7

écisions

g
i
“
o
a
=
S
S ey
(497
=
Qo
@
i an
O
P
@
=
o)
D
B
D
N
-+
<5}

tudes

e

Groupe d




Chapter 2

SHORTEST PATH PROBLEMS
WITH RESOURCE CONSTRAINTS

Stefan Irnich
Guy Desaulniers

Abstract  In most vehicle routing and crew scheduling applications solved by col-
umn generation, the subproblem corresponds to a shortest path problem
with resource constraints (SPPRC) or one of its variants.

This chapter proposes a classification and a generic formulation for
the SPPRCs, briefly discusses complex modeling issues involving re-
sources, and presents the most commonly used SPPRC solution meth-
ods. First and foremost, it provides a comprehensive survey on the
subject.

1. Introduction |

For more than two decades, column generation (also known as branch-
and-price when embedded in a branch-and-bound framework) has been
successful at solving a wide variety of vehicle routing and crew schedul-
ing problems (see e.g. Desrosiers et al., 1995; Barnhart et al., 1998; De-
saulniers et al., 1998), and most chapters in this book). In most of these
applications, the master problem of the column generation method is a
(possibly generalized) set partitioning or set covering problem with side
constraints, where most of the variables, if not all, are associated with
vehicle routes or crew schedules. These route and schedule variables are
generated by one or several subproblems, each of them corresponding
to a shortest path problem with resource constraints (SPPRC) or one of
its variants. The SPPRC has contributed to the success of the column
generation method for this class of problems for three main reasons.
Firstly, through its resource constraints, it constitutes a flexible tool for
modeling complex cost structures for an individual route or schedule, as
well as a wide variety of rules that define the feasibility of a route or a



34 H COLUMN GENERATION

[6,14]

(4,7)
,12] [9,15]
(2,6)
(12,2) (4,3)
[8,12]

Figure 2.1. A small SPPRC example

schedule. Secondly, because it does not possess the integrality property
(i.e., there may be a positive gap between its optimal value and that
of its linear relaxation) as discussed in Desrosiers et al. (1984), the col-
umn generation approach can derive tighter bounds than those obtained
from the linear relaxation of arc-based formulations. Thirdly, there exist
officient algorithms at least for some important variants of the SPPRC.

The SPPRC was introduced in the Ph.D dissertation of Desrochers
(1986) as & subproblem of a bus driver scheduling problem. It consists
of finding a shortest path among all paths that start from a source node,
end at a sink node, and satisfy a set of constraints defined over a seb of
resources. A resource corresponds to a quantity, such as the time, the
load picked-up by a vehicle, or the duration of a break in a work shift,
that varies along a path according t0 functions, called resource exten-
sion functions (REFs). A REF is defined for every arc in the network
and every resource considered. It provides a lower bound on the value
that the corresponding resource catl take at the head node of the corre-
sponding arc, given the values taken by all the resources at its tail node.
The resource constraints are given as intervals, called resource windows,
which restrict the values that can be taken by the resources at every
node along a path. Such a constraint is defined for every node in the
network and every resource considered.

Figure 2.1 provides an SPPRC example that involves the resource
time. The source and sink nodes are denoted by s and t, respectively.
Each arc (i,7) bears a two-dimensional vector: The first component ti;




2  Shortest Path Problems with Resource Constraints 35

provides the travel time (duration) of using the arc, while the second
¢i; indicates the cost associated with it. Given a value T; taken by the
resource at a node i (T; is said to be the visiting time at node 7), the
REF for an arc (i,7) is defined as f;;(1;) = T3 + t;5, i.e., it computes
the (earliest) arrival time at node j when starting at node 7 at time Tj.
The resource window [a;, b;] associated with each node i is specified in
brackets beside it. It indicates at what time node 7 can be visited. If
the arrival time of a path ending at a node 7 exceeds b;, then this path
is deemed infeasible. Otherwise, it is feasible even if its arrival time
precedes a; since waiting at a node is allowed, that is, the visiting time
at node 1 can be greater than the arrival time at this node.

In the example of Figure 2.1, three paths link the source node s to
the sink node ¢t. The first path P; = (s,1,t), denoted by the sequence of
nodes visited, is resource-feasible since it is possible to find visiting times
along that path which satisfy all resource constraints. Indeed, setting
T, = 0 (the only feasible value at node s), it is easy to see that the
arrival times (77 = 8 and T3 = 12) at nodes 1 and ¢ provided by the
appropriate REFs (fs1(7s) and f1:(T1)) are all feasible with respect to
the resource windows. The second path P, = (s,2,t) is also resource-
feasible. However, waiting is needed at node 2 since the arrival time
provided by fs2(0) = 5 is smaller than as = 9. In this case, the visiting
time 7% can be set at 9, and the subsequent visiting time 7} at 11,
respectively. Finally, the third path P3 = (s, 3,t) is not resource-feasible
since, along that path, Ts = 0, T3 > fs3(0) = 12, and the earliest arrival
time at node t is f3;(12) = 16. Hence, the resource window [9,15] at
node t cannot be met. Since the cost of P} (3+7 = 10) is smaller than the
cost of P» (5+ 6 = 11), the former path is optimal with respect to cost.
However, path P, has a smaller earliest arrival time at node t. If the
network in Figure 2.1 were only a sub-network within a bigger network,
then extending path P, to a node could be feasible but extending P
could be infeasible. |

