
A Hub Location Problem with Fully
Interconnected Backbone and Access

Networks

Tommy Thomadsen
Informatics and Mathematical Modelling

Technical University of Denmark

2800 Kgs. Lyngby

Denmark

tt@imm.dtu.dk

Jesper Larsen∗

Informatics and Mathematical Modelling

Technical University of Denmark

2800 Kgs. Lyngby

Denmark

jla@imm.dtu.dk

July 21, 2005

Abstract

This paper considers the design of two-layered fully interconnected net-
works. A two-layered network consists of clusters of nodes,each defining
an access network and a backbone network. We consider the integrated
problem of determining the access networks and the backbonenetwork si-
multaneously. A mathematical formulation is presented, but as the linear

∗Corresponding author

1

programming relaxation of the mathematical formulation isweak, a formu-
lation based on the set partitioning model and column generation approach is
also developed. The column generation subproblems are solved by solving
a series of quadratic knapsack problems. We obtain superiorbounds using
the column generation approach than with the linear programming relax-
ation. The column generation method is therefore developedinto an exact
approach using the Branch-and-Price framework. With this approach we
are able to solve problems consisting of up to 25 nodes in reasonable time.
Given the difficulty of the problem, the results are encouraging.

Keywords: Hierarchical networks, Fully interconnected networks,
Hub location, Branch-and-Price.

1 Introduction

Wired communication networks are usually organized in a hierarchal structure
based on two or more layers. This structure has proven robustto changing de-
mands and upgrades and is seen as the right compromise between cost and redun-
dancy. We consider networks with two layers, but the analysis is generalizable to
more layers.

The two layers in the network are denoted the backbone network and the ac-
cess networks. The backbone network connects disjoint clusters of nodes, each
comprising an access network. The node connecting an accessnetwork to the
backbone network is called a hub. An example is shown in Figure 1. Here hubs
are shown as squares, thin lines are connections in an accessnetwork, while thick
lines represent connections in the backbone network. The dashed lines mark the
clusters, each representing an access network.

When designing such hierarchal or layered networks, a number of interrelated
questions have to be resolved: Which nodes should be hubs, how should we define
the clusters, and which interconnections should we allow. Since theses problems
are interrelated, they should be addressed by an integratedapproach in order to
ensure an optimal solution.

This paper considers the joint selection of hubs and clustering of nodes of
two-layered networks. In each of the layers, we assume the networks to be fully
interconnected. This corresponds to Figure 1, where the access networks and the
backbone network are fully interconnected, that is, for twonodes in the backbone
or the same cluster, there is a link. The objective is to minimize link costs consist-

2

c d

a

b

Figure 1: Example of a two-layered network. All access networks and the back-
bone network are fully interconnected.

ing of a cost for each link that needs to be established. This problem is denoted
the Fully Interconnected Network Design Problem (FINDP).

Note that communication between two nodes in the same accessnetwork (eg.
a andc in Figure 1) is handled within the access network. On the other hand, com-
munication between two nodes not in the same access network has to be routed
via the backbone network. So communication froma to b is routed viac andd in
the backbone network in Figure 1.

Klincewizc [1] surveys work on two-layered network design.A significant
part of the work reviewed focus on fully interconnected backbone networks. In
particular [2] and [3] consider the design of fully interconnected backbone net-
work and a star network in the access networks. Using the fully interconnected
network on both layers is an open problem according to the survey paper of
Klincewizc.

The FINDP is a fixed charge problem in which a cost is incurred for estab-
lishing links. Several papers deals with fixed charge network design problems,
e.g. [4] and the very recent [5]. Other papers consider two layered network design
problems where it is assumed that the clusters are predetermined. Such papers are
surveyed in [6]. Thomadsen and Stidsen [7] address such a problem, where the
backbone is a fixed charge network design problem.

The FINDP could be used in setting up a computation cluster ofcomputers.
Instead of affording a direct connection between all computers, they are divided
into two layers, with a backbone network ensuring fast access beyond the access

3

network of a computer.
The paper is organized as follows. Section 2 presents a mathematical for-

mulation for the FINDP problem. As the linear relaxation of the mathematical
formulation is weak, we develop a column generation approach in Section 3, and
present the Branch-and-Price framework to obtain integralsolutions in Section 4.
Experimental results are presented in Section 5, and finallythe conclusions are
given in Section 6.

