A Hub Location Problem with Fully
Interconnected Backbone and Access
Networks

Tommy Thomadsen
Informatics and Mathematical Modelling
Technical University of Denmark
2800 Kgs. Lyngby
Denmark
tt@imm.dtu.dk

Jesper Larséen
Informatics and Mathematical Modelling
Technical University of Denmark
2800 Kgs. Lyngby
Denmark

jla@imm.dtu.dk

July 21, 2005

Abstract

This paper considers the design of two-layered fully irdarected net-
works. A two-layered network consists of clusters of no@gsssh defining
an access network and a backbone network. We consider thgratgd
problem of determining the access networks and the backbetveork si-
multaneously. A mathematical formulation is presented,dsuthe linear

*Corresponding author

programming relaxation of the mathematical formulatiowesak, a formu-
lation based on the set partitioning model and column géinerapproach is
also developed. The column generation subproblems aredsbly solving
a series of quadratic knapsack problems. We obtain supesionds using
the column generation approach than with the linear progriang relax-
ation. The column generation method is therefore develap®dan exact
approach using the Branch-and-Price framework. With thisreach we
are able to solve problems consisting of up to 25 nodes iroredie time.
Given the difficulty of the problem, the results are encoingg

Keywords: Hierarchical networks, Fully interconnected networks,
Hub location, Branch-and-Price.

1 Introduction

Wired communication networks are usually organized in aahahal structure
based on two or more layers. This structure has proven rabugdtanging de-
mands and upgrades and is seen as the right compromise betosteand redun-
dancy. We consider networks with two layers, but the analigsgeneralizable to
more layers.

The two layers in the network are denoted the backbone nktarad the ac-
cess networks. The backbone network connects disjointezkisf nodes, each
comprising an access network. The node connecting an aneéssrk to the
backbone network is called a hub. An example is shown in EidurHere hubs
are shown as squares, thin lines are connections in an awe®@ask, while thick
lines represent connections in the backbone network. Thleedblines mark the
clusters, each representing an access network.

When designing such hierarchal or layered networks, a nuofheterrelated
guestions have to be resolved: Which nodes should be huysHauld we define
the clusters, and which interconnections should we allanceStheses problems
are interrelated, they should be addressed by an integapi@ach in order to
ensure an optimal solution.

This paper considers the joint selection of hubs and clugtesf nodes of
two-layered networks. In each of the layers, we assume ttveonies to be fully
interconnected. This corresponds to Figure 1, where thesaatetworks and the
backbone network are fully interconnected, that is, for hedes in the backbone
or the same cluster, there is a link. The objective is to miméink costs consist-

Figure 1. Example of a two-layered network. All access neke@nd the back-
bone network are fully interconnected.

ing of a cost for each link that needs to be established. Tiolslem is denoted
the Fully Interconnected Network Design Problem (FINDP).

Note that communication between two nodes in the same aneéssrk (eg.
a andc in Figure 1) is handled within the access network. On therdiaad, com-
munication between two nodes not in the same access netwsrtotbe routed
via the backbone network. So communication freno b is routed viac andd in
the backbone network in Figure 1.

Klincewizc [1] surveys work on two-layered network desigh.significant
part of the work reviewed focus on fully interconnected tmmke networks. In
particular [2] and [3] consider the design of fully intereatted backbone net-
work and a star network in the access networks. Using thg fiederconnected
network on both layers is an open problem according to theesupaper of
Klincewizc.

The FINDP is a fixed charge problem in which a cost is incuradektab-
lishing links. Several papers deals with fixed charge ndtvamsign problems,
e.g. [4] and the very recent [5]. Other papers consider tyerkzd network design
problems where it is assumed that the clusters are predesanSuch papers are
surveyed in [6]. Thomadsen and Stidsen [7] address suchldepno where the
backbone is a fixed charge network design problem.

The FINDP could be used in setting up a computation clusteoaiputers.
Instead of affording a direct connection between all corapytthey are divided
into two layers, with a backbone network ensuring fast axbeyond the access

3

network of a computer.