This gives us a first glance at the core of SPPRC’s difficulty. The
SPPRC is very close to a multi-criteria problem. In the following we
will consider both criteria, time and cost, as resources. Paths are un-
comparable when one path is better than a second path in one criterion
and worse in another criterion. Resource constraints make it necessary
to consider all uncomparable paths that arrive at a node, since resource
constraints might forbid extending any subset of these paths but allow
an extension of the others.

The two-resource SPPRC, better known as the shortest path prob-
lem with time windows (SPPTW), was first studied in Desrosiers et al.
(1983, 1984). The resource cost is unconstrained while the resource time



36 "COLUMN GENERATION

is restricted by corresponding time windows. Desrochers (1986) general-
ized the SPPTW to the case with several resources. Since then, several
variants of the SPPRC have appeared in the literature. For instance,
Ioachim et al. (1998) proposed the SPPTW with time dependent linear
costs at the nodes and Dumas et al. (1991) the SPPTW with pickups
and deliveries.

The contribution of this chapter is three-fold. Firstly, it presents a
classification of the SPPRC variants and provides a generic SPPRC for-
mulation that includes all variants studied so far (Section 2). Secondly,
't discusses non-trivial modeling issues for the SPPRC (Section 3). Fi-
nally, it surveys the most important papers on this subject, namely,
those introducing a new variant of the SPPRC (Section 2) or proposing
an interesting methodological contribution (Section 4).

2. Classification of the SPPRCs

The intention of this section is to provide a generic formulation for a
comprehensive class of shortest path problems with resource constraints
presented in the literature so far. Variants of the SPPRC, which we con-
sider, are extensions of the classical shortest path problem, where the
cost is replaced by multi-dimensional resource vectors, which are accu-
mulated along paths and constrained at intermediate nodes. Different
types of SPPRCs can be classified by

(i) the way in which resources are accumulated, leading to different
definitions of resource feasible paths,

(ii) the existence of additional path-structural constraints excluding
specific paths, e.g., non-elementary paths,

(iii) the objective,
(iv) and the underlying network.

We state all SPPRCs on a digraph G = (V, A), where V and A are
non-empty sets of nodes and arcs, respectively. A path P =(en,...,ep)
s a finite sequence of arcs (some arcs may occur more than once) where
the head node of ¢; € A is ‘dentical to the tail node of ei11 € A for
alls =1,...,p— 1. For the sake of convenience, we assune that G is
simple so that a path can be written as P = (vg,v1,--- , Up) With the
understanding that (vi—1,vi) € A holds for all i € {1,...,p}. The length
of this path is p.




2 ‘Shortﬁest Path Problems with Resource Constraints 37

2.1 Resource feasible paths

- The description of feasible paths provides a basis for the generic defi-
nition of the SPPRC. In the following, we distinguish between feasibility
w.r.t. resources and feasibility w.r.t. path-structural constraints. This
section focuses on the first aspect while path-structural constraints are
discussed in the next section. |

Resource constraints can be formulated by means of (minimal) re-
source consumptions and resource intervals (e.g., the travel times ¢;; and
time windows [a;, b;] in the SPPTW). Let R be the number of resources.
A vector T = (TY,...,T®)T € R is called a resource vector and its
components resource variables (remark: 2! denotes the transposed vec-
tor to the vector z). T is said to be not greater than (i.e., dominates)
S = (St ..., SET ¢ R if the inequality T* < §* holds for all compo-
nents 1 = 1,..., R. We denote this by 7" < .S. For two resource vectors a
and b the interval [a, b] is defined as the set {T' € Rf': a < T < b}.

Resource intervals, also called resource windows, associated with a
node i € V are denoted by [aj, b;] with a;,b; € RE, a; < b;. The
changes in the resource consumptions associated with an arc (i,7) €
A are given by a vector fi; = ( [j)le of so-called resource extension

functions (REFs). A REF f/.: R® — R depends on a resource vector

T, € RE, which corresponds to the resource consumption accumulated
along a path from s to i, i.e., up to the tail node ¢ of arc (7,7). Hence,
the result f;;(1;) € R can be interpreted as a resource consumption
accumulated along the path (s,...,4,7). “Classical” SPPRCs, like the
SPPTW presented in the introduction, only consider REFs of the form

() =17 + 5 (2.1)

where t}; are constants associated with the arc (i, 7). Classical REFs are
separable by resources, i.e., there exist no interdependencies between
different resources. The more general definition of REFs provides a
powerful instrument for modeling practically relevant resource interde-
pendencies.

