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The formulation of crew scheduling as set-partitioning or
set-covering 1integer programs usually gives rise to I.P.
problems of excessive size and computational complexity. By
imposing sensible ‘additional structure not inherent in the
I.P. model, overconstrained I.P. subproblems can be formed.
Optimal solutions to these subproblems <c¢an be found using
reasonable computing resources, since the additional structure
has a strongly dintegerizing effect on the associated L.P.
model. Some applications of this approach to a New Zealand
metropolitan bus operation are presented.

1.1 INTRODUCTION

Set-partitioning models of mathematical programming and graph theory cccur in many
practical applications. Balas and Padberg (1), in an excellent survey paper on the
set-partitioning problem, suggest that in terms of its applications, it would be
more important than dts close relation, the set-covering problem, and also the
well-known travelling salesman problem. They give a comprehensive bibliography of
applications, which dncludes problems of crew scheduling, vehicle routeing and
scheduling, information retrieval, switching circuit design, stock cutting,
portfolic analysis, plant and facility location and political districting.

Our interest in the set-partitioning problem is confined to problems of scheduling
in which the model takes the form

g T n .
SPP: minimize Z=g X x €R (1)
; 5 m i
subject to Ax = e, e =(1,1,...,10eR (i)
and X5 = 0or 1, 3= 1pues,n (iii)

where A is an m x n matrix of zerces and ones, and c is the objective coefficient
vector. Each of the columns a., j=1,...,n, of A represents a duty (or schedule)
with an associated cost c., and %he corresponding variable x: can be thought of as
the 'probability' that the j—-th column is included in a soLu%ion. The j-th duty a;
has elements

]
1}

ij 1 if duty j performs task 1

0 otherwise.

The constraints (ii) require that each of the m tasks (or resources) is performed
(or covered) exactly once in any solution. (The set-covering model is obtained by
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replacing (ii) with the constraint system Ax » e, which requires that each tasgg ig
performed at least once.) An optimal solution of SPP is given by a subset g
duties with x; = 1, which together satisfy (ii) (i.e. perform the tasks) at
minimal cost. The zero or one values of the components of x thus define 4
partition of the set of all duties, and a partition of the tasks.

Much research has been undertaken during the past decade, to develop poyp
theoretical results and efficient methods for the solution of SPP, and relateq
models, and, although significant progress has been made (see Balas and Padberg
(1)), it 1ds often an expensive, and sometimes prohibitive, task to find optimal
solutions. This is especially true in the context of scheduling, where, typically,
the total number of possible duties (and therefore variables) is extremely large,
even though the number of constraints is relatively small. The wusual method for
solving the SPP dnvolves the relaxation of the integer restricticns (ii1), and
their replacement by the weaker bound condition x20, thus creating a relaxed gpp
Linear program. In scheduling applications, the solution of this Llinear program
seldom produces a naturally integer solution, and often requires an excessiye
computational effort, first to solve the L.P., and then to resolve the
fractionality. Despite these two problems of computational complexity, which are
perhaps more peculiar to scheduling applications, Balas and Padberg (1) argue that
the solution of a general SPP can often be found by carefully adding further
constraints or cuts, to improve the integer properties of the SPP Linear program.
In this paper, we explore an alternative approach for overcoming the problems of
computational complexity present in scheduling SPPs. We develop an 'optimal
heuristic' methodology for reducing scheduling SPP models to realistically-sized
near-integer Llinear programs, by carefully selecting a subset of duties from
amongst all possible legal duties.

Because of the extremely large number of wvariables (i.e. duties) present in
scheduling SPPs, it 1is essential to reduce the dimensiocnality by selecting a
subset of the duties Likely to contain the optimal solution (or, equivalently, to
discard those duties unlikely to be found in an optimal solution) and solve the
resulting reduced SPP. This selection process essentially attacks just the size
aspect of the computational problem. If, however, some care is taken in the
selection process, it is possible to improve simultaneously the natural Adnteger
properties of the reduced SPP Llinear program, without seriously affecting
optimality. In other words, we attempt to construct a small SPP which contains the
optimal solution of the full SPP, and which also has a relaxed Llinear program with
a significant number of the vertices (i.e. basic feasible solutions) integral. An
application of _this methedology is illustrated in Section 1.2, in the context of
the vehicle scheduling problem.