The paper is organized as follows. Section 2 presents a matiwl for-
mulation for the FINDP problem. As the linear relaxation & tmathematical
formulation is weak, we develop a column generation apgraa&ection 3, and
present the Branch-and-Price framework to obtain integphitions in Section 4.
Experimental results are presented in Section 5, and fittadlyconclusions are
given in Section 6.

2 Network Design

First we formulate a mathematical formulation for the FINDBnsider the graph
G = (V, E), whereV is the set of nodes anfl is the set of undirected links. Let
c;; denote the cost of linkj in £.

We consider a problem where there are lower and upper bountteeaum-
ber of clusters and the number of nodes in the clusters.b,Letandb,,,. be a
lower bound and an upper bound on the number of clusterscagely. Further-
moreuv,,;, is the lower bound on the number of nodes in any clusterang the
corresponding upper bound.

We initially define three sets of variables, v;; for i, j in V, i < j, andh; for
1InV. The variableh; is 1 if node is a hub for a cluster, an@otherwise. The
variablez;; is 1 if 75 is a link in the access arttlotherwise, and correspondingly
y;; 1S 1if 45 is alink in the backbone network aidbtherwise. Initially we get:

ijeE ijeE
sty +ax; <1 Vije B (2)
hi +h; 4+ x;; <2 Vij e K (3)
Yij < Iy, Vij € Bk €{i,j} 4)
Tig+xjp <z +1 VijkeVi<jk#ik#]j (5)
Vi +yie <y +1 0 Vi g keVi<jk#ik#j (6)
Tij, Yij, h; binary (7)

The objective function (1) is the sum of costs in the accessorés and the
backbone network. Inequality (2) ensures that a link cabeotised both in the
backbone network and the access network at the same time.ifeeiality (3)

states that if both nodeésand; are hubs then there can be no access network link
between these nodes. Now inequality (4) says that if a wadenot a hub, then a
backbone network link cannot be incidentitoFinally (5) and (6) ensure that the
access network, respectively the backbone network angifutrconnected.

The formulation can be strengthened by adding

where (2) and (8) dominates (3), and (4) together with (8) idaies (6).

This initial formulation does, however, not ensure thateeaster contains a
hub. Therefore, we introduce the variaklg for each ordered pait, j) where
i,7 € V,i # j. If w;; is 1 node: is a hub and nodg is connected ta and O
otherwise, i.e.,

wij = hixij .

Described by linear constraints we get:

wij < hy Vi,j € Vyi#j (9)

Wi < Tyj Vi,jeV,i#j (10)

hj+ Y wy =1 Vij € E (12)
1,177

w;; binary 13)

The constraints (9) and (10) foreg; to 0 if node: is not a hub or if there is no
link in the access network betweeand;. Inequality (11) setv;; to 1 if node: is
a huband there is a link betweenandj in the network. Then (12) either forces
node: to be a hulor to be connected to exactly one hjkand as a consequence,
each cluster contains a hub.

Finally we describe bounds on the number of clusters (14)naaies in each
cluster (15):

bmin S Z hz S bmax (14)

Umin — 1 S inj S Umax — 1 VieV (15)

J

When we refer to the formulation FINDP for the two-layeretyfintercon-
nected network problem we refer to the formulation definedBy(2), (4)-(5)
and (7)-(15). The linear programming relaxation is obtdibg replacing (7) and
(13) with a non-negativity constraint on all variables. §farmulation is denoted
LP-FINDP.

3 Decomposition and Column Generation

LP-FINDP generally provides a poor bound on the optimal @altithe FINDP.
This is largely due to the weak LP relaxation and the inhesgnimetry in the
formulation.

