} 2
{A:B}u{4:C} = {A:B;A:C} (3



After doing ajoin, the compiler can sometimessimplify
thelabel expression by removing redundant components, so
that future checking steps run more efficiently. This sim-
plification has been performed in the second example. A
component is redundant if the relabeling rules behave iden-
tically for the label regardless of whether the component is
present. One component oy : Ry makes another component
oy . Ry redundant if oy = oy and Ry C RRy. In all
possible relabelings involving such a label, the presence of
component J will not affect the validity of arelabeling.

Thethird exampleillustratesthedifference betweenthis
join operator and the earlier one defined in Section 2, based
on the subset relabeling rule. The earlier join definition
resultsin the label {4 : (0}, since reader sets for the same
owner areintersected. The difference between the two join
results may seem inconsequential; however, if C > B; then
thelabel {A: B; A: C'} canberelabeledtothelabel {A: C},
but {A: 0} cannot. Therefore, the differencein therulesis
significant.

We can now see why it is important that owners be
repeatable in labels: it completes the lattice of equivalence
classes. If repeated owners were not allowed, there would
be no least upper bound for many pairs of labels. Consider
thethird example again, but disallowing repeated owners. If
A’ isanother principal with A’ = A, thentheleastrestrictive
labels that both {A: B} and {A: C} could be relabeled to
wouldinclude {A: 0}, {A: B; A": C},and{4": B; A: C},
none of which can be relabeled to any other. There would
be no least upper bound for these two labels.

The join operation just described produces the least
upper bound of two labels. This can be seen by interpreting
ajoin result as a set of flows, in an extended principal
hierarchy P'. It follows directly from the definition of X
that for al such hierarchies P,

X(A U B, P') = X(A, P)) N X(B, P')

Thisequation meansthat thereisno label lessrestrictivethan
A U B that both A and B can be relabeled to. Therefore,
the join operator produces the least upper bound of the two
labels, to within an equivalence class.

4.4.2 Reasoning about joins. Components of ajoin
can be independently relabeled or declassified. The prop-
erty isimportant because it allows checking of code that is
generic with respect to some of the labels that appear in it.
In the case of declassification, there are no surprisesfor the
declassifying principal: the set of flows that are added by
declassifying a join is always a subset of the set of flows
that would be added by declassifying theindividual compo-
nents. There are no interactions between the two parts of
the join that create new, unexpected flows.

For example, if label Ly can be relabeled to L, then
L1 U Lz can be relabeled to L, LI L3, regardless of what
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L3 is. Lz may be an opaque label, or even a label that is
determined at run time, without invalidating the relabeling.
Similarly, if L1 can be declassified to L,, then L; LI L3 can
be safely declassified to L, LI Ls. These relabelings and
declassifications work because the join guarantees that all
componentsin Lz will be respected.

443 Meet. The meet or greatest lower bound of two
labels is the most restrictive label that can be relabeled to
both of them. The meet of two labels is not produced by
computations during the program’sexecution, but it isuseful
in defining algorithmsfor automatic label inference [DD77,
ML97]. The meet is useful to automatically infer labelsfor
inputs, just asthejoinisuseful to producelabelsfor outputs.
For exampl e, inthefollowing code, the most restrictivelabel
x could have can be expressed by using a mest:

int x;
int{A}y;
int{B} z
y=x
z=x;

In this example, the variables y and z have labels of A and
B respectively. The variable x can be assigned any label C
so long as it can be relabeled to both A and B. Therefore,
A M B is an upper bound on the label for x. The simple
algorithmfor inferring variabl elabel sthat wehave described
elsawhere [ML97] uses a succession of meet operations in
this fashion to refine unknown variable labels downward
until either all variables have consistent assignments, or a
contradiction is reached.

To construct the meet of two labels, let us first con-
sider the meet of two components J and K. If thereisno
statically known relation between the owners of these com-
ponents, the meet is {}. Thisis the result obtained when
either J or K isuninterpreted (e.g., isalabel parameter), or
when both have known ownersbut thereis no static relation-
ship established between them (by some containing actsFor
statement). Otherwise, supposethat J = {0 : r1...7,}
and K = {0 : r}...r,}. if o' canactfor o (whichincludes
the case where they are equal), then the meet of the two
componentsis{o: ri...rn,ry...7,}.

Now, consider the meet of two arbitrary labels. Since
a label containing several components is really the join of
these components, the meet can be computed by distributing
the meet over both joins. The result of the meet is the join
of al pairwise meets of components, using one component
fromeach label. Some of these pairwise meetsmay produce
the label {}, which of course can be dropped from the join.