Instead of giving an implicit MIP-formulation for the SPPRC, we
state the resource constraints by considering individual paths. The rea-
son for this is that node repetitions within a path (which are allowed
in our path definition) prohibit to model resource consumptions by in-
dividual resource variables associated with a node. For a given path
P = (vg,v1,-..,Vp), one has to refer to the p + 1 different positions i =
0,1,...,p. A path P is resource-feasible if there exist resource vectors
T; € [aw,, by,] for all positions i = 0,1,...,p such that Foowi (1) < Tiyy
holds for all i = 0,...,p — 1. T(P) is defined as the set of all feasible




38 COLUMN GENERATION

resource vectors at the last node v, of P = (vg,v1,...,vp), €.,

T(P) = {Tp € [a'Up7 bvp]5 EII-T:L € [a"viabvi]) fvi,viﬂ(ﬂ) S CZﬂ:l;-i-l
foralli=0,...,p—1}. (2.2)

Let F(u,v) be the set of all resource-feasible paths from a node u to a
node v. Note that P € F(u,v) holds if and only if 7(P) # @.

2.2 Path-structural constraints

Path-structural constraints can model further requirements concern-
ing the feasibility of paths, which are not covered by resources. Such
additional requirements might either be an integral part of a feasible
path’s definition or be implied by branching rules, which come up in
the context of branch-and-price and require modifications of the pricing
problem. Sometimes, these modifications cannot be handled by simply
removing some arcs or nodes of the underlying network. In order to
specify those constraints, we need some definitions. An elementary path
is a path in which all nodes are pairwise different. Contrarily, a cycle is
a path (vo,v1,...,Vp) of length p > 1 having vy = vp. We call any cycle
of length less than or equal to k a k-cycle. |

The following SPPRC variants have been proposed in the literature
and defined according to path-structural constraints. Let G be the set
of all paths feasible with respect to these constraints.

For the elementary SPPRC (ESPPRC), G = {elementary paths}. On
acyclic graphs, all paths are elementary so that SPPRC and ESPPRC
coincide. In general (i.e., for networks with cycles), the ESPPRC has
been identified to be A"P-hard in the strong sense (Dror, 1994) and has
been first studied and solved by Beasley and Christofides (1989). In
many vehicle routing applications the pricing problem is an ESPPRC.
Feillet et al. (2004); Chabrier (2002); Rousseau et al. (2003) solved ESP-

PRC pricing problems in the context of the vehicle routing problem

with time windows (VRPTW). These approaches are known for their
very tight lower bounds computed by the LP-relaxation of the VRPTW
set-partitioning master program.

For the SPPRC, G = {all paths}, that is, no path-structural con-
straints are imposed. The SPPRC occurs as a subproblem in numerous
vehicle and crew scheduling problems which are most of the time formu-
lated over acyclic time-space networks (see Desrosiers et al., 1984; Vance
et al., 1997; Desaulniers et al., 1998; Gamache et al., 1999)).

Since the ESPPRC is very hard to solve (in some cases it is pro-
hibitively hard), classical solution approaches for vehicle routing prob-
lems which are formulated over cyclic graphs are also based on the corre-

=1
3




2 Shortest Path Problems with Resource Constraints 39

sponding non-elementary SPPRC, because it can be solved using pseudo-
polynomial algorithms (see Section 4.1). Influential contributions which
rely on this idea were Desrosiers et al. (1986); Desrochers et al. (1992);
Desrosiers et al. (1995). However, while solving the enclosing problem by
branch-and-price, this subproblem relaxation sometimes leads to weak
lower bounds and possibly impractical large branch-and-bound trees.

For the SPPRC with k-cycle elimination (SPPRC-k-cyc),
G = {k-cycle-free paths}. A compromise between solving the ESPPRC
and the SPPRC is to forbid cycles of small length. Several examples of
VRPTW instances, e.g., taken from the benchmark library of Solomon
(1987), show that cycle elimination for small values of k can substan-
tially improve the master program lower bounds. This justifies an ad-
ditional effort to eliminate cycles (compared to solving a pure SPPRC)
while the corresponding ESPPRC is practically impossible to solve. The
case k = 2 was first analyzed by Houck et al. (1980) and used in the
VRPTW context by Kolen et al. (1987); Desrochers et al. (1992). Irnich
and Villeneuve (2003) recently proposed an algorithm for the general
case of k > 2.

For the SPPRC with forbidden paths (SPPRCFP), G = {all paths} \
Grorbidden Where Gorbidden is & set of forbidden paths. This set is implicitly
defined as ‘the set of all paths that contain at least one element of a
finite set of pre-specified sub-paths. Villeneuve and Desaulniers (2000)
introduced this type of SPPRC which occurs two-fold in the context
of branch-and-price. First, in some applications one wants to branch
so that a route or schedule is excluded from the (restricted) master
program (see Desaulniers et al., 2002b; Arunapuram et al., 2003). This
makes it necessary to also exclude the corresponding path from being
generated by the SPPRC pricing procedure. Second, some constraints
might be impossible or very hard to model with resources. Instead of
considering them directly, one iteratively solves relaxed SPPRCs to get
tentative solutions, which are excluded from the SPPRC by means of
forbidden paths as long as not all constraints are respected. Examples
of hard-to-model constraints stem from aircrew scheduling applications,
see e.g. Fahle et al. (2002).