In order to obtain a better formulation of the FINDP problestd be the set
of all clusters with a hub selected, and ibe the set of all backbone networks,
where each backbone network is a set of hubs.atéte 1 if node: is in cluster
c and0 otherwise. Furthermore let be 1 if node: is a hub in cluster: and0
otherwise. For the backbone, ktbe 1 if nodei is in backbone, and otherwise.
For a cluster in C let c. be the cost of the cluster, i.e., the sum of all cost on the

links in ¢, that is,
Ce = Z a;a;ic;
1,7,4<J
and correspondingly let, be the cost of the backbonen B, so:
Cp = Z SgS?CZ‘j
2,7,2<]

Now we can formulate an alternative formulation of the FIN@Bblem. Vari-
ables areu. which arel if clustercin C is selected() otherwise and; which are
1 if backboneb in B is selected() otherwise.

min Z Celle + Z CpUp (16)

ceC beB
st > afu, =1 ieV (17)
ceC
—Zsfuc+Zs?vb =0 1€V (18)
ceC beB
U, vp biNary (29)

Here, (16) is the objective function minimizing the accuatat cost of the
access networks and the backbone network. The equalitfg@se(tsure that all
nodes belong to exactly one access network, while the @ntt(18) ensure that
hub nodes are in the backbone network.

Consider a small example of 4 nodes that should be dividedexractly 2
clusters of precisely 2 nodes each. For this small instahepossible to enu-
merate all possibilities. Let us denote the nodds ¢ andd. Figure 2 shows the
coefficient matrix and right-hand sides for this small pevbl Each possible clus-
ter consists of 2 nodes, so for each possible cluster therevarhub candidates.
Therefore each feasible cluster results in two differemtimms representing the
cluster but with different hubs (represented by the coefficient in the lower
half). Then follows a column for each possible backbonetsmiu If e.g. we
choose the two cluste(s, b) and(c, d), then depending on the choice of hub, the
matching column in the rightmost part will enforce the righst of the backbone
network.

a: 1 1 1111 1
b: 1 1 1111 =1
c: 11 11 11 =1
d: 11 1111 =1
a:—-1 -1 -1 111 =0
b: -1 -1 -1 1 11 =0
c: -1 -1 -1 1 1 1=0
d: -1 -1 -1 1 11=0

Figure 2: Coefficient matrix for a small example consistifig modes. Blanks in
the matrix represent entries of valie

It is possible to enumerate all columns for very small inséan However, for
a problem withK' = 20, vpyin = buin = 6 @aNd vy = bnax = 8 We get ap-
proximately2.1 million columns. Enumerating all these columns will in gree
be computational inefficient. In order to avoid generatiiglaisters and back-
bones a priori, we use the iterative method of column geiwmgratThe clusters
and backbone networks are generated as they are neede@chaomstraint (17)
we associate a dual variahie and for each constraint (18) we associate the dual
variableg;.

Preliminary results show significantly better bounds byiagldhe following

7

strengthening constraint to the formulation:

Z Vp = 1 (20)

beB

The constraint (20) has an associated dual variable

Most often column generation involves a master problem aswabgroblem.
The master problem solves an LP relaxation and delivers darébles to the
subproblem where new variables are computed in case a beteexists. The
linear programming relaxation of the FINDP (defined by (16{20)) problem is
denoted CG-FINDP and is obtained by replacing (19) with imegrality con-
straints. For the CG-FINDP the master problem is associatdgdtwo subprob-
lems; one for generating clusters and one for generatingjdose configurations,
see Figure 3.

Master

Problem
Cluster Backbone
Generation Generation
Subroblem Subproblem

Figure 3: Overview of the column generation algorithm.

3.1 TheBackbone generation subproblem

For an optimal solution the reduced cost of a backbone coismn
Z CijYij — Z Bisi — (21)
ijeE %

wherey;; ands; are binary variables representing whether the dinkespectively
the node is part of the backbone network.

In order to find a new column to enter the basis, we seek themgoluith the
most negative reduced cost. By multiplying the reducedwaht—1 the objective
function is:

maxz Bisi + 7 — Z CijYij (22)

eV ijeE

The constraints for obtaining a feasible backbone netwmk a

Yij < S; ijekl (23)

Yij < 8; ijeE (24)

si+s; <y +1 1] €L (25)

bmin < Z $i < bz (26)
eV

si, Y;; binary (27)

The linkij can only be selected for the backbone network if both noaied
j are part of it. This is ensured by the constraints (23) and. (Eurthermore,
inequalities (25) enforces linkj to be part of the backbone network if nodes
and; are selected. Finally, constraint (26) ensures that thad®an the number
of clusters (access networks) are enforced. The pricingleno for the back-
bone generation subproblem is defined by (22)-(27). A smbugipproach to this
formulation is described in Section 3.3