As with the formula for join, the validity of this for-
mula for meet can be seen by using the label interpretation
function. If P’ is some extension of the principal hierarchy
used to compute the meet of labels A and B, then



X(ANB,P'") D X(A,P)UX(B,P

The formulafor meet is sound, but unlike the formula
for join, it does not always produce the most restrictive
label for all possible extensions P’. This happens because
the rule for joining two components must return {} when
the owners are not known to have a relationship, though
in the rea hierarchy, a relationship may exist. The result
isthat label inference must be conservative in some cases,
which does not seem to be a significant problem since even
explicit label declarations do not work in those cases.

It can also be shown straightforwardly that join and
meet distribute over each other in the expected way, produc-
ing equivalent labels:

Au(BnCeC) =
AN(BUC) =

(AuUB)M(AuQC)
(ANB)U(ANC)

This means that a static checker doing label inference as
described elsewhere [ML97] can rely on the properties of
meet and join to simplify label expressions.

5 Redated work

There has been much work on information flow control
and on the static analysis of security guarantees. Thelattice
model of information flow comes from the early work of
Bell and LaPadula[BL 75] and Denning [Den76].

Thedecentralized |abel model has several similaritiesto
the ORAC model [MMN90]: both models provide someap-
proximation of the “originator-controlled release” labeling
used by the U.S. DoD/Intelligence community. Both also
support the joining of labels as computation occurs, though
the ORAC model lacks some important lattice properties.
Unlike our model, ORAC is intended to be dynamically
checked. Dynamic checks result in storage and run-time
overhead, and data can become more and more stringently
labeled as it is used. Further, the label checks themselves
can become a covert channel. We have shown that static
checking can be used to control thischannel [ML97]. Inter-
estingly, ORAC does alow owners to be replaced in label
components (based on ACL checks that are analogous to
actsFor checks); however, it does not support declassifica-
tion or the new relabelings described in this paper.

Other work on information flow policies has exam-
ined complex aggregation policies for commercial applica-
tions [CW87, BN89, Fol91]. We have not addressed poli-
ciesthat capture conflictsof interest, though our fine-grained
tracking of ownership information seems applicable. Many
of these information control models are not designed to
be checked statically. IX [MR92] is a good example of a
real-world information flow control system that used dy-
namic checking. Recent work by Ferrari et. al [FSBJ97]
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introduces a form of dynamically-checked declassification
through special waivers to strict flow checking. Some of
the need for declassification in their framework would be
avoided with fine-grained static analysis. Because waivers
are applied dynamically and mention specific data objects,
they seem likely to have administrative and run-time over-
heads.

Static analysisof security guaranteesalso hasalonghis-
tory. It hasbeen applied to information flow [DD77, AR80]
and to access control [JL78, RSC92]. There has recently
been more interest in provably-secure programming lan-
guages, treating information flow checks in the domain
of type checking. Some of this work has focused on
formally characterizing existing information flow and in-
tegrity models [PO95, VSI96, Vol97].  Smith and Vol-
pano have recently examined the difficulty of statically
checking information flow in a multithreaded environ-
ment [SV98]; we have not addressed this problem. Heintze
and Riecke [HR98] have shown that information-flow-like
labels can be used in a simple functional language to stat-
ically check an integrated model of access control, infor-
mation flow control, and integrity. Their model does not,
however, allow declassification of information flows or run-
time flow checking. Also, Abadi [Aba97] has examined
the problem of achieving secrecy in security protocols, also
using typing rules, and has shown that encryption can be
treated asaform of safe declassification through a primitive
encryption operator.

6 Conclusions

The decentralized |abel model is a promising approach
for making information flow a practical way to guarantee
secrecy and privacy. It provides considerable flexibility by
alowing individual principals to attach flow policiesto in-
dividual values manipulated by a program. These more
flexible labels then permit values to be declassified by an
owner of the value. This declassification is safe because
it does not affect the secrecy guarantees to other principals
who have an interest in the secrecy of the data. This sup-
port for multiple principals makes the label model ideal for
mutually distrusting principals.

However, whiletheoriginal model contained aprincipal
hierarchy, the hierarchy was not fully integrated into the
relabeling rules, making the rules unnecessarily restrictive.
This paper has defined a complete relabeling rule for the
decentralized label model. The new rule precisely captures
al the legal relabelings that are allowed when knowledge
about the principal hierarchy is available statically. We
have shown that the rule is both sound and complete, and
furthermore that it is easy to apply. We have formalized
the relabeling rule as a pre-order relation with distributive
|attice properties: join and meet operators can be defined on



these labels, which means that a compiler or static checker
can usethem to check information flow statically, to support
label polymorphism, and to do label inference.

The new rules for relabeling, join, and meet make the
decentralized label model more practical and more usable.
They make it easier to model common security paradigms,
allowing control of information flow in a system with group
or role principals. They also alow individual principals to
model their own multilevel security classes conveniently.
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