Two additional types of constraints, precedence constraints and pair-
ing constraints, are important in the pickup and delivery context. Given
two nodes i,j € V, a path P fulfills the (4, j)-pairing constraint if node 1
occurs as often as node j in P (possibly P contains none of them).
A path P fulfills the (i, j)-precedence constraint if P contains no sub-
path connecting j with i. The SPPRC with pickups and deliveries (SP-
PRCPD) is a subproblem of the vehicle routing problem with time win-
dows, pickups and deliveries (see Dumas et al., 1991; Desaulniers et al.,



40 ¢ COLUMN GENERATION

2002a). In this problem, transportation requests i € I must be satisfied
where a request requires a pickup at an origin it and a delivery at a des-
tination i—. Consequently, the SPPRCPD contains an (i*,i7)-pairing
and an (i1, 17 )-precedence constraint for each request i € I.

In a branch-and-price context, each node and each arc represent a
(possibly empty) sequence of tasks, where a task (e.g., a flight leg, a
train segment, or a Crew pairing) is associated with a set partitioning
constraint in the master problem. A task can be part of several sequences
and can therefore be represented by several nodes and arcs. For any path
P = (vo,v1,...,vp) there is a (uniquely defined) task sequence W (P)
given by the concatenation of the sequences of tasks of vg, (vo,v1), V1,
(v1,v2), -+ (Vp—1,Vp), vp- All of the above path-structural constraints
might also be formulated w.r.t. the task sequences. For instance, the
task-ESPPRC considers only paths P for which W(P) does not contain
task repetitions or the task-SPPRC-2-cyc does not allow paths having a
2-cycle In W(P)

Several branching rules proposed in the literature impose additional
constraints on how two given tasks have to be covered by the paths. The
branching rules of Ryan and Foster (1981) decide whether two tasks 1
and j are covered by the same path or by different paths. Hence, one
branch is simply an (i,7)-pairing constraint. The other branch is an
(4, 7)-anti-pairing constraint which forbids tasks i and j to be together
in W(P), ie, G ={P:1 ¢ W(P)orjé¢ W (P)}. Similarly, the inter-
task constraints (introduced in Desrochers and Soumis (1989)) decide
whether two given tasks i and j are performed consecutively or not. In
this case, an (i, j)-follower constraint guarantees on one branch that, for
each path P € G, W(P) contains task i followed by task j or none of
these tasks. On the other branch, an (i, 7)-non-follower constraint only
allows paths P € G for which W(P) does not contain task ¢ followed by
task j.

Summing up the definitions of resource feasibility and path-structural
constraints, we know that the set 7 = Uyev (F(s,v) N G) contains all
feasible paths to a one-to-all SPPRC problem.

2.3 Objectives and generic SPPRC formulation

The objective of the SPPRC is formulated by means of a resource
vector at the last nodes of feasible paths. Recall that in general, for
a single path P € F there exist many feasible choices for the resource
vectors T € T(P). Problems whose objective depends only on a sin-
gle resource, called cost resource, are normally one-to-one shortest path
problems with a source node s and a sink node t. They can be formulated

|
;




2 Shortesi Path Problems with Resourcé Constraints 41

as follows:
min ( min TCOSt> : (2.3)
PeF(s,t)NG \TET(P)
Computing the minimum cost of a path P = (vo, - .., vp) requires the de-
termination of feasible resource vectors Ty, ..., T, along the path. Simi-

larly to the feasibility problem 7 (P) # @ discussed above, this can be a
hard problem. In contexts with time windows, Dumas et al. (1990) opti-
mized the cost of a given path for time-dependent convex inconvenience
costs at all nodes.

A much more general formulation of the SPPRC is based on consider-
ing the set of Pareto-optimal resource vectors. For a given set M C R%,
an element m € M is Pareto-optimal if z £ m holds for all x € M,z =+
m. It means that none of the cones z- for x € M,z # m contain a
Pareto-optimal point m, where a cone 1™ is defined as {S € R S >
T}. For v € V, let PO(v) be the set of Pareto-optimal vectors in
Uper(svng T (P). The SPPRC can be formulated as follows.

Generic SPPRC: Find for each node v € V and for each
Pareto-optimal resource vector T' € PO(v) one feasible (rep-
resentative) s-v-path P € F(s,v) NG having T' € T(P).

For the sake of convenience, we call the representative path P a Pareto-
optimal path. Since all solutions to a problem ming,enm a' -m for a
non-negative weight vector a € Rf, a # 0 are Pareto-optimal points
of M, the generic SPPRC formulation also solves all problems of the

form |
min < min aTT) (2.4)
PeF(s,t)NG \T€T(P)

for any weight vector a € ]Rff. Problem (2.3) is a special case of (2.4).