2 Network Design

First we formulate a mathematical formulation for the FINDP. Consider the graph
G = (V, E), whereV is the set of nodes andE is the set of undirected links. Let
cij denote the cost of linkij in E.

We consider a problem where there are lower and upper bounds on the num-
ber of clusters and the number of nodes in the clusters. Letbmin andbmax be a
lower bound and an upper bound on the number of clusters, respectively. Further-
morevmin is the lower bound on the number of nodes in any cluster andvmax the
corresponding upper bound.

We initially define three sets of variablesxij , yij for i, j in V , i < j, andhi for
i in V . The variablehi is 1 if node i is a hub for a cluster, and0 otherwise. The
variablexij is 1 if ij is a link in the access and0 otherwise, and correspondingly
yij is 1 if ij is a link in the backbone network and0 otherwise. Initially we get:

min
∑

ij∈E

cijxij +
∑

ij∈E

cijyij (1)

s.t. yij + xij ≤ 1 ∀ij ∈ E (2)

hi + hj + xij ≤ 2 ∀ij ∈ E (3)

yij ≤ hk ∀ij ∈ E, k ∈ {i, j} (4)

xik + xjk ≤ xij + 1 ∀i, j, k ∈ V, i < j, k 6= i, k 6= j (5)

yik + yjk ≤ yij + 1 ∀i, j, k ∈ V, i < j, k 6= i, k 6= j (6)

xij , yij, hi binary (7)

The objective function (1) is the sum of costs in the access networks and the
backbone network. Inequality (2) ensures that a link cannotbe used both in the
backbone network and the access network at the same time. Next inequality (3)

4

states that if both nodesi andj are hubs then there can be no access network link
between these nodes. Now inequality (4) says that if a nodek is not a hub, then a
backbone network link cannot be incident tok. Finally (5) and (6) ensure that the
access network, respectively the backbone network are fully interconnected.

The formulation can be strengthened by adding

hi + hj ≤ yij + 1 ∀ij ∈ E (8)

where (2) and (8) dominates (3), and (4) together with (8) dominates (6).
This initial formulation does, however, not ensure that each cluster contains a

hub. Therefore, we introduce the variablewij for each ordered pair(i, j) where
i, j ∈ V, i 6= j. If wij is 1 nodei is a hub and nodej is connected toi and 0
otherwise, i.e.,

wij = hixij .

Described by linear constraints we get:

wij ≤ hi ∀i, j ∈ V, i 6= j (9)

wij ≤ xij ∀i, j ∈ V, i 6= j (10)

hi + xij ≤ 1 + wij ∀i, j ∈ V, i 6= j (11)

hj +
∑

i,i6=j

wij = 1 ∀ij ∈ E (12)

wij binary (13)

The constraints (9) and (10) forcewij to 0 if nodei is not a hub or if there is no
link in the access network betweeni andj. Inequality (11) setwij to 1 if nodei is
a huband there is a link betweeni andj in the network. Then (12) either forces
nodei to be a hubor to be connected to exactly one hubj, and as a consequence,
each cluster contains a hub.

Finally we describe bounds on the number of clusters (14) andnodes in each
cluster (15):

bmin ≤
∑

i

hi ≤ bmax (14)

vmin − 1 ≤
∑

j

xij ≤ vmax − 1 ∀i ∈ V (15)

5

When we refer to the formulation FINDP for the two-layered fully intercon-
nected network problem we refer to the formulation defined by(1)-(2), (4)-(5)
and (7)-(15). The linear programming relaxation is obtained by replacing (7) and
(13) with a non-negativity constraint on all variables. This formulation is denoted
LP-FINDP.

3 Decomposition and Column Generation

LP-FINDP generally provides a poor bound on the optimal value of the FINDP.
This is largely due to the weak LP relaxation and the inherentsymmetry in the
formulation.