In Section 2, we discuss some characterizations of integrality in S§PP, and
identify those structures or properties of duties which permit the formation or
occurrence of fractional solutions 1in the relaxed Linear program. These
considerations Llead, in Section 3, to a further application of the integerizing
selection process discussed above. In this application, we consider a bus crew
scheduling problem. We conclude by examining a constraint branching process,
which, in the SPP context, provides a more effective branch and bound structure
for the resolution of fractional solutions.

1.2 A VEHICLE SCHEDULING SPP

The vehicle scheduling problem has attracted a great deal of attention over the
past fifteen years. The problem in its simplest form is to design a set of routes
(i.e. duties) from a central depot to service n customers (i.e. perform tasks) at
known Locations, with a quantity aj of some commodity such that all customers are
visited, and any restrictions on vehicle capacity and route Length are observed.
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This problem 1is conveniently represented by the set—-partitioning model (i), (ii)
and (ii1) in which each constraint of (ii) ensures that the corresponding delivery
is perfomed, and the dutijes or columns of A can be thought of as possible or
potential vehicle routes, contributing only to those constraints visited by the
route. The constraints on vehicle capacity and route Llength do not appear
explicitly in the model, but are used implicitly to determine Llegal routes C(or
variables) of the model. In any practical situation, one could expect more than
one hundred customers (i.e. constraints) and many, many thousands of possible
routes. Because of this obvious problem of computational complexity, most
published methods for solving the vehicle scheduling problem (see Mole (10) for a
survey of such methods) 'ignore' the set-covering model, and proceed on the basis
of some heuristic method. Foster and Ryan (5), 1in contrast, have developed a
method which reduces the complexity of the set-partitioning formulation by
imposing further implicit overconstraints. The overconstraints essentially remove
many of the wvariables from the original model, on the grounds that they have a
structure which is most unlikely to be present 1in the routes of an optimal
solution. In this way, it can be argued that optimality is unlikely to be
seriously affected by solving the smaller problem.

The definition or concept of a good or Likely wvehicle route 1is obviously an
important factor 1in the effectiveness of the approach. An examination of routes
occurring in  the optimal solutions of small test problems Led to the
identification of petal structure as a particularly attractive attribute of good
routes. The petal concept has also been utilized in a number of heuristic methods
for the solution of the vehicle scheduling problem (Gillett and Millar (6) and
Gillett and Johnson (7)). A route with petal structure can be described as one
which wisits all customers in a particular sector of the region with centre at the
depot. The routes of a petal solution radiate from the depot Like petals of a
flower, and do not overlap. Besides defining a very much smaller number of
variables over which the SPP has to be solved, the petal concept has a further
significant property. It has been shown (Foster and Ryan (5)) that all the extreme
points of the feasible solution set of the petal SPP occur at integer points (i.e.
all components of x are either DO or 1). In other words, the solution of the
relaxed petal SPP linear program also satisfies the integer restrictions on the
variables. In summary, this approach has simultanecusly reduced both aspects of
the complexity problem — the number of variables has been reduced dramatically,
and the dinteger restrictions have been removed altogether. The obvious question
now concerns the effect on optimality of such a major restiction on the set of
varjables. It 1is easy to demonstrate that optimality is affected, and Foster and
Ryan discuss ways in which the overconstraints can be relaxed in a controlled
manner, to permit desirable non—petal routes, previously banned, to be considered
by the L.P. In theory, such non-petal routes also enable fractional solutions to
occur, but, in practice, the tendency for the L.P. to generate fractional
solutions appears to be very slight. The petal approach of Foster and Ryan can be
described as an ‘optimal heuristic'® din the sense that a heuristically reduced
model is solved optimally. The heuristic is designed specifically to reduce
complexity.

2. INTEGER STRUCTURES FOR SPP

The mathematical definitions of classes of zerofone matrices with every vertex
integral have been discussed by Hoffman and Kruskal (8) (unimodularity), Berge (2)
(balanced matrices) and Padberg (11) (perfect matrices). The relative strengths of
these conditions are illustrated in Figure 2.71. Both balanced and perfect matrices
may be defined in terms of forbidden submatrices which represent structures Wwith
fractioning capability.



