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(jg
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Branching Strategies
(jg

Why do we need to branch?

Branching is necessary because we relax our Integer Linear Program in

order to solve it efficiently:

Fractional solutions (lp relaxation)

Other infeasibilities (combinatorial relaxation)

Branching stategies

Variable branching

Constraint branching

Follow-on branching/”subproblem” branching
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Conventional Variable Branching
(jg

Strategy

Select xj where 0 < xj < 1.
◮ 1-branch: set xj = 1. Strong branch.
◮ 0-branch: set xj = 0. Weak branch.

⋆ Objective usually unaffected.
⋆ Subproblem not trivial to solve.

The bounding process is ineffective.
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Constraint Branching I
(jg

Definition

Branch using the Ryan and Foster constraint branch

Suppose constraints p and r are covered together at fractional value
in the lp optimum.
◮ At least one pair, p and r will exist in a fractional solution.

Let J(p, r) = {j : apj = 1 and arj = 1, j = 1, 2, . . . , n}
◮ Then in an integer solution either p and r must be covered together,

or p and r cannot be covered together.
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Constraint Branching II
(jg

Strategy

Find constraints p and r with 0 <
∑

j∈J(p,r)

xj < 1.

Often you will try to maximize the sum in order to get close to an

integer solution.

In the 1-branch force p and r to be covered together by setting

xj = 0 for all columns j only covered by only one of the constraints.

In the other branch set xj = 0 for columns j in J(p, r).

The solution of the subproblem then needs to enforce the decisions

made.
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Examples
(jg

Applications

Vehicle routing

Berth Scheduling problem

Assignment problem with GUB constraints
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Berth Scheduling Problem
(jg

Constraint branching

In the 1-branch the ship is forced to occupy this location in time

In the 0-branch the ship is forced away from this location in time
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Berth Scheduling Problem - Revisited
(jg

Alternative branching strategy
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Follow-on branching
(jg

Strategy

As an alternative approach branching strategies can work on the

subproblem

Follow-on branching got its name from its application in routing and

scheduling applications

Given a fractional solution. There will be at least one arc (i , j) in the
graph of the subproblem with a fractional flow.
◮ In the 1-branch a path entering i will be forced to continue to j .
◮ In the 0-branch a path entering i can continue to any other node

except j .

Follow-on branching is not “symmetric”.

On the other hand it can be implemented very efficiently by making

changes in the subproblem.
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Dynamic Constraint Aggregation
Master Problem Characteristics(jg

Large GSPP of these consists of more than a billion variables and

more than a thousand constraints (almost all of them being set

partitioning constraints).

Such a large number of set partitioning constraints and the presence

of columns having more than 10 nonzero elements usually yield high

degeneracy in the restricted master problem.

This will slow down the column generation process.

The simplex algorithm that solves the restricted master problem will

experience a high percentage of degenerate variables in the basic

feasible solution and it will execute many degenerate pivots.
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Using The Structure
(jg

Motivation

An idea is to reduce the number of constraints in the restricted

master problem.

This will make the restricted master problem much easier to solve.

Partly because the number of degenerate pivots are reduced.

Underlying assumption

In crew scheduling it is observed that crews do not change their

vehicles very often.

Re-optimized solutions deviate slightly from planned ones.

Consequently many consecutive tasks will remain grouped.
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Notation
(jg

A set partitioning constraint is associated with a task.

A task is accomplished by a commodity.

The main variables are associated with paths that are feasible with

regard to a set of predefined rules.

A path contains an ordered sequence of tasks and possibly other

activities.

Examples

In crew pairing a task would be a flight, a commodity would be a

crew member and a path is a legal pairing.

In vehicle routing a task is a visit to a customer, a commodity is a

vehicle and a path is a route.
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Generic Formulation
(jg

The Generic Master Problem

min
∑

k∈K

∑

p∈Pk

ckp θ
k
p +M

∑

w∈W

Yw

s.t.
∑

k∈K

∑

p∈Pk

akwpθ
k
p + Yw = 1 ∀w ∈W

θkp ≥ 0 ∀p ∈ P
k , k ∈ K

Yw ≥ 0 ∀w ∈W

Notice

Ym is an artificial variable that guarantee problem feasibility.

The MP is feasible and bounded.
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The Basic Concepts
(jg

Equivalence

Given a set of paths C , two tasks w1 and w2 are equivalent with respect

to C if every path in C covers both w1 and w2, or none of them.

Equivalence classes

This relations partitions tasks into equivalence classes.

Let L be the set of classes,Wl the subset of tasks in class l ∈ L, and

Q = {Wl : l ∈ L}.
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Compatibility
(jg

Let us define compatibility criteria between partition Q and the θkp path

variables. Let p be a path in Pk , k ∈ K and Tp the set of task covered

by the path.

Path p is said to be compatible with the equivalence class l ∈ L if

Wl ∩ Tp is either the empty set or equal to Wl .

Path p is compatible with partition Q if it is compatible with all the

equivalence classes in L.