In order to obtain a better formulation of the FINDP problem let C be the set
of all clusters with a hub selected, and letB be the set of all backbone networks,
where each backbone network is a set of hubs. Letac

i be1 if node i is in cluster
c and0 otherwise. Furthermore letsc

i be 1 if node i is a hub in clusterc and0
otherwise. For the backbone, letsb

i be1 if nodei is in backbone, and0 otherwise.
For a clusterc in C let cc be the cost of the cluster, i.e., the sum of all cost on the
links in c, that is,

cc =
∑

i,j,i<j

ac
ia

c
jcij

and correspondingly letcb be the cost of the backboneb in B, so:

cb =
∑

i,j,i<j

sb
is

b
jcij

Now we can formulate an alternative formulation of the FINDPproblem. Vari-
ables areuc which are1 if clusterc in C is selected,0 otherwise andvb which are
1 if backboneb in B is selected,0 otherwise.

min
∑

c∈C

ccuc +
∑

b∈B

cbvb (16)

s.t.
∑

c∈C

ac
iuc = 1 i ∈ V (17)

−
∑

c∈C

sc
iuc +

∑

b∈B

sb
ivb = 0 i ∈ V (18)

uc, vb binary (19)

6

Here, (16) is the objective function minimizing the accumulated cost of the
access networks and the backbone network. The equalities (17) ensure that all
nodes belong to exactly one access network, while the constraints (18) ensure that
hub nodes are in the backbone network.

Consider a small example of 4 nodes that should be divided into exactly 2
clusters of precisely 2 nodes each. For this small instance,it is possible to enu-
merate all possibilities. Let us denote the nodesa, b, c andd. Figure 2 shows the
coefficient matrix and right-hand sides for this small problem. Each possible clus-
ter consists of 2 nodes, so for each possible cluster there are two hub candidates.
Therefore each feasible cluster results in two different columns representing the
cluster but with different hubs (represented by the−1 coefficient in the lower
half). Then follows a column for each possible backbone solution. If e.g. we
choose the two clusters(a, b) and(c, d), then depending on the choice of hub, the
matching column in the rightmost part will enforce the rightcost of the backbone
network.

a : 1 1 1 1 1 1 = 1
b : 1 1 1 1 1 1 = 1
c : 1 1 1 1 1 1 = 1
d : 1 1 1 1 1 1 = 1
a :−1 −1 −1 1 1 1 = 0
b : −1 −1 −1 1 1 1 = 0
c : −1 −1 −1 1 1 1 = 0
d : −1 −1 −1 1 1 1 = 0

Figure 2: Coefficient matrix for a small example consisting of 4 nodes. Blanks in
the matrix represent entries of value0.

It is possible to enumerate all columns for very small instances. However, for
a problem withK = 20, vmin = bmin = 6 andvmax = bmax = 8 we get ap-
proximately2.1 million columns. Enumerating all these columns will in practice
be computational inefficient. In order to avoid generating all clusters and back-
bones a priori, we use the iterative method of column generation. The clusters
and backbone networks are generated as they are needed. For each constraint (17)
we associate a dual variableαi and for each constraint (18) we associate the dual
variableβi.

Preliminary results show significantly better bounds by adding the following

7

strengthening constraint to the formulation:

∑

b∈B

vb = 1 (20)

The constraint (20) has an associated dual variableγ.
Most often column generation involves a master problem and asubproblem.

The master problem solves an LP relaxation and delivers dualvariables to the
subproblem where new variables are computed in case a betterone exists. The
linear programming relaxation of the FINDP (defined by (16) to (20)) problem is
denoted CG-FINDP and is obtained by replacing (19) with non-integrality con-
straints. For the CG-FINDP the master problem is associatedwith two subprob-
lems; one for generating clusters and one for generating backbone configurations,
see Figure 3.

Problem
Master

Cluster
Generation

Backbone
Generation
SubproblemSubroblem

Figure 3: Overview of the column generation algorithm.

3.1 The Backbone generation subproblem

For an optimal solution the reduced cost of a backbone columnis:

∑

ij∈E

cijyij −
∑

i∈V

βisi − γ (21)

whereyij andsi are binary variables representing whether the linkij respectively
the nodei is part of the backbone network.