2.4 Properties of 7 (P)

We will now study properties of the set 7(F) for a fixed path P =
(vo, v1, - - -, Up) under different assumptions concerning the REFs. Know-
ing 7 (P) and its structure is essential to (efficiently) resolve the following
two basic tasks:

s Civen a path P. Is P resource feasible, i.e., P € F(vg,vp) or not?

s Given the prefix P/ = (vo, ..., vp—1) of P = (vo, ..., Up-1, Vp), COM-
pute 7 (P) using T (P').

Furthermore, compact implicit representations of T (P) are substantial
for checking if a path P (or any of its extensions) is or might be a Pareto-
optimal path. For instance, efficient dominance checks in the context of




42 . COLUMN GENERATION

dynamic programming are based on representing 7 (P) by either using
a single Pareto-optimal point 7'(P) or a function gp(-) to describe the
set of Pareto-optimal points in 7 (P), see Section 4.1.

Before discussing different cases, we state the following universal prop-
erty: If T € T(P) then T"N[ay,, by,] C T(P), i.e., the set 7 (P) contains
the cone, restricted to the resource interval, generated by each point in
this set.

Classical SPPRC and non-decreasing REFs. In the classical
SPPRC the set 7 (P) has a simple representation as a cone restricted by
@y, bw,]. Let Py = (vo,...,vi), 4 =0,...,pbe the prefix of P of length i.
Each set 7 (P;) has a unique cone-defining element T'(F;) € 7 (F;) such
that 7 (P;) = T'(P;)"- N [ay,, by;] holds. The resource vector T'(F;) can be
recursively computed by

T(Py) = ay, and

T(F) = ma,x{avi, foi v (T(Pi_l))} for all i € {1,...,p}. (2.5)

The same is true when all REFs are non-decreasing functions, meaning
that each [j(Til,T?, ..., TR) is a non-decreasing function in one vari-
able Tik , when the other R — 1 components are kept fixed. Under these
assumptions 7 (P) is still a cone. Formula (2.5) computes T'(P) with
T(P)"- N [av,, by,) = T(P) efficiently. |

As a consequence, the generic SPPRC formulation can be simplified
as follows. |

Generic SPPRC with non-decreasing REFs: Find for
each node v € V one feasible representative s-v-path P &
F(s,v) NG for which T'(P) is Pareto-optimal in {T'(Q): Q €
F(s,v)NG}.

Formulation (2.4) can then be re-written as minpe (s yng @' T'(P).

Linear REFs. If the REFs are linear but not necessarily non-
decreasing, it is easy to see that 7(P) is a bounded polyhedron. The
description of the polyhedron 7 (P) (e.g., by its extreme points) can get
more and more complicated the longer the path P is (see Ioachim et al.,
1998) and Section 4.1.2).

For instance, consider the path P = (1,2), R = 2 resources, resource
intervals [a1,b1] = [0,1]% and [ag,bs] = [0,1] x [-1,1] and the REF
Fio(TE, T2) = (T}, T} — TL). Tt is easy to see that T(P) is {(13,713) €
0,1] x|=1,1]: T% > —T5}. There exists no element T € 7 (P) such that
T(P) C T holds. Note that all vectors T' = (A, —A) for A € [0, 1] are
Pareto-optimal points of 7 (P).



92 Shortest Path Problems with Resource Constraints 43

General REFs. For arbitrary REFs, checking whether P € F(u,v)
or equivalently T7(P) # @ holds or not can be an NP-hard prob-
lem. A known NP-complete problem is the binary knapsack lower
bound feasibility problem (KLBFP) (see Nemhauser and Wolsey, 1988):
Does there exist a feasible solution with profit at least lb for a given
lower bound lb to the knapsack problem max Y i | pi%i, S wizg < O,
z € {0,1}"? One can easily transform this decision problem into an SP-
PRC with three resources: Negative profit, weight, and decision. Let
G = (V,A) be a line graph with nodes V = {0,1,...,n} and arcs
A=1{(0,1),(1,2),(2,3),..-, (n—1,n)}. Let [ao, bo] = [0, 0] %[0, C]x[0, 1],
[an, bn] = [—00, —1b]x[0, C]x0, 1), and [a;, b;] = [—00,0]x[0, C]x[0, 1] be
the resource windows at all nodes i € V'\ {0, n}. Define the REFs to be
fi—l,i(p7 w, *'B) = (p) w, O) for x =0, and fi—l,i(p> w, CC) = (p"Pi, W+ wi, O)
for z # 0. The answer to the KLBFP is “ves” if and only if T(P) # @
for the path P = (0,1,...,n).