272 D.M. RYAN and B.A. FOSTER

A balanced matrix is most simply defined as a matrix containing no submatrix of
odd order having row and column sums equal to two. The form of such submatrices is
illustrated in Figure 2.2. The forbidden submatrices may be interpreted as being
formed by a subset of wvariables, each contributing one Link to a closed cycle
without chords in the corresponding graph. We can clearly avoid the formation of
the forbidden submatrices if we restrict the Links (pairs of constraints to which
a variable contributes) so as to prevent the closing of the cycle, This
observation provides the motivation for a series of simple selection rules that
can be used to extract a unimodular or balanced subproblem from the original SPp,

Figure 2.1 Strength of Integrality Conditions
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2.1 CONSTRAINT ORDERING (PETAL STRUCTURE)

We associate with each constraint a unique ordering index p:, j=1,...,m. Variables
are only considered as feasible for the SPP subproblem 1% they appear only in a
contiguous subset of the constraints defined by (pi, i=k,k+1,...,k+e), and appear
in every member of such a subset. The reduced constraint matrix now takes the form
given in Figure 2.3. Clearly, the closed cycles cannot be formed, the matrix is
therefore balanced and all vertices are integral. This form of constraint ordering
structure was applied by Foster and Ryan (5) to the wehicle scheduling problem
where the ordering index is derived from the geographical radial ordering of the
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delivery locations around the depot. For the index to be wunique, we must also
nominate a natural break in the radial ordering (i.e. we must nominate constraint

Pq) -

Figure 2.3 Constraint Ordering Matrix and Graph Structure
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2.2 UNIQUE SUBSEQUENCE/PRECEDENCE

Again, we define a unique ordering of the constraints as p:, j=1,...,m. Further,
Wwith each constraint p;, we associate a unique subsequent” constraint S{(p:), where
S(p:)=p, and k » j. Any variable contributing to constraint p; must contr%bute to
the” subsequent constraint S(p.), or must not contribute to any constraint p, for
k > j. The form of the constraiht matrix derived from this selection rule is
illustrated in Figure 2.4. Again, it is easy to see that no closed cycles can form
in the associated graph, and hence the constraint matrix is balanced. The unique
subsequence structuring of variables has been applied by Edwards (3,4) to bus crew
scheduling, and is discussed in detail in Section 3. The constraints are ordered
by the start times of the corresponding trips, and each trip takes the first
available subsequent trip to give the unique subseguent constraint.

Unique subsequence is a generalisation of unique ordering, and it has been shown
by Edwards that unique subsequence structures are in fact unimodular, as well as
balanced. By reversing the constraint ordering, we can also define an eqguivalent
unique precedence selection rule.

Figure 2.4 Unique Subseguence Matrix and Graph Structure
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2.3 RELAXATION OF THE SELECTION RULES

These selection rules are far more restrictive than is necessary to satisfy the
balanced matrix condition, which 1in turn is more restrictive than the desireqg
condition of integer optimality. In our computational experience (see also Edwards
(3,4)), significant relaxations can be made to these rules without creating many
fractional vertices. For any specific problem, the selected variable set could
certainly be extended by direct testing against the 'closed cycle without chords!
condition. Further, if the constraint matrix can be decomposed into a number of
norinteracting submatrices (i.e. a number of unconnected subgraphs), then 3
different subsequgnce (or precedence) ordering could be applied to each subgraph,

The formation of a closed cycle without chords in dtself merely indicates. 3
capability of producing a fractional wvertex. If the constraint matrix also
contains a constraint that prevents the formation occurring in a basic set, then
the cycle c¢an be permitted. For example, in Figure 2.5, we show part of a simple
normbalanced matrix that is nevertheless totally integral because of the existence
of constraint &. A variable appears in constraint 4 if it appears in at least two
other constraints. Constraints of this form were explicitly added to the vehicle
scheduling SPP of Foster and Ryan, as integer forcing cuts. A generalisation of
these cycle-breaking conditions is embodied in the definition of a perfect matrix,

Anm X n zero/one matrix is perfect if no k x k submatrix K (k > 3) can be found
to satisfy the conditions:

- the row and column sums of K are each equal to b (b > 2) 1)
and
- there exists no row of the (m—k)xk submatrix formed by the
constraints not included in K with a row sum greater than b. (2}

The conditions on the forbidden submatrix can be dinterpreted as preventing the
wider class of cycles of the form (1) indicated in Figure 2.6, unless a constraint
of the form (2) is also present.