8

In order to find a new column to enter the basis, we seek the column with the
most negative reduced cost. By multiplying the reduced costwith−1 the objective
function is:

max
∑

i∈V

βisi + γ −
∑

ij∈E

cijyij (22)

The constraints for obtaining a feasible backbone network are:

yij ≤ si ij ∈ E (23)

yij ≤ sj ij ∈ E (24)

si + sj ≤ yij + 1 ij ∈ E (25)

bmin ≤
∑

i∈V

si ≤ bmax (26)

si, yij binary (27)

The link ij can only be selected for the backbone network if both nodei and
j are part of it. This is ensured by the constraints (23) and (24). Furthermore,
inequalities (25) enforces linkij to be part of the backbone network if nodesi
andj are selected. Finally, constraint (26) ensures that the bounds on the number
of clusters (access networks) are enforced. The pricing problem for the back-
bone generation subproblem is defined by (22)-(27). A solution approach to this
formulation is described in Section 3.3

3.2 The Cluster generation subproblem

The definition of the cluster generation subproblem is parallel to the approach for
the backbone network. Letai andxij be1 if the nodei respectively the linkij is
in the cluster, and0 otherwise. Furthermore the variablesi is 1 if nodei is a hub,
and0 otherwise. Now the reduced cost of a cluster is:

∑

ij∈E

cijxij −
∑

i∈V

αiai +
∑

i∈V

βisi (28)

The cluster generation problem seeks the column with the most negative re-
duced cost, or equivalent, has the objective:

max
∑

i∈V

αiai −
∑

i∈V

βisi −
∑

ij∈E

cijxij (29)

9

A feasible column (defining an access network) must fulfill:

∑

i∈V

si = 1 (30)

si ≤ ai i ∈ V (31)

xij ≤ ai ij ∈ E (32)

xij ≤ aj ij ∈ E (33)

ai + aj ≤ xij + 1 ij ∈ E (34)

vmin ≤
∑

i∈V

ai ≤ vmax (35)

ai, si, xij binary (36)

Each access network has precisely one hub, which is ensured by equation (30),
and the hub has to be part of the access network, which is ensured by (31). Parallel
to (23)-(25) for the backbone generation problem, (32)-(34) ensure that a linkij is
selected if and only if both nodesi andj are selected. A feasible access network
can only have betweenvmin andvmax nodes, i.e., it has to fulfill (35). Thus the
pricing problem for the cluster generation is defined by (29)-(36). A solution
approach is discussed in the following section.

3.3 Solving the subproblems

Instead of solving the problems for backbone and cluster generation directly, it
can be observed that both of the subproblems can in fact be solved as a series of
quadratic knapsack problems (QKP). For at general description of QKP see [8].
The quadratic knapsack problem seeks to maximize a quadratic objective function
subject to a single capacity constraint. If we let the binaryvariableqi be equal to
1 if item i is selected and0 otherwise, and letqij be1 if both i andj are selected
and0 otherwise. Finally letpi be the profit of selecting itemi, pij be the profit of
selecting both itemi and j. Then the QKP can be formulated as:

10

max
∑

i

piqi +
∑

i

∑

j:i<j

pijqij (37)

s.t. qij ≤ qi i, j (38)

qij ≤ qj i, j (39)

qi + qj ≤ qij + 1 i, j (40)
∑

j

wjqj ≤ C (41)

qij , qj binary (42)

wherewj is the weight of thej’th item andC is the capacity of the knapsack.
Constraints (38), (39), and (40) ensure consistency of variables and (41) is the
knapsack constraint. A solution approach to the QKP is described in [9]. The
approach is based on Lagrangian relaxation and seems to be the current state-of-
the-art for exact solution of the QKP. Furthermore the source code is available
at the homepage of David Pisinger, seewww.diku.dk/˜pisinger . This ap-
proach and the available code is used to solve both subproblems.

Let us first consider our subproblem for the backbone network, (22)- (27). The
subproblem bears some resemblance with the QKP. The nodes can be considered
items with a weight of1 and the profit equals the cost of the links in the back-
bone. The deviation is that both a lower and upper bound existon the contents
of the knapsack. To address this, we take the approach of adding a constant to
all coefficients in the objective, such that all coefficientsare non-negative. With
non-negative coefficients in the objective and weights equal to 1 in the knapsack,
the optimal solution to the corresponding QKP, will always fill the knapsack to
capacity. Hence, the subproblem can be solved by solving a series of QKP’s, one
for each of the capacitiesC = bmin, bmin + 1, . . . , bmax. The algorithm is shown in
Figure 4.

