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Extensions of the Petal Method for Vehicle Routeing
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The petal method for vehicle routeing imposes special structure on the form of a feasible route. In this
paper we show that by extending the definition of a petal route, more general forms of vehicle route can
be generated without invalidating the important underlying property that optimal petal solutions can be
produced very easily. [t will also be shown that the optimal generalized petal solution can be produced
efficiently by multiple applications of a shortest path algorithm.
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INTRODUCTION

The Vehicle Routeing Problem (VRP) and the related Vehicle Scheduling Problem (VSP) have
been the subject of extensive research due to their practical importance in the transportation
industry (Bodin er al.' and Laporte and Norbert?). The VRP involves the construction of vehicle
routes to visit a number of delivery points from a central depot. The VSP also includes temporal
aspects associated with time windows for visits which impose extra structure on the vehicle
routes. The problems are NP-hard, so much of the research has centred on the development of
heuristics.

A special class of heuristics that provides the focus of this paper involves the construction of
routes with a restricted petal-like structure. Petal routes visit all delivery points in a geographic
sector centred on the depot. In other words, no customer is left unvisited in the sector. This
restriction on the structure of a route reflects the observation that in many problems optimal routes
exhibit a petal or near petal structure.

An early attempt to exploit this restricted structure was carried out by Gillet and Miller?® with
a heuristic procedure called the sweep method. A subsequent advance was then provided by Foster
and Ryan* who showed that an optimal petal solution can easily be found from the set of all
possible petal routes by solving a linear programme in which, under a mild assumption, all basic
feasible solutions are naturally integer. They also showed that some subsequent relaxations of
the strict petal route structure could be considered although the inclusion of non-petal routes
invalidated the natural integer properties of the LP making it more difficult to find optimal integer
solutions.

Building on the work of Foster and Ryan, this paper introduces a generalized framework that
permits consideration of non-petal routes without destroying the natural integer properties of the
underlying linear programme. This framework provides a basis for theorems establishing that an
optimal generalized petal solution can be found efficiently by solving a small number of shortest
path problems in an underlying directed graph representation of the set of all generalized petals.
In addition, we provide a result that allows the graph to be progressively reduced to yield further
efficiency gains. These outcomes are susceptible to exploitation by either branch-and-bound
or meta-level heuristics such as tabu search, and are also applicable to settings beyond vehicle
routeing.

AN EXAMPLE OF THE PETAL METHOD

The concept of the petal method will be illustrated using the problem shown in Figure 1. Each
of the 13 delivery points has an associated delivery demand shown in brackets. The distances
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FiG. |. Example problem.

between delivery points are Euclidean and all distance calculations are performed using real
arithmetic. The goal is to minimize the number of vehicles required to deliver from a central depot
and, for that number of vehicles, to minimize the total distance travelled. Each vehicle has a
capacity of ten units of demand. The coordinates for the depot and the delivery points are given
in the appendix.

The delivery points are numbered in radial order about the depot. More precisely, consider the
ordering that results by taking the depot as the centre of a circle (for convenience, one that
circumscribes the points), and consider the projection of each point onto the circle created by the
endpoint of the radius that passes through the point. Starting with an arbitrary (projected) point
on the circle as point 1, and then sweeping around the circle in a chosen direction (counter-clockwise
in Figure 1) each point is assigned a number from 1 to n representing the sequence in which it is
encountered. Tied orderings, where more than one delivery has the same point of projection, are
broken arbitrarily, say by assigning the lower number to the delivery closest to the depot. In the
example there are no ties and the ordering is unique. Each radially contiguous subset taken from
this ordering is a peral.

The enumeration of the set of all petals can be implemented very efficiently as discussed by Foster
and Ryan®. A petal is feasible if the quantity of goods delivery on the route does not exceed the
capacity of the vehicle and if the total distance travelled, as determined by the Travelling
Salesperson sequence of the deliveries, does not exceed the imposed distance limit. We will call such
a TSP route for a petal a pefal route, and refer to it as feasible if the petal itself is feasible. An
example of a feasible petal route is shown in Figure 2(a). The petal route in Figure 2(b) is infeasible
because the sum of customer deliveries (12) exceeds the capacity of the vehicle (10). The route in
Figure 2(c) is not a petal route because the deliveries do not form a radially contiguous subset.
However, if delivery 1 is added to the subset, filling in the gap to ensure the points are contiguous,
the resulting TSP tour on this larger subset would then become a petal route.