3.2 TheCluster generation subproblem

The definition of the cluster generation subproblem is pelrd the approach for
the backbone network. Let andz;; be1 if the node: respectively the link; is
in the cluster, and otherwise. Furthermore the variableis 1 if node: is a hub,
and0 otherwise. Now the reduced cost of a cluster is:

Z CijTij — Z o0 + Z Bisi (28)
ijeE eV eV

The cluster generation problem seeks the column with the meggmtive re-
duced cost, or equivalent, has the objective:

maxz ;a; — Z Bisi — Z CijTij (29)

eV icV ijeE

A feasible column (defining an access network) must fulfill:

d si=1 (30)

iev

s < ay eV (31)
zi; < a 1] €R (32)
zi; < a; 1] €L (33)
a; +a; < x5+ 1 1] €F (34)
Vmin < Y Gi < Vnag (35)

iev
a;, i, x;; binary (36)

Each access network has precisely one hub, which is ensyesgliation (30),
and the hub has to be part of the access network, which iseshbyr(31). Parallel
to (23)-(25) for the backbone generation problem, (32)-&vsure that a link;j is
selected if and only if both nodésand;j are selected. A feasible access network
can only have between,,;, andv,,., nodes, i.e., it has to fulfill (35). Thus the
pricing problem for the cluster generation is defined by {&®). A solution
approach is discussed in the following section.

3.3 Solving the subproblems

Instead of solving the problems for backbone and clusteeggion directly, it
can be observed that both of the subproblems can in fact hedsak a series of
guadratic knapsack problems (QKP). For at general degmmipf QKP see [8].
The quadratic knapsack problem seeks to maximize a quadigéctive function
subject to a single capacity constraint. If we let the binagableg; be equal to
1 if item ¢ is selected and otherwise, and le;; be1 if both ¢ and; are selected
and0 otherwise. Finally lep; be the profit of selecting iter) p;; be the profit of
selecting both item and ;5. Then the QKP can be formulated as:

10

max sz'% + Z Z Pij4ij (37)

i ju<g

st g < ¢] (38)
qi; < qj i,J (39)
¢G+q <q;+1 (] (40)
> wig; <C (41)

J
¢, ¢; binary (42)

wherew; is the weight of thej’th item andC' is the capacity of the knapsack.
Constraints (38), (39), and (40) ensure consistency ofbbes and (41) is the
knapsack constraint. A solution approach to the QKP is dastrin [9]. The
approach is based on Lagrangian relaxation and seems te loertent state-of-
the-art for exact solution of the QKP. Furthermore the seuwrade is available
at the homepage of David Pisinger, sesw.diku.dk/pisinger . This ap-
proach and the available code is used to solve both subpngble

Let us first consider our subproblem for the backbone netw@e)- (27). The
subproblem bears some resemblance with the QKP. The nodd®aonsidered
items with a weight ofl and the profit equals the cost of the links in the back-
bone. The deviation is that both a lower and upper bound exighe contents
of the knapsack. To address this, we take the approach ofig@@dconstant to
all coefficients in the objective, such that all coefficieats non-negative. With
non-negative coefficients in the objective and weights btguain the knapsack,
the optimal solution to the corresponding QKP, will alwaykthe knapsack to
capacity. Hence, the subproblem can be solved by solvingessef QKP’s, one
for each of the capaciti€s = b1, bin + 1, . . ., bnax. The algorithm is shown in
Figure 4.

Similarly to the backbone generation problem, we add a emngo all co-
efficients in the objective, such that all coefficients ara-negative and solve a
problem for each of' = v, Vmin+1, - - ., Umax. HOWeVer, the cluster generation
problem poses one additional complication compared to élc&lmone generation
problem. In addition to choosing nodes, one of the nodesdbs tesignated as
the hub node. We handle this by enforcing each of the nodes tmb, one at a
time. This corresponds to fixing each of thevariables to 1 in turn. However, fix-
ing a variable to 1 cannot be done directly using the code tesgolve the QKP’s.