Similarly to the backbone generation problem, we add a constant to all co-
efficients in the objective, such that all coefficients are non-negative and solve a
problem for each ofC = vmin, vmin+1, . . . , vmax. However, the cluster generation
problem poses one additional complication compared to the backbone generation
problem. In addition to choosing nodes, one of the nodes has to be designated as
the hub node. We handle this by enforcing each of the nodes to be hub, one at a
time. This corresponds to fixing each of thesi variables to 1 in turn. However, fix-
ing a variable to 1 cannot be done directly using the code usedto solve the QKP’s.

11

for bk = bmin to bmax do
Solve QKP forC = bk

if Solution has a positive valuethen
add the cluster column to the master problem

end if
end for

Figure 4: The backbone generation algorithm.

Instead, a sufficiently high value is added to the objective coefficient of the node,
thus ensuring that the node is selected. As a consequence,|V |(vmax − vmin + 1)
QKP problems have to be solved. The algorithm is shown in Figure 5.

for i ∈ V do
for vk = vmin to vmax do

Solve QKP forC = vk andsi forced to1
if Solution has a positive valuethen

add the cluster column to the master problem
end if

end for
end for

Figure 5: The cluster generation algorithm.

The approach described in [9] also contains a greedy heuristic for the QKP.
In our generation of subproblems, we run this heuristic on the full series of sub-
problems before running the exact approach. The exact approach is only used if
no columns can be obtained by the heuristic. The QKP is also used as a subprob-
lem in a column generation approach in [10]. Furthermore paper G in [11] uses a
similar approach to solve a related two layered network design problem.

3.4 Initialization

To initialize the column generation, a number of “dummy” columns for the clus-
tering and the backbone part are generated. The dummy columns for the cluster-
ing part consists of one column per node. Each column contains one node with no
designated hub, that is, the column contains a single1 for thei’th row (ac

i = 1).

12

For the backbone part we also generate one column per nodei. These columns
have a1 corresponding to thei’th node being a hub (sb

i = 1), and all remaining
coefficients are0. In order to satisfy (20), an additional “dummy” column is
added. It does not contain any nodes but has a coefficient1 for the constraint (20).
All these dummy columns are added to ensure a feasible LP uponbranching and
they are assigned a value sufficiently high in order to force them out of the basis
in the optimal solution.

4 Branch-and-Price

As the column generation method described above cannot guarantee integral so-
lutions, it has to be embedded in the Branch-and-Bound framework. The combi-
nation of column generation and Branch-and-Bound is often denoted Branch-and-
Price or IP column generation [12, 13].

In case the solution of a branch node in the Branch-and-Boundtree is not
integer and cannot be fathomed, we branch. Here, we implement the Ryan-Foster
branching [14]. We branch on whether nodei andj are in the same cluster or not.
A constraint enforcing this requirement is added to the master problem. This does,
however, not guarantee integer optimality. Two clusters with the same nodes but
with different hubs may be selected, each withuc equal to1

2
. Now branching on

whether nodei andj are in the same cluster cannot be applied, yet the solution is
not integer. This is handled by branching on whether a node isa hub or not, that
is, in one branch, nodei is forced to be hub, and in the other branch node,i cannot
be hub.

In the master problem, the choices taken by the branching strategy results in
the addition of constraints. LetB1 ⊆ E be the set of “nodes are/are not in the
same cluster” branches andB2 ⊆ V be the set of “nodei is/is not hub” branches.
We definepc

b for {i, j} = b ∈ B1 to be equal to one ifi andj are in the same
cluster, otherwise 0. Furthermore, recall thatsc

i is 1 if i is a hub in clusterc. So
we get:

∑

c∈C

pc
buc = 0/1 b ∈ B1 (43)

∑

c∈C

sc
iuc = 0/1 i ∈ B2 (44)

where (43) with the right-hand side0 corresponds to forbid clusters containingi

13

andj, and a right-hand side of1 forces a cluster to contain bothi andj. Corre-
spondingly a right-hand side of0 in (44) means that nodei is not hub, and1 forces
i to be hub.

Branching is implemented by first determining theuc column with fractional
values closest to1

2
. Then, the first row covered (i.e., it has a coefficient of1) by

this column is found. Now we search for another column that has a fractional
value and covers the same row. Such a column must exist due to the partitioning
constraints for the clusters (17). So either:

1. The columns cover exactly the same rows. This implies thatthe hubs are
not identical and we branch on whether the node is a hub or not.