Given the deliveries in the radial order 1,2,3, ..., 13, the enumerated subsets of contiguous
deliveries corresponding to all feasible petals are given in Table 1.

It should be noted that petal generation treats the order as cyclic in that the subsets beginning
with deliveries 12 and 13 wrap around to include the deliveries at the beginning of the order. For
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FiG. 2. Example routes: (a) petal route; (b} infeasible peial route (vehicle capacity exceeded); (c) non-petal route (gap for
point out of sequence).

290




——

D. M. Ryan et al.— Extensions of the Petal Method for Vehicle Routeing

TaBLE |. Contiguous subsets from the natural radial order |

(n (1.2) (1,2,3)
2) 2.3) (2,3,4)

(3) (3.4)

(4) 4.5)

() (5,6)

(6) 6,7) (6,7.8)

(7 (7,8) (7,8,9)

(8) (8,9)

(9 (9,10

(10) (10,11)

(1) (11,12) (11,12,13)
(12) (12,13) (12,13,1)
(13) (13,1) (13,1,2) (13,1,2,3)

this reason we will refer to orders as cyclic orders. The cost of a petal is defined to be the cost of
the corresponding TSP petal route, which is typically, though not necessarily, proportional to the
distance travelled. It is important to keep in mind that this cost is not known directly from the
identity of the petal itself, except by first applying a TSP procedure (Lawler er al’®).

It should also be noted that the delivery sequence in the petal route determined by the TSP
solution will differ in general from the cyclic order, the order used to generate the elements
of the associated subset. For example, the petal (11, 12, 13) generates a petal route (depot-11-
13-12-depot). Each petal route is either a single delivery or a route which results from the addi-
tion of the next delivery in the order to the subset of deliveries considered on the previous petal
route. Given this sequential building process, it is possible to develop efficient heuristic TSP
algorithms which add the extra delivery to the previous route and then attempt to improve the TSP
solution.

We define a spanning petal set to be a collection of petals that contains every delivery point
exactly once. For a given cyclic order a spanning petal set can be conveniently represented by
a sub-sequence of deliveries taken from the cyclic order. Each delivery in the sub-sequence is
the first delivery from each petal. For instance, the set of petals {(9, 10), (11, 12), (6, 7, 8), (4, 5),
(13, 1,2, 3)} from Table 1 is a spanning petal set and can be written as {4, 6,9, 11, 13]. It is evident
that the problem of identifying an optimal set of routes from the set of petals, can be solved by
restricting attention to finding a minimum cost spanning petal set which we will call a minimum
spanning set or an optimal petal solution. The optimal petal solution can be easily determined once
the cost of each petal is obtained. Foster and Ryan* proposed the formulation of a set parti-
tioning model and the use of the LP simplex method for this purpose, but in the next section we
discuss an alternative and more efficient shortest path technique for producing the optimal petal
solution.

The optimal petal solution, shown in Figure 3, requires five vehicle routes and a total distance
of 68.74. It is clear however that when more general non-petal forms of vehicle route are permitted,
an improved solution with total distance of 60.47 can be found as shown in Figure 4.

A first key contribution of this paper is to demonstrate that the petal method outlined above can
be used to produce the optimal solution shown in Figure 4. All that is required is to reorder the

FiG. 3. Optimal petal solution. FiG. 4. Optimal solution.
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deliveries in a non-radial cyclic order before applying the petal generation scheme. The sets
generated will be referred to as generalized petals. In geographic terms, the sets will no longer be
pure petals but will involve contiguous subsets of deliveries from the non-radial cyclic order. For
example, consider the deliveries in the cyclic order 3,7, 5, 8, 10, 6,4, 2,9, 1, 12, 13, 11. Given this
order, the set of all subsets of contiguous deliveries corresponding to feasible generalized petals
are given in Table 2.