2.5 Underlying network

The SPPRCs can also be differentiated according to whether or not
their underlying network is acyclic or cyclic. The existence of cycles
implies that there exist infinitely many different paths in G (not neces-
sarily feasible w.r.t. resource and path-structural constraints). Thus, the
SPPRC might be unbounded. In the following, we exclude these cases
from our consideration. '

The following discretization of G = (V, A) formally makes the underly-
ing network acyclic. If there exists at least one non-decreasing resource 7
(i.e., f5(Ti) = T7 >0, or tj; > 0 in the classical SPPRC with f{;(1;) =
T7 +1t; for all (1,§) € A, e.g., the resource time in many applications) it
is possible to transform (V, A) into an acyclic time-space network. Each
node v € V is replaced by several copies copy! (v), ..., copyP(v) corre-
sponding to a time discretization of the resource interval for r. Nev-
ertheless, this transformation is only a formal device, e.g., used in the
unified model of Desaulniers et al. (1998). Cycles of the original network
correspond with paths visiting two or more copies of the same original
node. Solving the ESPPRC in G is, therefore, equivalent to solving an
SPPRC with task-cycle elimination in the discretized network.

3. Modeling issues

The modeling of standard constraints like capacity constraints, path
length restrictions and time windows is obvious from the introduction.
Other simple examples can be found in Vance et al. (1997); Gamache
et al. (1999); Desaulniers et al. (1999). This section will, therefore, focus



44 COLUMN GENERATION

Table 2.1. Resource intervals and REFs for task-related constraints.

Constraint Type Resource interval REF
a3, b7 ] fi3(T%)
foralli e V for all (i,7) € A
(k, £)-pairing R= [0,0] for i = s,¢ T] + 0ik — die
(M, M] for i € V\ {s,t}

(k, £)-anti-pairing | R~ [0,0] for i = s T + ik — die
: [0, M] for i =k, [-M,0] for v = £

[-M, M] fori € V\ {s,k, {}

(k, £)-precedence RS [0,1 — du] T + bie

(k, £)-pairing R= [0,0] for i =s,k,t T7 4 8ie — dik
and precedence —1,-1] fori={¢
1,1] for all i € V' \ {s,t,k, £}

|
[
Ei (W(S))1l(W(3))] fori1=-=s

(k, £)-follower
and
(k, £)-non-follower

i~
il

l
0,N] for i € V'\ {s} (see equation (2.6))

on non-trivial modeling issues, provide examples and give references to
some relevant literature.

In some applications, one wants to model ezact resource consumptions
instead of minimal resource consumptions. For the SPPTW it means
that waiting is not allowed so that the arrival time at each node 1is
always identical to the visiting time. In general, the inequalities in (2.2)
defining a resource-feasible path P = (vg,v1, - - -, Up) have to be replaced
by TT 1 = foy ey, (13)-By ™ (resp. RS) we denote the resources which
force an equality (resp. inequality) in (2.2). However, as suggested in
Gamache et al. (1998), a resource r € R~ might equivalently be replaced
by two resources 11,72 € RS where the resource intervals and REFs
for r, are identical to those for 7 while those for 7y are lai?,bi?] =
(—b7,—a] and f2(T) = — (T, T =T T T (the
~ symbol refers to the case with the r and 79 resources).

Section 2.2 has provided several examples of path-structural con-
straints. Most of them can be modeled with additional resources (one
for each constraint) in a standard SPPRC. For the ESPPRC, Beasley
and Christofides (1989) proposed to add to RS an additional resource
r, for each node v € V. (For a compact notation, we use the Kronecker-
symbol with 6;; = 1if i = 7, and 4;; = 0, otherwise.) The resource
intervals are defined as [a}*,b[*] = [0,1— 4] for allz € V and the REFs
by fi7 (1) = T]® + 0y for all (i,7) € A./

Table 2.1 gives an overview of how (anti-)pairing constraints, prece-
dence constraints, and (non-)follower constraints can be modeled by




2 Shortest Path Problems with Resource Constraints 45

‘means of resources. In this table, M is a sufficiently large positive in-
teger. For the first group (pairing, anti-pairing, and precedence) we
~ assume that a single task is associated with each node. Note that the
modeling proposed for the (k,¢)-pairing and precedence constraints is
equivalent to the set component proposed by Dumas et al. (1991) for
the SPPRCPD.

If a single task is associated with each node, follower and non-follower
constraints simply imply the removal of some of the arcs (see e.g.
Desrochers and Soumis (1989)). Therefore, we present these constraints
for the case that sequences of tasks are associated with arcs and nodes.
We assume that tasks are numbered from 1 to N, the last task of any
non-empty task sequence W(-) is denoted by {(W(-)). For empty task
sequences one defines l(W(@)) =0.

All follower and non-follower constraints can be modeled with a single
resource 7, where 77 € {1,..., N} means that the last task of the task
sequence of the current path (s,...,v;) was the one with number 7T7.
T7 = 0 means that the current path has an empty task sequence. The
definition of the corresponding REF's is:

(17 if W((i,7),7) = @

1

LW ((5,9),4)) T #0,W((i,4),5) # @,
"y and (TT,W((i,j) j)) feasible
yhi) =) W ((i,9),5)) HETF =0, W((E5),4) # 2, (2.6)
and W ((i,7),j) feasible
—1 otherwise.