2. The columns cover different rows. Now we determine the first row where
they differ and branch on whether nodes are in the same cluster or not.

Referring back to the example in Figure 2, consider the situation where the
first two columns are picked with a value of1

2
and the two remaining nodes where

covered by a single column with value1. The branching approach will then detect
that both columns define the same cluster (they cover the exact same rows) and
therefore branching will force the node represented by the first row (nodea) to
either be or not be a hub. If insteaduc is equal to1

2
for the first and the third col-

umn, the test reveals that the two columns define different clusters and branching
will force a andb to be in the same cluster or not.

In the branching tree, a depth first strategy is applied. Thisenables use of
“warm start” in the LP relaxation of the master problem with the previous solution.
Having two candidates for branching on the same depth, we choose the one that
fixes the right hand side values to 1 in (43) and (44).

The branch constraints (43) and (44) lead to dual variables which needs to
be incorporated into the subproblems. Taking these dual variables into account
in the subproblem is sufficient, i.e., it is not necessary to force the subproblem
to generate columns feasible with respect to a given set of branches. The dual
variablesδb andǫi corresponding to (43) and (44) are only added to the calculation
of the reduced cost for a cluster column. No modification of the backbone columns
are necessary.

We now modify (28) to reflect that the reduced cost of the columns should
include the dual variables of the branch constraints:

∑

ij∈E

cijxij −
∑

i∈V

αiai +
∑

i∈V

βisi −
∑

b∈B1

δbpb −
∑

i∈B2

ǫisi (45)

14

wherepb is 1 for b = (i, j), if i andj are in the same cluster.
Therefore, for the cluster generation problem, the objective of the pricing

problem (29) is modified to:

max
∑

i∈V

αiai −
∑

i∈V

βisi −
∑

ij∈E

cijxij +
∑

b∈B1

pbδb +
∑

i∈B2

siǫi (46)

By noting thatpb = p{i,j} = aiaj = xij and rewriting, we obtain:

max
∑

i∈V

αiai +
∑

i∈V

(ǫi − βi)si +
∑

ij∈E

(δij − cij)xij (47)

Thus including the additional dual variables is only a matter of modifing the con-
stants of the objective, and hence can easily be included.

5 Experimental Results

We have tested the two bounds and the Branch-and-Price approach on generated
instances withn nodes forn = 10, 15, 20, and25. All the graphs are fully con-
nected and two types of instances have been generated. Euclidean instances where
the link costs are proportional to the Euclidean distances between the endpoints
which have been randomly located in the unit square, and random instances, where
the link costs are randomly selected using a uniform distribution. Furthermore
bmin andvmin are set to|√n| − Bd, andbmax andvmax are set to|√n| + Bd. Here
we have tested each instance withBd equal to1, 2, and3.

First we have tested the column generation scheme (CG-FINDP) against the
LP relaxation of the FINDP (LP-FINDP) to see which approach produces the
tightest bounds. The results are shown in Table 1 and Table 2.In the tables,
“Gap” is the gap to the known optimal solution, “Iter” denotes the number of
iterations, i.e., the number of calls to the subproblems in the column generation
algorithm, and “Cols” identifies the number of columns generated.

For both types of graphs, it is evident that the column generation approach
produces bounds superior to the LP relaxation. On the Euclidean instances the
gaps are between 27% and 76% for the LP relaxation, which willmake it difficult
to obtain an efficient exact approach based on an LP relaxation. In contrast the
bound for CG-FINDP are between1.88% and 28%, and for the random instances,
the bounds are even better. Here the largest deviation from the optimal solution is
below 10% for the CG-FINDP. For the LP relaxation, the gaps have increased and

15

Table 1: The LP relaxation of the FINDP formulation vs. the column generation
approach for a lower bound on the Euclidean instances.