The perfect matrix definition is more difficult to interpret directly as a set of
variable selection rules. However, it can be seen that for problems where each
variable must contribute to one, and only one, of a small band of constraints
(e.q. each duty must contain one of a small number of evening peak trips), the
resulting constraints will tend to be of type (2), and hence prevent the formation
of fractioning cycles.

\
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Figure 2.6 Forbidden Submatrices of Perfect Matrices
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Examination of the graphs associated with fractional optimal solutions occurring
in the crew scheduling problem leads us to one final observation. In cases where
it is unreasonable to prevent the formation of closed cycles, it is often possible
to prevent these cycles being self-contained (i.e. further fractioning of
variables is required to satisfy the constraints). If short duties (subsets of
other duties) and slack variables are excluded, or discouraged, by high associated
objective contributions, then this implies that further fractioning structures
must appear elsewhere 1in the basjc set to complete the partition. Clearly, the
same completion argument applies to these structures also. We would hypothesise
that it is often this difficulty in completing a partition with such fractional
structures that causes a high incidence of integer solutions, especially near the
optimum, even when the variable selection rule of unigue subsequence is only
strictly enforced in sections of the duty period.

3. BUS CREW SCHEDULING

The Auckland Regional Authority (ARA), New Zealand, operates a large fleet of
buses from a number of garages. Each garage services a particular region of the
city, and, within each region, a fixed independent set of trips, specified by
starting and finishing times and locations, must be performed. The ARA operation
allows the scheduling of the bus and its crew to be performed as one task. This
contrasts with the alternative mode of fixed headways on defined routes. Such an
approach requires first the construction of a bus graph or schedule to meet the
required service Llevels, and a subsequent task of determining crew schedules to
cover the bus graph.

A valid crew duty 1in the ARA sense consists of a sequence of trips always starting
and finishing at the garage, and satisfying union and operating restrictions
relating to hours worked, meal-break allowances, etc. The crew scheduling problem
consists of finding a minimal set of Legal driver duties which covers all the
timetabled trips, at minimal total operating cost. In general terms, this is
achieved by a roster of approximately uniform driver duties, containing as Little
unproductive time and performing as many trips as possible. Edwards (3,4)
discusses the formulation of a set-partitioning model for the ARA problem, and, by
subtracting out the fixed costs of covering the timetable, reduces  the
optimization objective essentially to a minimization of overheads, which include
crew idle-time, bus dead-running and overtime payments. The resulting model is
similar in structure to the set-covering model formulated by Manington (9) in the
context of fixed headway operations.
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The Edwards model exhibits the usual properties of Llarge-scale scheduling Spps.
There are a very large number of valid crew duties, many of which, however, are
unlikely to occur in optimal solutions. Typically, such duties will cover fe
trips of the timetable, or they will involve Llong pericds of crew idle-time or
expensive dead-running between the end of one trip and the start of the next trip,
The 'cost per unit of cover' of these sorts of duties tends to be relatively high,
Following the philosophy developed 1in the context of wvehicle scheduling, e
attempt to reduce the complexity of the model by generating a small set of
potential duties which is Likely to contain the optimal solution (or at least some
very good solutions), and which 1is also Llikely to increase the frequency of
naturally integer solutions (or, equivalently, reduce the potential for fractional
solutions) in the SPP linear program.