\

The strength of the non-classical REF concept is that it allows mul-
tiple resources to depend on each other. In several applications such as
the aircrew pairing problem Vance et al. (1997), the cost of a path de-
pends on several resources. A second example of non-trivial dependent
REFs stems from the capacity constraints of the VRPTW with simulta-
neous pickups and deliveries, see Min (1989); Desaulniers et al. (1998).
Here, each customer 7 € V' \ {s,¢} has demanded for delivery ¢ and for
pickup ¢7. A vehicle of capacity @ starts at the depot s with the entire
delivery demand of the tour loaded. It services each customer (pickup
after delivery) so that the vehicle reaches the final depot ¢ having the en-
tire pickup demand on board. A feasible path (route) is one in which the
pickups of already visited nodes plus the deliveries of the following cus-
tomers do not exceed the vehicle capacity on any arc traveled. The fea-
sibility problem is modeled with two dependent resources rp, "max € RS,
where the resource variable T " is demand already picked (directly after
node ) and 7} ™ is the mazimum load in the vehicle on the path from s



46 . COLUMN GENERATION

to i. Obviously, one has [a;7,b;7] = [a;™>,b;™>] = [0,Q)] for all i € V

aﬁd f;f (T3P, T ™) = " + qﬁ-’ for all (i,7) € A. For the maximum

load, one has non-linear but non-decreasing REFs fire (T77, Tmex) =

ma,x{Tir P+ q? T+ q;!}. It means that the maximum load at node j
(following node ) is either the entire pickup demand at the end of the
path, computed by T’ ,L-T” + q? . or results from the maximum load on the
sub-path (0,...,4) to which the delivery of j has to be added.

The modeling of other non-linear resource consumptions is straight-
forward, e.g., soft time windows (see Dumas et al., 1990), load-dependent
travel costs or time-dependent travel times (connections (i,7) with dif-
ferent travel durations depending on the time of the day). Complex
schedule regulations and their modeling can be found in Desaulniers
et al. (1997); Vance et al. (1997).

Another non-trivial example of dependent resources is the computa-
tion of the minimal waiting time for an SPPTW path. With the notation
for the SPPTW given in the introduction, the total waiting time along
path P = (vo,v1,...,vp) is given by T — 1o — S P ti—1,. Desaulniers
and Villeneuve (2000) showed that three resources with non-decreasing
REFs are enough to compute both the earliest arrival time and the min-
imal waiting time (or equivalently, an associated waiting cost).

4, Solution methods

This section describes different methodologies developed for solving
the SPPRCs, namely, dynamic programming which has been used exten-
sively, Lagrangean relaxation, constraint programming, and heuristics.
It also presents a graph modification approach for the SPPRCEFP.

4.1 Dynamic programming and labeling
algorithms

Dynamic programming solution approaches for the SPPRC system-
atically build new paths, starting from the trivial path P = (s), by
extending paths one-by-one into all feasible directions. Their efficiency
depends on the ability to identify and discard paths which are not use-
ful either to build a Pareto-optimal set of paths or to be extended into
Pareto-optimal paths. Discarding non-useful paths is achieved by a dom-
inance sub-algorithm based on dominance rules, which strongly depend
on the path-structural constraints and the properties of the REFSs.

For the sake of efficiency, paths in the dynamic programming algo-
rithms are encoded by labels. Paths sharing a common prefix are rep-
resented by using a single chain of labels for their common prefix. This




92 Shortest Path Problems with Resource Constraints 47

is implemented with the help of a tree data structure in which a label
corresponding to path P = (vo, ... ,Up—1,Vp) is directly linked back to
the label of the prefix path (vg,...,vp—1) (see e.g. Ahuja et al., 1993,
for an introduction to labeling algorithms). Beside encoding the path it-
self, the label typically stores a representation of 7 (P), e.g., given by the
unique resource vector T'(P) in case of non-decreasing REFs. In loachim
et al. (1998) a more complex representation of T (P) is stored in the la-
bels, while Irnich and Villeneuve (2003) store additional (compressed)
information to accelerate the dominance algorithm.

In order to formalize the above ideas, we need some definitions. For
a given path P = (vo,v1,...,vp) we call v(P) = vy the resident node
of P. A path P = (vg,v1,...,Vp) is a feasible extension of path Q) =
(wo, wr, - - -, Wq) if (Q, P) = (wo, - - -, Wq, V0, - - -, Vp) € F(wo, vp)NG. The
set of all feasible extensions is £(Q) = {P: (Q,P) € f(wo, v(P)) N Q}.