Problem LP-FINDP CG-FINDP
n Bd Seconds Gap (%) Seconds Gap (%) Iter Cols
10 1 0.15 52.6 0.47 14.9 8 159
10 2 0.12 61.1 0.88 3.9 9 219
10 3 0.15 69.9 1.05 13.1 9 237
15 1 1.15 31.3 1.84 8.8 17 388
15 2 1.31 60.0 2.32 1.9 14 408
15 3 0.38 73.3 3.25 17.2 13 450
20 1 1.69 57.0 3.62 27.7 21 545
20 2 1.16 65.6 6.14 11.1 17 718
20 3 1.36 76.0 8.24 13.8 14 747
25 1 6.39 27.1 13.30 14.9 24 846
25 2 4.73 56.5 14.58 20.2 21 1272
25 3 5.07 70.8 19.06 15.6 19 1224

are in the interval between 48% and 89%. The cost of better bounds is a modest
increase in running times. Note that both the number of columns and iterations
needed is low. We never need to generate more than 1400 columns and run 27
iterations.

Note that gaps are smaller for the Euclidean instances than for the correspond-
ing random instances wrt. the LP-FINDP bound. This is very much in line with the
results for comparable problems like the uncapacitated facility location. However,
for the column generation approach tighter bounds are obtained on the random in-
stances.

Based on the results above we have only tested an exact approach based on
the column generation bound. The results of the tests are presented in Table 3
and Table 4. Here the column “BB” displays the number of Branch-and-Bound
nodes needed to find the optimal solution, “Cols” and “Iter” denote the number
of columns respectively the number of iterations in the column generation pro-
cess that is needed. Finally, the remaining 4 columns presents the total running
time, and then a breakdown into the Master Problem (“MP”), the exact pricing
algorithm (“SP opt”) and the heuristic pricing algorithm (“SP heu”).

The results clearly show that the randomly generated instances are easier to

16

Table 2: The LP relaxation of the FINDP formulation vs. the column generation
approach for a lower bound on the randomly generated instances.

Problem LP-FINDP CG-FINDP
n Bd Seconds Gap (%) Seconds Gap (%) Iter Cols
10 1 0.16 66.5 0.41 5.7 9 163
10 2 0.14 74.4 1.26 4.5 9 194
10 3 0.13 78.5 0.82 4.7 8 222
15 1 1.74 49.6 1.15 5.3 12 294
15 2 1.29 76.0 3.64 1.8 13 397
15 3 0.47 80.4 5.34 5.9 14 487
20 1 1.81 56.8 5.49 1.5 21 599
20 2 1.09 80.2 12.15 9.7 16 636
20 3 1.12 88.9 14.46 7.1 19 697
25 1 6.61 48.5 14.97 6.1 25 763
25 2 4.97 76.2 33.24 4.0 27 1220
25 3 4.64 83.7 36.97 1.8 27 1367

solve than the Euclidean instances. Obviously, the tightergap plays an important
role. Except for the three Euclidean instances with 25 nodes, all running times
can be seen as reasonable. It is worth noting that a large fraction of the time spent
by our algorithm is spent in the exact SP. In the breakdown of the time usage, the
time spent in the exact SP algorithm always accounts for the vast majority of the
running time. Most of the problems, including all randomly generated instances,
are solved generating only a few thousand columns.

Instead of solving the two subproblems by sequentially solving a series of
QKPs, the formulations of the two subproblems ((22)-(27) and (29)-(36)) can be
solved directly by a MIP solver. Since the heuristic SP produces most columns,
the call to the exact SP procedure is often just to check that all columns have been
generated. Thus the single call to the MIP solver can replacethe exact SP pro-
cedure, which involves solving a series of QKPs optimally. Initial computational
experiments support that this speeds up the procedure.

17

Table 3: Results for the Branch-and-Price for the FINDP on the Euclidean in-
stances

Problem BB Cols Iter Seconds
n Bd Total MP SP opt SP heu
10 1 54 441 213 25 0 17 6
10 2 34 540 152 27 0 18 8
10 3 6 346 41 8 0 4 3
15 1 245 1859 1172 391 9 326 52
15 2 78 1201 431 201 2 166 31
15 3 66 1310 398 256 2 207 42
20 1 1621 7226 6228 4796 302 4091 369
20 2 120 2481 679 696 9 610 68
20 3 1006 6971 4324 7551 221 6655 636
25 1 4568 19137 19375 42619 5626 35279 1463
25 2 45839 55692 115849 671346 248690 402661 14474
25 3 4922 18658 16978 71056 4948 62838 2984

6 Conclusion

The contribution of this paper is the development of two different formulations
(a mathematical formulation and one based on column generation) and an exact
solution approach for a two-layered network design problem. The problem is
defined by using a fully interconnected topology both for theaccess networks and
the backbone network.