TaBLE 2. Contiguous subsels for the cyclic order (3,7,5,8,10,6,4,2,9,1,12,13,11)

(3) (3.7) (3,7,3)
(7 (7.5)

(5) (5.8)

(8) (8,10)

(10) (10,6)

(6) (6,4) (6,4,2)
(4) (4,2) (4,2,9)
(2) (2,9) (2,9,1)
9 (ERY)

(1 (1,12) (1,12,13)

(12) (12,13) (12,13,11)
(13) (13,11) (13,11,3) (13,11,3,7)
(11) (11,3) (11,3,

It can be seen that the five subsets making up the optimal solution of Figure 4 are contained
within the set of generalized petals and the optimal solution corresponds to the minimum span-
ning set {3,8,6,2,12). From an optimization point of view, the determination of an optimal
generalized petal solution from the set of all generalized petals is no more difficult than the
determination of the optimal petal solution from the set of all petals. The shortest path method
discussed in the next section can also be applied to the set of generalized petals to find the optimal
solution.

It should be noted that there are many different cyclic orders of deliveries which contain the
optimal routes of Figure 4 within the corresponding sets of generalized petals. It is sufficient to find
any cyclic order in which the deliveries on each route in the optimal solution are contiguous. The
order of the deliveries within each contiguous subset and the order of the subsets within the cyclic
order is unimportant. For example, an alternative cyclic order of 1,2,3,5,7,4,6,8,10,11, 12,
13,9, which is a small perturbation of the natural radial order, will also produce the optimal
solution of Figure 4. From this discussion we see that there exists a family of ‘optimal cyclic
orders’ which are equivalent in the sense that any members of the family will produce the optimal
generalized petal solution. Provided the optimal generalized petal solution can be found efficiently
for a given cyclic order, the optimal solution of the vehicle routeing problem can be found by
examining a subset of permutations of the cyclic order (although the identity of this subset is not
known in advance). To guarantee optimality this subset might need to be large. However, good
quality solutions should be generated by considering a smaller subset of permutations of the radial
order. Given the radial structure underlying most optimal solutions, it is likely that such a subset
would contain a member of the family of optimal cyclic orders. We are currently investigating tabu
search techniques to control the generation of cyclic order permutations. In the next section we
discuss an efficient method for determining the optimal petal solutions.

OPTIMAL PETAL SELECTION

Given a set of petals, Foster and Ryan® select an optimal subset by formulating the problem as
a set partitioning problem in which each row of the constraint matrix corresponds to a delivery
point and each column to a petal. Foster and Ryan show that for petals, the LP relaxation of the
set partitioning problem is totally unimodular and the optimal integer solution can be found by just
solving the LP. By reordering the constraints to reflect the chosen cyclic order the proof used by
Foster and Ryan can be easily extended to show that the set partitioning problem for generalized
petals remains totally unimodular. While the LP method has the advantage that extra constraints
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can be added to model an inhomogeneous fleet or a multi-period problem (Pedder and Philpott®),
the LP solution time remains the major bottleneck.

A second key contribution of this paper is to identify a more efficient method for selecting
optimal petals (and hence their associated routes). The petals are represented by a weighted cyclic
digraph G = (N, A) as follows. The nodes N of the digraph correspond to deliveries. The arcs A
correspond to generalized petals. Each generalized petal is represented by an arc from node i
to node j, where node i is the first delivery point in the petal (in relation to the cyclic order)
and node j is the first subsequent delivery from the cyclic order that is not on that petal. For
example the petal (11, 12, 13) in Table 1 is represented by the arc from node 11 to node 1 as shown
in Figure 5(a). The cyclic petal digraphs corresponding to the petals of Table 1 and the generalized
petals of Table 2 are shown in Figures 5(a) and 5(b) respectively.

FiG. 5. Cyclic petal digraphs. (a) For petals of Table 1. (b) for genealized petals of Table 2.

Hereafter, because our representation of the petals as a digraph applies to generalized petals as
well as petals, we will drop the adjective ‘generalized’ and understand the word ‘petal’ to refer to
the general case. In standard terminology, a (non-degenerate, node simple) cycle is a path that
contains at least one arc and returns to its point of origin without duplicating any nodes except the
starting point. It the context of the petal digraph, we introduce the notion of a special type of cycle,
called a compact cycle, defined to include the following property: for each arc (/,/) of the cycle,
there is no node of the cycle that lies strictly between nodes i and j in the cyclic order.