11

for by, = byin t0 by dO
Solve QKP forC' = by,
if Solution has a positive valuten
add the cluster column to the master problem
end if
end for

Figure 4. The backbone generation algorithm.

Instead, a sufficiently high value is added to the objectoefficient of the node,
thus ensuring that the node is selected. As a consequni€e,,.x — Vmin + 1)
QKP problems have to be solved. The algorithm is shown inreigu

for i € V do
for vy, = vpin 10 Ve dO
Solve QKP forC' = v, ands; forced tol
if Solution has a positive valuten
add the cluster column to the master problem
end if
end for
end for

Figure 5: The cluster generation algorithm.

The approach described in [9] also contains a greedy heufistthe QKP.
In our generation of subproblems, we run this heuristic @nftiti series of sub-
problems before running the exact approach. The exact apipris only used if
no columns can be obtained by the heuristic. The QKP is aled as a subprob-
lem in a column generation approach in [10]. Furthermoreep&pin [11] uses a
similar approach to solve a related two layered networkgiegroblem.

3.4 Initialization

To initialize the column generation, a number of “dummy”wahs for the clus-
tering and the backbone part are generated. The dummy csltonthe cluster-
ing part consists of one column per node. Each column cantaia node with no
designated hub, that is, the column contains a sihdte thei'th row (af = 1).

12

For the backbone part we also generate one column per;ndtiese columns
have al corresponding to théth node being a hubs{ = 1), and all remaining
coefficients are). In order to satisfy (20), an additional “dummy” column is
added. It does not contain any nodes but has a coeffititemtthe constraint (20).
All these dummy columns are added to ensure a feasible LP lo@mching and
they are assigned a value sufficiently high in order to fohest out of the basis
in the optimal solution.

4 Branch-and-Price

As the column generation method described above cannoaigiegr integral so-
lutions, it has to be embedded in the Branch-and-Bound frnarie The combi-
nation of column generation and Branch-and-Bound is ofteroted Branch-and-
Price or IP column generation [12, 13].

In case the solution of a branch node in the Branch-and-Bdreelis not
integer and cannot be fathomed, we branch. Here, we impletmeRyan-Foster
branching [14]. We branch on whether nadend; are in the same cluster or not.
A constraint enforcing this requirement is added to the eragsbblem. This does,
however, not guarantee integer optimality. Two clustettfiwhe same nodes but
with different hubs may be selected, each withequal to%. Now branching on
whether node and; are in the same cluster cannot be applied, yet the solution is
not integer. This is handled by branching on whether a nodehisb or not, that
is, in one branch, nodds forced to be hub, and in the other branch nagannot
be hub.

In the master problem, the choices taken by the branchiagegly results in
the addition of constraints. Ld8; C E be the set of “nodes are/are not in the
same cluster” branches aitd C V' be the set of “nodeis/is not hub” branches.
We definep; for {i,j} = b € B, to be equal to one if andj are in the same
cluster, otherwise 0. Furthermore, recall thats 1 if i is a hub in cluster. So
we get:

> phuc=0/1 be DB (43)
ceC
Zsfuc:(J/l i€ By (44)
ceC

where (43) with the right-hand sidecorresponds to forbid clusters containiing

13

andj, and a right-hand side dfforces a cluster to contain boilandj. Corre-
spondingly a right-hand side 6fin (44) means that nodes not hub, and forces
1 to be hub.

Branching is implemented by first determining tihecolumn with fractional
values closest t(é. Then, the first row covered (i.e., it has a coefficient pby
this column is found. Now we search for another column that &dractional
value and covers the same row. Such a column must exist dhe fmattitioning
constraints for the clusters (17). So either:

1. The columns cover exactly the same rows. This impliesttitehubs are
not identical and we branch on whether the node is a hub or not.

2. The columns cover different rows. Now we determine thé¢ fos where
they differ and branch on whether nodes are in the same clusi®t.

Referring back to the example in Figure 2, consider the sdoavhere the
first two columns are picked with a value %)fand the two remaining nodes where
covered by a single column with valiie The branching approach will then detect
that both columns define the same cluster (they cover the egate rows) and
therefore branching will force the node represented by tisé fow (nodea) to
either be or not be a hub. If insteadis equal to% for the first and the third col-
umn, the test reveals that the two columns define differerstets and branching
will force a andb to be in the same cluster or not.