Our computational experiments are based on two sets of instances, one ran-
domly generated and one using Euclidean distances. The results show that the
bound based on column generation is superior to the LP relaxation of the math-
ematical formulation. The gaps are often more than a factor 10 worse on the LP
relaxation. The bounds on the column generation approach are tight enough – es-
pecially on the random instances – to develop an optimal approach, even though
this bound is more time consuming to compute than the LP relaxation.

The optimal method is able to solve all randomly generated instances within
one hour. The bounds on the Euclidean instances are worse than for the randomly
generated instances, which is also reflected in the running times. For the Euclidean

18

Table 4: Results for the Branch-and-Price for the FINDP on the randomly gener-
ated instances

Problem BB Cols Iter Seconds
n Bd Total MP SP opt SP heu
10 1 4 179 14 1 0 1 0
10 2 2 219 8 2 0 1 0
10 3 2 247 12 3 0 2 1
15 1 15 551 123 40 0 34 5
15 2 54 917 269 177 1 152 19
15 3 120 1547 634 575 4 495 69
20 1 34 1168 215 179 2 169 13
20 2 150 2061 787 1197 10 1093 79
20 3 262 3248 1565 3151 31 2867 231
25 1 45 1697 475 944 6 885 36
25 2 77 2453 510 1720 9 1609 65
25 3 42 2281 367 1565 6 1455 64

instances 5 out of the 12 instances cannot be solved within one hour – one instance
takes almost 8 days to solve. It is noteworthy that most of ourproblems are solved
generating only a few thousand columns.

We believe that further improvements can be obtained by proving optimality
of the subproblems solving the pricing problems directly ina MIP solver instead
of solving a series of QKP’s. Furthermore the running times on especially the
Euclidean instances suggest research in heuristics. One possible approach is to
base them on the existing optimal method. Feasible solutions obtained by such
heuristics can be used to speed up the Branch-and-Price algorithm.

References

[1] Klincewicz J. Hub location in backbone/tributary network design: a review.
Location Science 1998;6:307–355.

[2] Ernst A, Krishnamoorthy M. Efficient algorithms for the uncapacitated sin-
gle allocation p-hub median problem. Location Science 1996;4(3):139–154.

19

[3] Skorin-Kapov D, Skorin-Kapov J, O’Kelly M. Tight linearprogramming
relaxations of uncapacitated p-hub median problems. European Journal of
Operational Research 1996;94(3):582–593.

[4] Crainic T, Frangioni A, Gendron B. Bundle-based relaxation methods for
multicommodity capacitated fixed charge network design. Discrete Applied
Mathematics 2001;112(1-3):73–99.

[5] Costa A. A survey on benders decomposition applied to fixed-charge
network design problems. Computers and Operations Research 2005;
32(6):1429–1450.

[6] Feresmans C, Labbe M, Laporte G. Generalized network design problems.
European Journal of Operational Research 2003;148(1):1–13.

[7] Thomadsen T, Stidsen T. The generalized fixed-charge network design pro-
lem. Computers and Operations Research 2005;To appear.

[8] Kellerer H, Pferschy U, Pisinger D. Knapsack Problems. Springer, 2004.

[9] Caprara A, Pisinger D, Toth P. Exact solution of the quadratic knapsack
problem. INFORMS Journal on Computing 1999;11:125–137.

[10] Johnson E, Mehrotra A, Nemhauser G. Min-cut clustering. Mathematical
Programming 1993;62:133–151.

[11] Thomadsen T. Hierarchical Network Design. PhD thesis,Informatics and
Mathematical Modelling, Technical University of Denmark,2005.

[12] Barnhart C, Johnson E, Nemhauser G, Savelsbergh M, Vance P. Branch-
and-price: column generation for solving huge integer programs. Operations
Research 1998;46(3):316–329.

[13] Vanderbeck F, Wolsey L. An exact algorithm for ip columngeneration. Op-
erations Research Letters 1996;19(4):151–159.

[14] Ryan D, Foster B. An integer programming approach to scheduling. In:
Wren A, editor. Computer Scheduling of Public Transport Urban Passenger
Vehcile and Crew Scheduling. Amsterdam: North Holland, 1981. p. 269–
280.

20