Edwards (3,4) has developed a method for generation of duties, based on the
concept of 'next availables'. For each trip of the timetable, all other trips
which could possibly be performed following its completion are ordered, according
to their start times, in a set of 'next availables'. The first trip of the next
available set for trip p is called the 'first available', since it 1is the first
trip which could be performed on completion of trip p. Second and higher
availables are defined in a similar manner. It is obvious that, if possible, a
trip should be followed by its 'first available', so as to minimize unproductive
crew idle-time between successive trips of the duty. Edwards (4) has shown that,
if all duties are constructed so that any component trip either terminates the
duty or is followed by its unique first available run, then the SPP Linear program
is naturally integer in the sense that all basic feasible sclutions are integer.
This generalizes the vehicle scheduling petal results of Foster and Ryan (5), and
forms a particular case of a 'unigue subsequence' ordering of the constraints
(i.e. trips) as discussed in Section 2. The time ordering of the crew scheduling
model 1is a much more natural ordering than the geographical radial ordering usea
by Foster and Ryan in defining petal routes, since next availables directly
influence the objective contributions of the duties. From a practical and 'local'
point of view, a duty with pure first available structure (i.e. each trip either
terminates the duty or is followed by its first available) is in a sense optimal,
since, given the initial trip, the unproductive idle-time and bus dead-running
between successive trips of the duty has been minimized. It is obvious that the
first available property is Likely to occur in many of the duties of the optimal
or any near-optimal solution. Indeed, manually constructed solutions actually
operated by the ARA also exhibit this property. Many of the duties in a manual
solution appear to have been constructed entirely with first available structure.
Most of the remaining duties deviate in just one or two places from first
available structure <(i.e. second or higher availables are present) and a feu
remaining duties have a rather bizarre structure, suggesting that they have been
constructed simply to cover the timetable.

The pure first available structure for a duty is unrealistically Limited 1in two
ways. First, the inclusion of meal-breaks within the first available structure
destroys the formal proof of natural integrality, since the trip preceeding the
meal-break is unlikely to have a unique subsequent trip in all other duties in
which it occurs. In other words, the natural time interval before the first
available s unlikely to permit the insertion of a meal-break, and the duty must
therefore be continued by the first available following the completion of the
meal-break. The formal proof of natural integrality also fails when a break—-period
is inserted in a broken or split duty. Edwards (3) calls the set of first
available duties, dncluding meal-breaks and break-periods, a 'modified first
available' set of duties. The lLack of formal proof of natural integrality on the
set of modified first available duties does not seem to have a very adverse effect
on the integer properties of basic feasible solutions of the SPP Linear program.
Extensive computational experience suggests that fractional bases occur rather
infrequently during the convergence of the modifed first available Llinear program.
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This observation can be explained by considering the way in which fractional
solutions must be formed, and since the deviations from first available structure
are Llocal and restricted, it can be expected that fractional solutions will be
rather difficult to construct.

The second and more important limitation of first available structure is apparent
in the particularly restricted class of duties which it permits. We have already
commented that manual solutions do contain duties that deviate, sometimes
significantly, from first available structure. It is also apparent Tfrom
examination of modified first available solutions that this class of duties alone
is unlikely to provide an acceptable overall cover of the timetable. It 4is clear
then that first available structure must be further relaxed and a more general set
of duties considered if optimality is not to be seriocusly compromised.

One extreme form of relaxation could be to permit duties to contain first and
second (and even higher) available structure. That is, any trip of a duty could be
followed by either the first or second (or higher) available trip. This obviously
provides a much Llarger and more general set of duties but, if taken too far, it
also destroys much of the integer structure inherent in first available duties.
Instead of such a comprehensive relaxation of first available structure, Edwards
(3) has proposed and developed a number of strategies for selected relaxations
based on second and higher availables which extend the class of good duties but
also tend to preserve integer properties of the SPP lLinear program.

The first approach permits higher availables for a (imited number of specified
trips of the timetable. The identification of trips whose higher availables should
be permitted can be made in a number of ways. The most obvious situation can be
detected from an examination of the timetable. If a particular trip, p say, does
not appear as a first available for any other trip, then the only form of first
available duty that can contain this trip must start with the trip. For trips
early in the timetable, this may not be a serious restriction but for trips Llater
in the timetable, it 1is clear that the first available restriction should be
relaxed on some other trip to permit p as a second or even higher available if
necessary. The situation is shown in Figure 3.1.

Figure 3.1 Typical "next available' Patterns

Trip Time Availables
1st 2nd 3rd
1 ; — 5 i 8
2 — 4 6 7 8
3 " i 5 6 7
[' f— i 6 8 -
5 —_— o o &
6 ' — . - »
T i A . i
8 : Lo i .
Notes:

1. Trip 6 cannot follow trip 1, and trip 7 cannot follow trip 4 because the
intertrip time intervals will not permit deadrunning.