If p is compatible with the partition Q we say that θkp or its

corresponding column is compatible with Q.
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Basic Idea
(jg

Instead of using the traditional restricted master problem with all

the constraints this approach relies on a so-called aggregated

restricted master problem (ARMP).

ARMP considers smaller subsets of variables and constraints than

RMP.

Representative task

For each equivalence class Wl the ARMP only contains one

constraint.

The task associated with this constraint is denoted the

representative task.

J. Larsen (DTU MgmtEng) Set Partitioning and Applications jesla@man.dtu.dk 17/27



Aggregated RMP
(jg

As a consequence we are restricted in adding columns to the ARMP.

We can only add columns that are compatible with the partition Q.

The task aggregation needs to be adjusted dynamically throughout

the solution process because we do not know a priori which tasks

will be consecutive in the optimal paths.

We allow for dynamically to update Q and consequently

constructing an new ARMP. We say that ARMP is restricted to

partition Q and denote it ARMPQ .
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Remaining issues
(jg

Initial solution

We initially need some paths in the set C . These can be generated by a

heuristic or taken from a planned solution.

Dual variables

As a result of solving the ARMPQ we get aggregated dual variables

α̂l for all representative tasks wl . But in the subproblem I need dual

variables for each of the original tasks.

To do so, the following linear system needs to be solved.

∑

w∈Wl

αw = α̂l ∀l ∈ L
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Algorithm Description
(jg

Main Program

while True do

repeat
(x , α̂,Z )← solve ARMPQ
compute duals α from α̂

P ′′ ← oracle(α)

if P ′′ = ∅ then
STOP

P ′ ← P ′ ∪ P ′′

until P ′′Q = ∅ or modify(α)

repartition Q

repartition Q

I is a nonempty set of negative

reduced cost columns

incompatible with Q

if Z = Zold or ∃l : Ywl > 0 then
C ← C ∪ I

else
C ← B ∪ I

redefine Q according to C

Zold ← Z
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Redefinition of Q
(jg

repartition Q

I is a nonempty set of negative

reduced cost columns

incompatible with Q

if Z = Zold or ∃l : Ywl > 0

then
C ← C ∪ I

else
C ← B ∪ I

redefine Q according to C

Zold ← Z

Two alternatives

Alternative 1: Invoked if last
partition did not improve the
objective function or the
optimal solution is infeasible.
◮ Expand based on the previous

set of paths.

Alternative 2: Invoked if
successful in decreasing the
objective function value.
◮ Expand based on the

non-degenerate basic

columns.
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Partition Handling
(jg

After every minor iteration the algorithm must decide if the partition

must be redefined.

Beside updating when P ′′Q is empty a strategy is implemented to

redefine Q when it seems profitable.

This leaves room for developing your own heuristic. The authors

suggest:

modify(α) =















true if {p ∈ P̄ ′Q : c̄p(α) < 0} 6= ∅ and

r =
minp∈P′′

Q
c̄p(α)

minp∈P̄′
Q
c̄p(α)

< λ

false otherwise

Problem specific knowledge could be included here.
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Dual Variables Disaggregation
(jg

Strategy

One difficulty with the dynamic constraint aggregation method is

that it does not provide a complete dual solution.

We need a complete dual solution for solving the pricing problem.

Instead it provides an aggregated dual solution α̂.

To find a disaggregated one we need a feasible solution α to

∑

w∈Wl

αw = α̂l ∀l ∈ L (1)
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Finding a disaggregated dual
(jg

Simple solution

Setting αw = α̂l/‖Wl‖ ∀w ∈Wl , l ∈ L defines a feasible solution to this

system. It is although a crude and inefficient solution.

Complex solution

For every generated incompatible column p it must hold that

∑

w∈W

awpαw ≤ cp

These can be added to (1).

Only problem is that this problem is potentially as hard to solve as

our original master problem.

An intelligent restriction of constraints added to (1) makes it

possible to solve the problem as a shortest path problem.
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Computational Experimentation
(jg

Test setup

Computational experiments are conducted on instances of the

vehicle and crew scheduling problem in urban mass transit systems.

Problem consists of determining bus and crew schedules

simultaneously for a given time table.

Objective function is to minimize total cost.

Tests limited to solving the linear relaxation of the instances.

As drivers can only change buses after a break.

Buses must be assigned to trips and drivers to segments.
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Instance
(jg

Instances

Instances were randomly generated.

In total 32 instances containing

between 20 to 160 trips are generated.

The number of segments per trip is 2,

4, 6 or 8.

The number of task in an instance is

the number of trips times the number

of segments.

J. Larsen (DTU MgmtEng) Set Partitioning and Applications jesla@man.dtu.dk 26/27



Results
(jg

Reduction factor in solution time is between 1.7 and 12.2.

The factors grows with the size of the problems.

For problems with more than 700 tasks the reduction factor is at

least 3, and at least 4 for problems with more than 1000 tasks.

In the standard column generation method more than 70% of the

time is used solving the master strongly motivating dynamically

aggregating some MP constraints.

Number of constraints are reduced by an average of 39% and the

MP time by up to 90%.
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