In the branching tree, a depth first strategy is applied. €h@bles use of
“warm start” in the LP relaxation of the master problem witk previous solution.
Having two candidates for branching on the same depth, wesghthe one that
fixes the right hand side values to 1 in (43) and (44).

The branch constraints (43) and (44) lead to dual variabl@shwneeds to
be incorporated into the subproblems. Taking these du#@hlas into account
in the subproblem is sufficient, i.e., it is not necessaryored the subproblem
to generate columns feasible with respect to a given setafdies. The dual
variables), ande; corresponding to (43) and (44) are only added to the caloualat
of the reduced cost for a cluster column. No modification efidackbone columns
are necessary.

We now modify (28) to reflect that the reduced cost of the caisishould
include the dual variables of the branch constraints:

Z CijTij — Z o;a; + Z Bisi — Z obPy — Z €;Si (45)

ijelE eV eV beB; 1€B2

14

wherep, is 1 for b = (i, j), if - andj are in the same cluster.
Therefore, for the cluster generation problem, the objectf the pricing
problem (29) is modified to:

maxz o;a; — Z Bis; — Z CijTij + Z Po0p + Z Si€i (46)

eV eV ijeE beB; 1€B2

By noting thatp, = py; j1 = a;a; = x;; and rewriting, we obtain:

max Z o;a; + Z(Ei — Bi)si + Z (0ij — cij)wij (47)

i€V i€V ijEE

Thus including the additional dual variables is only a matfamodifing the con-
stants of the objective, and hence can easily be included.

5 Experimental Results

We have tested the two bounds and the Branch-and-Price agpom generated
instances witm nodes forn = 10, 15, 20, and25. All the graphs are fully con-
nected and two types of instances have been generateddéarcinstances where
the link costs are proportional to the Euclidean distanega/é&en the endpoints
which have been randomly located in the unit square, ancbramaistances, where
the link costs are randomly selected using a uniform digtiom. Furthermore
bmin @nduy,, are settd/n| — By, andb,,,, andv,,,, are set td/n| + B,. Here
we have tested each instance withequal tol, 2, and3.

First we have tested the column generation scheme (CG-FINMD&nst the
LP relaxation of the FINDP (LP-FINDP) to see which approacbdpces the
tightest bounds. The results are shown in Table 1 and Tabli 2he tables,
“Gap” is the gap to the known optimal solution, “Iter” denstdhe number of
iterations, i.e., the number of calls to the subproblem$édolumn generation
algorithm, and “Cols” identifies the number of columns gened.

For both types of graphs, it is evident that the column gdimrapproach
produces bounds superior to the LP relaxation. On the Eemtfidnstances the
gaps are between 27% and 76% for the LP relaxation, whichweKe it difficult
to obtain an efficient exact approach based on an LP relaxatiocontrast the
bound for CG-FINDP are betwedr88% and 28%, and for the random instances,
the bounds are even better. Here the largest deviation fierogtimal solution is
below 10% for the CG-FINDP. For the LP relaxation, the gapehacreased and

15

Table 1: The LP relaxation of the FINDP formulation vs. théuoan generation
approach for a lower bound on the Euclidean instances.

Problem LP-FINDP CG-FINDP

n By Seconds Gap (%) Seconds Gap (%) Iter Cols
10 1 0.15 52.6 0.47 14.9 8 159
10 2 0.12 61.1 0.88 3.9 9 219
10 3 0.15 69.9 1.05 13.1 9 237
15 1 1.15 31.3 1.84 88 17 388
15 2 1.31 60.0 2.32 19 14 408
15 3 0.38 73.3 3.25 17.2 13 450
20 1 1.69 57.0 3.62 27.7 21 545
20 2 1.16 65.6 6.14 111 17 718
20 3 1.36 76.0 8.24 13.8 14 747
25 1 6.39 27.1 13.30 149 24 846
25 2 4.73 56.5 14.58 20.2 21 1272
25 3 5.07 70.8 19.06 15,6 19 1224

are in the interval between 48% and 89%. The cost of bettemd®is a modest
increase in running times. Note that both the number of cakiand iterations
needed is low. We never need to generate more than 1400 celanthrun 27
iterations.