2. Trips 7 and 8 do not appear as first availables. By relaxing first available
restrictions for trips 1 and/or 2 and trip 4, trips 7 and 8 will appear as
second availables.
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Examination of the set of generated duties and Llater, the optimal SPP Llinear
program solution, can also be used to identify trips which appear difficult tg
cover given the current set of duties. A similar relaxation of first avajlable
structure can then be permitted to provide some additional duties. The main
disadvantage with this approach, apart from the difficulties of correctly
identifying where first available structure should be relaxed, is found in the
increased potential for fractional solutions of the SPP Llinear program. 1In
practice, however, provided the relaxations are not too extensive, many of the
basic feasible solutijons remain naturally finteger. The resolving of optimal
fractional solutions is readily accomplished by an application of branch and bound
as discussed in section 4. One important aspect of the branch and bound process is
that it usually produces integer solutions with objective values quite close to
the L.P. optimum.

A second strategy for generating selected relaxations of first available structure
is provided by a sequential heuristic process. The 'best' duties of the optimal
SPP Linear program are selected and the trips covered by them are 'removed' from
the timetable. A new subproblem, defined on the remaining trips is formulated thus
defining a new 'next available' ordering for each remaining trip. The subproblem
is solved using the modified first available structure to genmerate a new duty set
for the SPP Llinear program. These duties, although first available in the
subproblem, will include implied higher availables when viewed in the context of
the original timetable. It is important to observe that the subproblem is reduced
in size and again exhibits strong integer properties making it easy to solve. A
composite integer solution is provided by simply combining the optimal solution of
the subproblem with the 'best' duties selected from the original solution. The
selection process could, of course, be repeated on the subproblem solution so
defining yet another smaller problem. A 'bound' for improved integer soluticns can
be readily computed by reconverging the aggregated linear program in which all
duties of the original problem and subsequent subproblems are included. Because of
the significant deviations from first available structure, it is unlikely that the
bound solution would be naturally integer but from evidence gathered by Edwards,
the composite integer objective value is usually guite close to the aggregated
Linear program optimum.

The method of selecting 'best' duties 1is clearly one which determines the
effectiveness of such an approach. Work is proceeding in this area to evaluate a
number of possible strategies but even with naive selection and one subproblem it
is usually possible to improve the manual solution. In many ways, the sequential
selection process based on modified first available structure has much in common
Wwith the manual method of duty construction. It is not unreasonable to imagine the
selection process being influenced or even controlled by the scheduler in an
interactive manner with the computer being used in its most effective role of
quickly identifying an optimal set of good quality duties from which the scheduler
can choose. We believe that this sort of approach will enable the scheduler to
impose desirable characteristics or personal preferences not implicit in the
mathematical model, and it will tend to avoid the unsatisfactory black-box image
of many computer optimization packages.

4. A SPP BRANCHING STRATEGY

fractional solutions produced by the SPP Linear program are usually resolved
either by cutting plane techniques, as discussed by Balas and Padberg (1), or by
branch and bound techniques based on variable branches. The conventional variable
branch at a node of the branch and bound tree chooses one component or variable of
the fractional solution (say xj) which satisfies

0 < Xj - [
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Two new Llinear programs are formed, in one of which we impose the restriction x. =
0 (i.e. the O-branch), and 1in the other, the restriction x; =1 (i.e. 1he
1-branch). In the context of scheduling SPPs, the O-branch has very Little effect
on the SPP Llinear program objective value, even when the variable being forced to
zero has a fractional value close to one. This claim, supported by computational
experience, can be explained by observing that the removal of one duty can usually
be accommodated simply by moving to some other nearby solution with similar
objective value. Typically, just one or two dual simplex iterations are reguired
to recover primal feasibility. The 1-branch, in contrast, usually results in a
significant change in solution and objective values, and often requires many dual
simplex iterations. The uneven wvariable branch then encourages an unbalanced
growth of the branch and bound tree with the objective value almost never being
bounded on the zero branch. Because it jis expected that the SPP solution objective
value is likely to be quite close to that of the SPP Linear program, a more direct
strategy for increasing the L.P. bound at each branch would seem attractive. We
therefore Llook for a more even branching strategy, in which both sides of the
branch result in a significant change in objective value.

