Master Problem Issues

Jesper Larsen

1Department of Management Engineering
Technical University of Denmark

42134 Advanced Topics in Operations Research
 Column Generation

Today's topics
- Branching strategies
- Efficient solution of the master problem
Branching Strategies

Why do we need to branch?
Branching is necessary because we relax our Integer Linear Program in order to solve it efficiently:

- Fractional solutions (lp relaxation)
- Other infeasibilities (combinatorial relaxation)

Branching strategies

- Variable branching
- Constraint branching
- Follow-on branching/"subproblem" branching
Conventional Variable Branching

Strategy

- Select x_j where $0 < x_j < 1$.
 - 1-branch: set $x_j = 1$. Strong branch.
 - 0-branch: set $x_j = 0$. Weak branch.
 - ★ Objective usually unaffected.
 - ★ Subproblem not trivial to solve.

- The bounding process is ineffective.
Definition

- Branch using the Ryan and Foster constraint branch
- Suppose constraints p and r are covered together at fractional value in the LP optimum.
 - At least one pair, p and r will exist in a fractional solution.
- Let $J(p, r) = \{j : a_{pj} = 1 \text{ and } a_{rj} = 1, j = 1, 2, \ldots, n\}$
 - Then in an integer solution either p and r must be covered together, or p and r cannot be covered together.
Strategy

- Find constraints \(p \) and \(r \) with \(0 < \sum_{j \in J(p,r)} x_j < 1 \).
- Often you will try to maximize the sum in order to get close to an integer solution.
- In the 1-branch force \(p \) and \(r \) to be covered together by setting \(x_j = 0 \) for all columns \(j \) only covered by only one of the constraints.
- In the other branch set \(x_j = 0 \) for columns \(j \) in \(J(p, r) \).
- The solution of the subproblem then needs to enforce the decisions made.
Examples

Applications

- Vehicle routing
- Berth Scheduling problem
- Assignment problem with GUB constraints
Berth Scheduling Problem

Constraint branching

- In the 1-branch the ship is forced to occupy this location in time
- In the 0-branch the ship is forced away from this location in time
Alternative branching strategy

A)

B)

S = 0.45
S = 0.65
S = 0.4
S = 0.55

0.3
0.15
0.3
0.05
0.3
0.15
0.3

0.2
0.5 - S = 0.05
S - 0.5 = 0.15

0.3
0.3
0.3
0.15
0.15
Follow-on branching

Strategy

- As an alternative approach branching strategies can work on the subproblem
- Follow-on branching got its name from its application in routing and scheduling applications
- Given a fractional solution. There will be at least one arc \((i, j)\) in the graph of the subproblem with a fractional flow.
 - In the 1-branch a path entering \(i\) will be forced to continue to \(j\).
 - In the 0-branch a path entering \(i\) can continue to any other node except \(j\).
- Follow-on branching is not “symmetric”.
- On the other hand it can be implemented very efficiently by making changes in the subproblem.
Large GSPP of these consists of more than a billion variables and more than a thousand constraints (almost all of them being set partitioning constraints).

Such a large number of set partitioning constraints and the presence of columns having more than 10 nonzero elements usually yield high degeneracy in the restricted master problem.

This will slow down the column generation process.

The simplex algorithm that solves the restricted master problem will experience a high percentage of degenerate variables in the basic feasible solution and it will execute many degenerate pivots.
Using The Structure

Motivation

- An idea is to reduce the number of constraints in the restricted master problem.
- This will make the restricted master problem much easier to solve.
- Partly because the number of degenerate pivots are reduced.

Underlying assumption

- In crew scheduling it is observed that crews do not change their vehicles very often.
- Re-optimized solutions deviate slightly from planned ones.
- Consequently many consecutive tasks will remain grouped.
A set partitioning constraint is associated with a task. A task is accomplished by a commodity. The main variables are associated with paths that are feasible with regard to a set of predefined rules. A path contains an ordered sequence of tasks and possibly other activities.

Examples

In crew pairing a task would be a flight, a commodity would be a crew member and a path is a legal pairing.

In vehicle routing a task is a visit to a customer, a commodity is a vehicle and a path is a route.
The Generic Master Problem

\[
\begin{align*}
\min & \quad \sum_{k \in K} \sum_{p \in P^k} c_p^k \theta_p^k + M \sum_{w \in W} Y_w \\
\text{s.t.} & \quad \sum_{k \in K} \sum_{p \in P^k} a_{wp}^k \theta_p^k + Y_w = 1 \quad \forall w \in W \\
& \quad \theta_p^k \geq 0 \quad \forall p \in P^k, \quad k \in K \\
& \quad Y_w \geq 0 \quad \forall w \in W
\end{align*}
\]

Notice

- \(Y_m \) is an artificial variable that guarantees problem feasibility.
- The MP is feasible and bounded.
The Basic Concepts

Equivalence
Given a set of paths \(C \), two tasks \(w_1 \) and \(w_2 \) are equivalent with respect to \(C \) if every path in \(C \) covers both \(w_1 \) and \(w_2 \), or none of them.

Equivalence classes
- This relation partitions tasks into equivalence classes.
- Let \(L \) be the set of classes, \(W_l \) the subset of tasks in class \(l \in L \), and \(Q = \{ W_l : l \in L \} \).

J. Larsen (DTU MgmtEng) Set Partitioning and Applications jesla@man.dtu.dk 15/27
Let us define compatibility criteria between partition Q and the θ^k_p path variables. Let p be a path in P^k, $k \in K$ and T_p the set of task covered by the path.