Note that gaps are smaller for the Euclidean instances thrahd correspond-
ing random instances wrt. the LP-FINDP bound. This is vergimn line with the
results for comparable problems like the uncapacitatatitfdocation. However,
for the column generation approach tighter bounds aremddaon the random in-
stances.

Based on the results above we have only tested an exact aphpvaaed on
the column generation bound. The results of the tests asepied in Table 3
and Table 4. Here the column “BB” displays the number of Braand-Bound
nodes needed to find the optimal solution, “Cols” and “Ite€hdte the number
of columns respectively the number of iterations in the oolugeneration pro-
cess that is needed. Finally, the remaining 4 columns ptesiea total running
time, and then a breakdown into the Master Problem (“MP’®, élkact pricing
algorithm (“SP opt”) and the heuristic pricing algorithnS@ heu”).

The results clearly show that the randomly generated instaare easier to

16

Table 2: The LP relaxation of the FINDP formulation vs. théuoan generation
approach for a lower bound on the randomly generated inssanc

Problem LP-FINDP CG-FINDP

n By Seconds Gap (%) Seconds Gap (%) Iter Cols
10 1 0.16 66.5 0.41 5.7 9 163
10 2 0.14 74.4 1.26 4.5 9 194
10 3 0.13 78.5 0.82 4.7 8 222
15 1 1.74 49.6 1.15 53 12 294
15 2 1.29 76.0 3.64 1.8 13 397
15 3 0.47 80.4 5.34 59 14 487
20 1 1.81 56.8 5.49 15 21 599
20 2 1.09 80.2 12.15 9.7 16 636
20 3 1.12 88.9 14.46 7.1 19 697
25 1 6.61 48.5 14.97 6.1 25 763
25 2 4.97 76.2 33.24 40 27 1220
25 3 4.64 83.7 36.97 1.8 27 1367

solve than the Euclidean instances. Obviously, the tigiaerplays an important
role. Except for the three Euclidean instances with 25 noaksunning times
can be seen as reasonable. It is worth noting that a largeoinaaf the time spent
by our algorithm is spent in the exact SP. In the breakdowhetitne usage, the
time spent in the exact SP algorithm always accounts for éise majority of the
running time. Most of the problems, including all randombngrated instances,
are solved generating only a few thousand columns.

Instead of solving the two subproblems by sequentially isgha series of
QKPs, the formulations of the two subproblems ((22)-(2'4 €9)-(36)) can be
solved directly by a MIP solver. Since the heuristic SP posgumost columns,
the call to the exact SP procedure is often just to check theblamns have been
generated. Thus the single call to the MIP solver can replaeexact SP pro-
cedure, which involves solving a series of QKPs optimaltytidl computational
experiments support that this speeds up the procedure.

17

Table 3: Results for the Branch-and-Price for the FINDP anHBhoclidean in-

stances
Problem BB Cols Iter Seconds
n By Total MP SPopt SP heu
10 1 54 441 213 25 0 17 6
10 2 34 540 152 27 0 18 8
10 3 6 346 41 8 0 4 3
15 1 245 1859 1172 391 9 326 52
15 2 78 1201 431 201 2 166 31
15 3 66 1310 398 256 2 207 42
20 1 1621 7226 6228 4796 302 4091 369
20 2 120 2481 679 696 9 610 68
20 3 1006 6971 4324 7551 221 6655 636
25 1 4568 19137 19375 42619 5626 35279 1463
25 2 45839 55692 115849 671346 248690 402661 14474
25 3 4922 18658 16978 71056 4948 62838 2984

6 Conclusion

The contribution of this paper is the development of twoeatdéht formulations
(a mathematical formulation and one based on column geoeyatnd an exact
solution approach for a two-layered network design probleFhe problem is
defined by using a fully interconnected topology both foraheess networks and
the backbone network.