A more even branch can be created by observing that in every fractional solution
of the SPP Linear program, there must exist at least one pair of constraints (say
rqy and rz), for which '

D<§ ¥: <1
Jedrq,ry)

where J(r,,r,) is the set of all variables/duties covering both constraints r4 and
r simultaneously. The remaining fraction of cover for each of the constraints in
tﬁe pair must therefore be provided by variables/duties which do not cover both
constraints rq and ry simultaneously. An effective 'constraint branch' can then be
imposed by reguiring that

either = x. €0 - 0=-branch
jedCrq,ry)

or > xj 2 1 = 1=branch
jEJ(r1,r2)

where the O-branch implies that constraints r and r must not be covered
together, while the 1-branch implLies that the pair must be covered together. The
constraint branch now involves a set of variables J(rq,r5) instead of a single
variable, and the tree tends to grow in a more balanced manner. The 1-branch of a
constraint branch could be imposed as a cut by adding it as a formal constraint.
In the equality-constrained SPP, however, the 1-branch can be imposed more
conveniently by forcing to zero all variables/duties in the comlementary sets
J(F1,r2) and JCr1,F2), where J(?1,r2) is the set of all varia?L?s}duties covering
constraint rs, but not constraint rj. J(r1,F2) is defined similarly. The only
variables/duties remaining in the L.P. which cover rqy or rp are members of
J(I":],F'z) .

It is also interesting to observe that if, in the context of the bus crew
scheduling problem of Section 3, the fraction has resulted from a trip being
associated with both its first and second available trip in the fractional
solution, then a constraint branch can be based on the trip and its first
available. One side of the branch prevents the first available pairing and the
other side of the branch forces the first available pairing. If third and higher
available duties are not present, then both sides of the branch are strongly
integerizing, at Lleast in a Local sense, since each branch defines a unigue
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subsequence ordering of either the first or the second available. Computationz|
experience with the constraint branch suggests that it is indeed more effectiye
than the variable branch and produces a much more balanced tree structure
especially when the depths of availability are Limited to two or three.

REFERENCES

1. Balas, E. and Padberg, M.W. Set partitioning — a survey. SIAM Rewview 19 (1974)
710-776. (Reprinted in Combinatorial Optimization, eds. Christofides, N_,
Mingozzi, A., Toth, P. and Sandi, C. (Wiley,1979)}.

2. Berge, C. Balanced matrices, Math.prog. 2 (1972) 19-31.

3. Edwards, G.R. An approach to the crew scheduling problem. NZOR 7 (1979),

4. Edwards, G.R. Ph.D. Thesis, University of Auckland. In preparation.

5. Foster, B.A. and Ryan, D.M. An integer programming approach to the wvehicle
scheduling problem. Opl.Res.Q. 27 (1976) 367-384.

6. Gillett, B.C. and Miller, L.R. A heuristic algorithm for the vehicle dispatch
problem. Op.Res. 22(2) (1974) 340-349.

7. Gillett, B.C. and Johnson, T. Sweep algorithms for the multiple depot vehicle
dispatch problem. Paper presented at ORSA/TIMS meeting (San Juan, Puerto Rico,
1974).

8. Hoffman, A.J. and Kruskal, J.B. Integer boundary points of convex polyhedra.
Annals of Mathematics Study No. 38 (Princeton University Press, Princeton, 1956)
233-246 .

9. Manington, P.D. Mathematical and heuristic approaches to road transport
scheduling. Ph.D. Thesis, University of Leeds (1977).

10. Mole, R.H. A survey of local delivery routing methodology. J.Opl.Res.Soc.
30(3) (1979) 245-252.

11. Padberg, M.W. Perfect zero-one matrices, Math.prog. 3 (1973) 199-215.

Computer 5¢
A. Wren (ed.
© North-Ho

1.0 INTR!

This pape
schedules
boards'.

of all

well defi
practice

schedule
tackle ti
(bus compi
of these !

1t has be:
of the
construct
investiga

Considerec
of the

formulati
(LP) mod:
although

From a

schedule

which 1s
there are
4), (5
procedure:
difficult
number of
the numbs
exploits
handlLe th
simplex

definitio