Labeling algorithms rely on the manipulation of two sets. The first
set U is the set of unprocessed paths, which have not yet been extended.
The second set P is the set of useful paths. Useful paths P € P
have already been processed. They have been identified to be Pareto-
optimal or might be prefixes of Pareto-optimal paths (note that Pareto-
optimal paths might have prefixes which are not Pareto-optimal, see
Section 4.1.2). Both sets, & and P, change dynamically in the course of
the labeling algorithm.,

One can identify two basic procedures invoked by the labeling algo-
rithm (see the pseudo-code below). In the path extension step an unpro-
cessed path @ € U is chosen, all feasible extensions (Q,v) withv € V are
constructed and added to U, while @ itself is removed from U. Thus, the
extension step replaces one element of U by all of its feasible one-node
extensions. Once processed, an element is transferred to the set P. I
possible, the dominance algorithm reduces the sets U and P. Its goal
is to accelerate the overall labeling procedure by limiting the number of
necessary extension steps.

The path extension step and the dominance algorithm maintain the
following invariant: The useful paths P and all extensions of unpro-
cessed paths U together contain a solution of the SPPRC. Recall from
Section 2.3 that an SPPRC solution is not necessarily unique since it
contains representatives taken from a set of desired solutions, e.g., one
path for each Pareto-optimal resource vector. Therefore, let £ be the
set of all different solutions of an SPPRC, where each element Sedis
a set of paths, e.g., Pareto-optimal paths. The above invariant is

31Sex:SC{(Q,P):QelU,PecEQ)}IUP. (2.7)



48 COLUMN GENERATION

The algorithm is initialized with U/ = {Py} and P = @ where Py = (s)
is the trivial path. Each path P = (vo,v1,.. ., vp) € F results from an
extension of Py, i.e., (v1,-...,vp) € E(Fo). Hence, condition (2.7) holds
for the initialization. Obviously, the path extension step also maintains
the invariant. The crucial point is to define dominance rules in such a
way that the dominance algorithm also respects (2.7). We focus on that
aspect in Section 4.1.2. By doing so, the algorithm finally terminates
with an S C P for some S € X. In a post-processing filtering step
Pareto-optimal solutions can be extracted from P.

Generic Dynamic Programming SPPRC Algorithm {
(* Initialize *)
SETU ={(s)} and P =0
WHILE U # @ DO
(* Path extension step *)
CHOOSE a path Q € Y and REMOVE @ from U
FORALL arcs (v(Q),w) € A of the forward star of v(Q) DO
IF (Q,w) € F(s,w) NG THEN ADD (Q,w) tolU
ADD Q to P
(* Dominance step *)
IF (* any condition *)
APPLY dominance algorithm to paths from ¢ U P ending
at some node v
(* Filtering step *)
FILTER 7P, i.e., identify a solution S C P

}

Several remarks should be made.

1 If one performs path extension steps only, but no dominance steps,
the result is P = F, i.e., the algorithm computes all feasible paths.

9 The path extension step leaves the freedom to choose paths Q) € U
according to different processing strategies. These path selection
strategies can lead to label setting or label correcting algorithms
depending on the underlying network and the REFs. These issues
will be discussed in Section 4.1.1.

3 The dominance algorithm can be applied at any time in the course
of the algorithm. In order to keep the effort small, it makes sense
to delay the dominance algorithm to a point when there is a chance
to remove several of the paths at the same time, before they are
processed in the path extension step.

The dominance rules strongly depend on the problem at hand.
Section 4.1.2 discusses the impact of different path-structural con-
straints and classical, non-decreasing, special or general REFs.




2  Shortest Path Problems with Resource Constraints 49

4 There exist efficient algorithms for the filtering step to identity,
" e.g., Pareto-optimal paths (see Bentley, 1980; Kung et al., 1975).

4.1.1 Label setting and label correcting algorithms. The
defining property of a label setting algorithm is that those labels chosen
to be extended (in the path extension step) are kept until the end of
the labeling process. They will not be identified as discardable in sub-
sequent calls of the dominance algorithm. Labeling algorithms that do
not guarantee this behavior are called label correcting algorithms. The
general ideas of label setting as well as label correcting algorithms in
the context of the one-dimensional shortest path problem (SPP) are, for
instance, explained in the book of Ahuja et al. (1993).

An acyclic network G = (V, A) naturally gives rise to label setting
algorithms if paths are treated (that is, chosen and extended) accord-
ing to a topological order of their resident nodes. More precisely, the
above generic algorithm loops over the topologically sorted nodes v =
$,V2,...,Vy|, applies the dominance algorithm to the paths {P € UUP :
v(P) = v} resident at the current node v, and extends those paths who
survive the dominance process into all feasible directions.

It is possible to mimic an acyclic network for the treatment of labels if
the resource consumptions for at least one resource 1 are strictly positive,
ie., fi(Li) -1y >0 holds for all (i,j) € A and all T; € [a;,b;]. In
this case, the labeling algorithm chooses unprocessed paths Q € U with
minimum (or “small”) T(Q)" for extension first. It is guaranteed that
paths @ already treated only produce extensions (Q, P) with T'(@, P)" >
T(Q)". Hence, newly generated paths cannot enforce the elimination of
already treated pa<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>