Our computational experiments are based on two sets oficesa one ran-
domly generated and one using Euclidean distances. Thisratiow that the
bound based on column generation is superior to the LP ridexaf the math-
ematical formulation. The gaps are often more than a fadorvdrse on the LP
relaxation. The bounds on the column generation approactiglit enough — es-
pecially on the random instances — to develop an optimalagapr, even though
this bound is more time consuming to compute than the LP adilax.

The optimal method is able to solve all randomly generatsthirces within
one hour. The bounds on the Euclidean instances are worséothiée randomly
generated instances, which is also reflected in the runimmest For the Euclidean

18

Table 4: Results for the Branch-and-Price for the FINDP @r#mdomly gener-

ated instances

Problem BB Cols lter Seconds

n By Total MP SPopt SP heu
10 1 4 179 14 1 0 1 0
10 2 2 219 8 2 0 1 0
10 3 2 247 12 3 0 2 1
15 1 15 551 123 40 0 34 5
15 2 54 917 269 177 1 152 19
15 3 120 1547 634 575 4 495 69
20 1 34 1168 215 179 2 169 13
20 2 150 2061 787 1197 10 1093 79
20 3 262 3248 1565 3151 31 2867 231
25 1 45 1697 475 944 6 885 36
25 2 77 2453 510 1720 9 1609 65
25 3 42 2281 367 1565 6 1455 64

instances 5 out of the 12 instances cannot be solved witl@mouar — one instance
takes almost 8 days to solve. It is noteworthy that most opooblems are solved
generating only a few thousand columns.
We believe that further improvements can be obtained byipgooptimality
of the subproblems solving the pricing problems directhaiNIP solver instead
of solving a series of QKP’s. Furthermore the running timasespecially the
Euclidean instances suggest research in heuristics. Ossbp® approach is to
base them on the existing optimal method. Feasible sokitdxtained by such
heuristics can be used to speed up the Branch-and-Pricethaigo

References

[1] Klincewicz J. Hub location in backbone/tributary netkalesign: a review.

Location Science 1998;6:307-355.

[2] Ernst A, Krishnamoorthy M. Efficient algorithms for th@capacitated sin-
gle allocation p-hub median problem. Location Science 143§:139-154.

19

[3] Skorin-Kapov D, Skorin-Kapov J, O’Kelly M. Tight linegsrogramming
relaxations of uncapacitated p-hub median problems. Eam@ournal of
Operational Research 1996;94(3):582-593.

[4] Crainic T, Frangioni A, Gendron B. Bundle-based rel@gxatmethods for
multicommodity capacitated fixed charge network desigrscEite Applied
Mathematics 2001;112(1-3):73-99.

[5] Costa A. A survey on benders decomposition applied todfiziearge
network design problems. Computers and Operations Rds&05;
32(6):1429-1450.

[6] Feresmans C, Labbe M, Laporte G. Generalized networigdgsoblems.
European Journal of Operational Research 2003;148(13:1-1

[7] Thomadsen T, Stidsen T. The generalized fixed-chargsarktdesign pro-
lem. Computers and Operations Research 2005;To appear.

[8] Kellerer H, Pferschy U, Pisinger D. Knapsack Problemgrir®er, 2004.

[9] Caprara A, Pisinger D, Toth P. Exact solution of the gaéidrknapsack
problem. INFORMS Journal on Computing 1999;11:125-137.

[10] Johnson E, Mehrotra A, Nemhauser G. Min-cut clusteriMpathematical
Programming 1993;62:133-151.

[11] Thomadsen T. Hierarchical Network Design. PhD thesiggrmatics and
Mathematical Modelling, Technical University of Denma2k05.

[12] Barnhart C, Johnson E, Nemhauser G, Savelsbergh M,e/&ncBranch-
and-price: column generation for solving huge integer paogs. Operations
Research 1998;46(3):316—329.

[13] Vanderbeck F, Wolsey L. An exact algorithm for ip colugeneration. Op-
erations Research Letters 1996;19(4):151-159.

[14] Ryan D, Foster B. An integer programming approach tcedaling. In:
Wren A, editor. Computer Scheduling of Public Transport&riPassenger
Vehcile and Crew Scheduling. Amsterdam: North Holland, 1198 269
280.

20