- Path p is said to be **compatible** with the equivalence class $l \in L$ if $W_l \cap T_p$ is either the empty set or equal to W_l.
- Path p is **compatible** with partition Q if it is compatible with all the equivalence classes in L.
- If p is compatible with the partition Q we say that θ^k_p or its corresponding column is **compatible** with Q.
Basic Idea

- Instead of using the traditional restricted master problem with all the constraints this approach relies on a so-called aggregated restricted master problem (ARMP).
- ARMP considers smaller subsets of variables and constraints than RMP.

Representative task

- For each equivalence class W_i the ARMP only contains one constraint.
- The task associated with this constraint is denoted the representative task.
As a consequence we are restricted in adding columns to the ARMP. We can only add columns that are compatible with the partition Q.

The task aggregation needs to be adjusted dynamically throughout the solution process because we do not know a priori which tasks will be consecutive in the optimal paths.

We allow for dynamically to update Q and consequently constructing a new ARMP. We say that ARMP is restricted to partition Q and denote it ARMP_Q.
Remaining issues

Initial solution
We initially need some paths in the set C. These can be generated by a heuristic or taken from a planned solution.

Dual variables
- As a result of solving the ARMP$_Q$ we get aggregated dual variables $\hat{\alpha}_l$ for all representative tasks w_l. But in the subproblem I need dual variables for each of the original tasks.
- To do so, the following linear system needs to be solved.
\[
\sum_{w \in W_l} \alpha_w = \hat{\alpha}_l \quad \forall l \in L
\]

Algorithm Description

Main Program

```plaintext
while True do
    repeat
        \((x, \hat{\alpha}, Z) \leftarrow \text{solve ARMP}_Q\)
        compute duals \(\alpha\) from \(\hat{\alpha}\)
        \(P'' \leftarrow \text{oracle}(\alpha)\)
        if \(P'' = \emptyset\) then
            STOP
        else
            \(P' \leftarrow P' \cup P''\)
        until \(P''_Q = \emptyset\) or \(\text{modify}(\alpha)\)
    repartition \(Q\)
```

repartition \(Q\)

- \(I\) is a nonempty set of negative reduced cost columns incompatible with \(Q\)
- if \(Z = Z_{old}\) or \(\exists l : Y_{wl} > 0\) then
 - \(C \leftarrow C \cup I\)
- else
 - \(C \leftarrow B \cup I\)
- redefine \(Q\) according to \(C\)
- \(Z_{old} \leftarrow Z\)
Redefinition of Q

repartition Q

I is a nonempty set of negative reduced cost columns incompatible with Q

\[
\text{if } Z = Z_{\text{old}} \text{ or } \exists I : Y_{wi} > 0 \\
\text{then} \\
\quad C \leftarrow C \cup I \\
\text{else} \\
\quad C \leftarrow B \cup I \\
\text{redefine } Q \text{ according to } C \\
\quad Z_{\text{old}} \leftarrow Z
\]

Two alternatives

- **Alternative 1**: Invoked if last partition did not improve the objective function or the optimal solution is infeasible.
 - Expand based on the previous set of paths.

- **Alternative 2**: Invoked if successful in decreasing the objective function value.
 - Expand based on the non-degenerate basic columns.
Partition Handling

- After every minor iteration the algorithm must decide if the partition must be redefined.
- Beside updating when P''_Q is empty a strategy is implemented to redefine Q when it seems profitable.
- This leaves room for developing your own heuristic. The authors suggest:

$$\text{modify}(\alpha) = \begin{cases}
\text{true} & \text{if } \{ p \in \bar{P}'_Q : \bar{c}_p(\alpha) < 0 \} \neq \emptyset \text{ and } \min_{p \in P''_Q} \bar{c}_p(\alpha) < 0 \text{ and } \frac{\min_{p \in P''_Q} \bar{c}_p(\alpha)}{\min_{p \in \bar{P}'_Q} \bar{c}_p(\alpha)} < \lambda \\
\text{false} & \text{otherwise}
\end{cases}$$

- Problem specific knowledge could be included here.
One difficulty with the dynamic constraint aggregation method is that it does not provide a complete dual solution.

We need a complete dual solution for solving the pricing problem.

Instead it provides an aggregated dual solution $\hat{\alpha}$.

To find a disaggregated one we need a feasible solution α to

$$\sum_{w \in W_l} \alpha_w = \hat{\alpha}_l \quad \forall l \in L$$ (1)
Finding a disaggregated dual

Simple solution

Setting $\alpha_w = \hat{\alpha}_l/\|W_l\| \forall w \in W_l, l \in L$ defines a feasible solution to this system. It is although a crude and inefficient solution.

Complex solution

- For every generated incompatible column p it must hold that

 $$\sum_{w \in W} a_{wp} \alpha_w \leq c_p$$

- These can be added to (1).
- Only problem is that this problem is potentially as hard to solve as our original master problem.
- An intelligent restriction of constraints added to (1) makes it possible to solve the problem as a shortest path problem.
Computational Experimentation

Test setup

- Computational experiments are conducted on instances of the vehicle and crew scheduling problem in urban mass transit systems.
- Problem consists of determining bus and crew schedules simultaneously for a given time table.
- Objective function is to minimize total cost.
- Tests limited to solving the linear relaxation of the instances.
- As drivers can only change buses after a break.
- Buses must be assigned to trips and drivers to segments.
Instances

- Instances were randomly generated.
- In total 32 instances containing between 20 to 160 trips are generated.
- The number of segments per trip is 2, 4, 6 or 8.
- The number of task in an instance is the number of trips times the number of segments.
Results

- Reduction factor in solution time is between 1.7 and 12.2.
- The factors grows with the size of the problems.
- For problems with more than 700 tasks the reduction factor is at least 3, and at least 4 for problems with more than 1000 tasks.
- In the standard column generation method more than 70% of the time is used solving the master strongly motivating dynamically aggregating some MP constraints.
- Number of constraints are reduced by an average of 39% and the MP time by up to 90%.