For example, the cycle {1,4, 6,9, 11} in Figure 5(a) (described by naming the sequence of nodes
visited but omitting the final node) corresponds to the spanning petal set (1, 2, 3), (4, 5), (6,7, 8),
(9, 10), (11, 12, 13). The cycle notation (1,4,6,9, 11} also represents the spanning petal set as
discussed in the previous section. This relationship between spanning petal sets and compact cycles
is formalized by the following theorem.

Theorem 1

There is a one to one correspondence between spanning petal sets and compact cycles.

Proof

For a given spanning petal set, each delivery (node in the cyclic digraph) occurs on exactly one
of the petals in the spanning petal set. The arcs of the digraph corresponding to the petals of the
spanning set therefore form a compact cycle. Conversely, for a given compact cycle, the arcs
correspond to petals which have the property that they include all deliveries and no delivery occurs
on more than one petal. The petals therefore form a spanning petal set.

Thus, the problem of finding the optimal petal solution (i.e. minimum spanning petal set) can
be considered as the problem of finding the shortest compact cycle in the petal digraph.

We now consider the way in which such a shortest compact cycle can be identified. If we restrict
our attention to only those cycles that contain node & then all arcs that bypass k can be ignored.
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By splitting node k into an origin node k,, and a destination node k,, where k, initiates all arcs
out of k and k; receives all arcs into k, the cyclic petal digraph becomes an acyclic digraph. This
acyclic digraph can be formed by the following algorithm.

Acyclic digraph induced by node k

(1) Split node k into an origin node k,, and a destination node k,, where k, initiates all arcs out
of k and k, receives all arcs into k.

(2) Let p(h) denote the sequential position, as determined by the cyclic order, of each node # in
the graph created from G by Step (1), where p(origin) = 1 and p(destination) = # + 1, and
delete each arc (4, /) such that p(i) > p(j) ori =j,i + k.

An example of the acyclic digraph from Figure 5(a) induced by node 1 is shown in Figure 6.

FIG. 6. Acyelic digraph induced by node 1.

The shortest compact cycle that contains node k can be generated as the shortest path from &,
to k4 in the acyclic digraph induced by node k. The acyclic property of each induced digraph
enables a shortest path to be found by a very simple and quick shortest path (SP) algorithm, which
simply scans each node in the sequence from origin to destination exactly once, in the cyclic order.
Since a compact cycle must contain at least one node, the shortest compact cycle can be found by
finding the shortest path from &, to k, in the  acyclic digraphs induced by each node in turn. For
most vehicle routeing problems, however, it is impossible to satisfy all deliveries in one route. This
implies that the shortest compact cycle can be found by solving a smaller number of shortest path
problems. The actual number of shortest path problems required is established by the following
argument.

First, assume that it is impossible to satisfy all deliveries in one route. Let the cyclic order be
represented by a function s(7) where s(/) is the node following i in the cyclic order. Also denote
s*(i) = s(s(i)),s' (i) = s(s/7"(i)) and s7'(j) = i where s(i) = j.

When we restrict our attention to compact cycles containing node k we ignore arcs that
correspond to petals containing both deliveries k and s' (k). Let P, be the proposition that in an
optimal solution, deliveries k and s™' (k) are in the same petal. Let P, denote the converse, that
in an optimal solution, deliveries k and s~'(k) are not in the same petal. If P, is true then the
optimal solution can be found by a shortest path calculation on the acyclic digraph induced by node
k. More generally if deliveries &, s(k), ..., s’ (k) are on the same petal then Py & Py & ..
P is true.

Theorem 2. (Number of shortest paths required)

If arc g; +1(;, does not exist then the optimal petal solution can be found in j shortest paths.

Proof
Since arc g, ;;+1;, does not exist there is no feasible petal which contains i, s(i), (i), ..., 80 (D)
so the statement (P, & P2, & ... & P, ;) is true. Therefore, Pun | Py |- ++| Pusyy 18 true.

We can investigate each of these j cases separately and this involves finding j shortest paths. The
minimum of these ;j shortest paths gives the optimal petal solution.

To find the optimal petal solution in a minimum number of shortest paths we must find that
delivery i for which je N is minimized and q, ; 1y € A. Then, exactly j shortest path calculations
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will be required. In practice it is sufficient to find a delivery i which seeds the fewest number of
petals of the form (i), (i,s(§)), (i,s(i),s*(i)), ..., (i,5(i), ..., '(i)) and then find shortest
paths in the acyclic digraphs induced by nodes s(i), s*(i), . . ., s/ (i).

It is also possible to improve the efficiency of solving the shortest path problems by means of
the following theorem.

Theorem 3

After solving the problem on the digraph induced by k, the following two reductions of G are
admissible as a basis for defining all induced digraphs subsequently to be examined.
(1) Delete node & and its incident arcs from G.
(2) Successively delete all nodes of G, and their remaining incident arcs, whose set of entering arcs
or whose set of leaving arcs becomes empty either as a result of Step (1) or as a result of this
step applied to other nodes.

Proof

Reduction 1 is correct because after solving the problem we have examined all compact cycles
containing node k. If there is any shorter compact cycle it will not contain node & and thus
any of its incident arcs. Reduction 2 is correct since a node with no entering arcs can never be
reached and a node with no leaving arcs can never be left. Therefore, the node cannot be part of
a cycle.

In the next section we will show that the shortest path method for finding a shortest compact cycle
is significantly faster than the LP method for finding an equivalent optimal petal solution.
However, a disadvantage of the shortest path method is that the side constraints associated with
an inhomogeneous fleet or a multi-period problem become more difficult to accommodate. These
difficulties are currently under further investigation.

RESULTS

The performance of the shortest path method for finding a shortest compact cycle and the LP
method for finding an equivalent optimal petal solution have been compared by solving the
problems defined in Altinkemer and Gavish’. The natural radial order was used to define the
petal set for each problem. The ZIP package®, which is known to be very efficient for solving LP
relaxations of set partitioning problems, was used to solve the petal LP and the shortest compact
cycles were found by an implementation of the method discussed in this paper.

The tests were performed on a SGI 4D/240 and the times given exclude the time to generate

TaBLE 3. Comparison of the shortest path and LP methods

Problem Number of Number of Number of Time in SP Time in LP
deliveries routes vehicles in (CPU in hundredths
generated solution of a second)
pl 50 495 5 0.23 41
p2 75 548 11 0.23 78
p3 100 1321 8 0.93 300
p4 150 1961 12 1.34 622
ps 199 2412 17 1.63 1068
p6 50 437 6 0.21 46
p7 75 486 12 0.23 67
p8 100 1140 9 0.82 275
p9 150 1568 15 1.02 476
pl0 199 2148 19 1.42 784
pll 120 2050 7 2.29 586
pl2 100 1077 10 0.72 255
pl3 120 1258 12 0.92 266
pld 100 968 11 0.63 185
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the feasible petal routes. The results given in Table 3 show conclusively that the shortest path
method outperforms the LP method by two orders of magnitude. An additional advantage of the
shortest path method is that the computer code is simpler to write than for the LP method.

SUMMARY

In this paper we have shown that;
(1) the optimal solution of a VRP corresponds to a family of ‘optimal cyclic orders’;
(2) for a given cyclic order the optimal generalized petal set can be determined very efficiently.
This raises the possibility of a new method for the VRP which starts with an initial cyclic order.
The cyclic order is then modified so as to improve the objective. The modification of the cyclic
order could be guided by search methods such as simulated annealing or tabu search. Results from
an initial version of the method using tabu search are encouraging and indicate that it should
efficiently produce good quality solutions to the VRP. Although we have used the VRP to illustrate
the concepts of this approach the ideas can also be extended to include more complex problems
such as the VSP and the multiple depot vehicle routeing problem.

APPENDIX
Data for example problem

Vehicle capacity = 10

Delivery Number X Y Order Size
1 10.0 —-5.0 3
Z 11.0 — 2.0 3
3 4.0 2.0 2
4 6.0 —4.5 3
5 3.0 -4.0 6
6 6.5 —5.5 4
7 3.0 -6.5 1
8 1.5 —10.5 4
9 8.4 —-8.0 4

10 9.5 —10.0 4

11 14.0 - —6.5 3

12 10.5 -5.5 5

13 14.5 —4.0 2

The depot is located at 8.0, —6.0.
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