a
=
=

M

Master Problem Issues

Jesper Larsent!

IDepartment of Management Engineering
Technical University of Denmark

42134 Advanced Topics in Operations Research

fletAx)=) (I,Afx)j‘"’(x)

DTU Management Engineering
Department of Management Engineering

Column Generation

M

MASTER PROBLEM

Duals' 'Columns

SUB PROBLEM

@ Branching strategies

@ Efficient solution of the master problem

J. Larsen (DTU MgmtEng) Set Partitioning and Applications jesla®@man.dtu.dk

Branching Strategies

>
>
>

Why do we need to branch?

Branching is necessary because we relax our Integer Linear Program in
order to solve it efficiently:

@ Fractional solutions (Ip relaxation)
@ Other infeasibilities (combinatorial relaxation)

| \

Branching stategies
@ Variable branching
@ Constraint branching
@ Follow-on branching/"” subproblem” branching

J. Larsen (DTU MgmtEng) Set Partitioning and Applications jesla®@man.dtu.dk

=]
=
=

Conventional Variable Branching

M

Strategy

@ Select x; where 0 < x; < 1.

» 1-branch: set x; = 1. Strong branch.
» O-branch: set x; = 0. Weak branch.
* Objective usually unaffected.

* Subproblem not trivial to solve.

@ The bounding process is ineffective.

J. Larsen (DTU MgmtEng) Set Partitioning and Applications jesla®@man.dtu.dk

=]
=
=

Constraint Branching |

M

@ Branch using the Ryan and Foster constraint branch

@ Suppose constraints p and r are covered together at fractional value
in the Ip optimum.

» At least one pair, p and r will exist in a fractional solution.
o let J(p.r)={j:ay=1landa,;=1,=1,2,...,n}
» Then in an integer solution either p and r must be covered together,
or p and r cannot be covered together.

J. Larsen (DTU MgmtEng) Set Partitioning and Applications jesla®@man.dtu.dk

Constraint Branching |l

>
>
>

Strategy

@ Find constraints p and r with 0 < Z xj < 1.
Jjed(p.r)
@ Often you will try to maximize the sum in order to get close to an
integer solution.
@ In the 1-branch force p and r to be covered together by setting
x; = 0 for all columns j only covered by only one of the constraints.

@ In the other branch set x; = 0 for columns j in J(p, r).

@ The solution of the subproblem then needs to enforce the decisions
made.

J. Larsen (DTU MgmtEng) Set Partitioning and Applications jesla®@man.dtu.dk

Examples

(=)
=
=

M

Applications

@ Vehicle routing
@ Berth Scheduling problem
@ Assignment problem with GUB constraints

J. Larsen (DTU MgmtEng) Set Partitioning and Applications jesla@man.dtu.dk

(=)
=
=

Berth Scheduling Problem

M

Constraint branching

X
i) o |
» Skib 1 1 5=14
2 ol
C 07
Skib 1 1]
p=2 £ 2
5=2 = 9
Felt 4 1 <1
6 1
& 0
A 7 1
L] I,

@ In the 1-branch the ship is forced to occupy this location in time

@ In the 0-branch the ship is forced away from this location in time

J. Larsen (DTU MgmtEng) Set Partitioning and Applications jesla@man.dtu.dk

Berth Scheduling Problem - Reuvisited

(=)
=
=

M

Alternative branching strategy

Al B}

J. Larsen (DTU MgmtEng) Set Partitioning and Applications jesla@man.dtu.dk

Follow-on branching

>
>
>

Strategy

@ As an alternative approach branching strategies can work on the
subproblem

@ Follow-on branching got its name from its application in routing and
scheduling applications

@ Given a fractional solution. There will be at least one arc (/) in the
graph of the subproblem with a fractional flow.

» In the 1-branch a path entering / will be forced to continue to j.
» In the O-branch a path entering / can continue to any other node
except J.

@ Follow-on branching is not “symmetric”.

@ On the other hand it can be implemented very efficiently by making
changes in the subproblem.

J. Larsen (DTU MgmtEng) Set Partitioning and Applications jesla@man.dtu.dk

Dynamic Constraint Aggregation

Master Problem Characteristics =

@ Large GSPP of these consists of more than a billion variables and
more than a thousand constraints (almost all of them being set
partitioning constraints).

@ Such a large number of set partitioning constraints and the presence
of columns having more than 10 nonzero elements usually yield high
degeneracy in the restricted master problem.

@ This will slow down the column generation process.

@ The simplex algorithm that solves the restricted master problem will
experience a high percentage of degenerate variables in the basic
feasible solution and it will execute many degenerate pivots.

J. Larsen (DTU MgmtEng) Set Partitioning and Applications jesla@man.dtu.dk

Using The Structure

>
>
>

Motivation
@ An idea is to reduce the number of constraints in the restricted
master problem.
@ This will make the restricted master problem much easier to solve.

@ Partly because the number of degenerate pivots are reduced.

-

Underlying assumption

@ In crew scheduling it is observed that crews do not change their
vehicles very often.

@ Re-optimized solutions deviate slightly from planned ones.

@ Consequently many consecutive tasks will remain grouped.

J. Larsen (DTU MgmtEng) Set Partitioning and Applications jesla@man.dtu.dk

Notation

M

@ A set partitioning constraint is associated with a task.

@ A task is accomplished by a commodity.

@ The main variables are associated with paths that are feasible with
regard to a set of predefined rules.

A path contains an ordered sequence of tasks and possibly other
activities.

©

In crew pairing a task would be a flight, a commodity would be a
crew member and a path is a legal pairing.

@ In vehicle routing a task is a visit to a customer, a commodity is a
vehicle and a path is a route.

©

J. Larsen (DTU MgmtEng) Set Partitioning and Applications jesla@man.dtu.dk

Generic Formulation

| M

The Generic Master Problem

min > Y ks M DY,

keK pepPk weWw
k pk
s.t. ZZaWPQP—i-YW:l Yw e W
keEK pepPk

0k >0 Vpe P\ kekK
Y >0 Ywe W

@ Yy, is an artificial variable that guarantee problem feasibility.
@ The MP is feasible and bounded.)

jesla@man.dtu.dk

J. Larsen (DTU MgmtEng) Set Partitioning and Applications

=]
=
=

The Basic Concepts

M

Equivalence
Given a set of paths C, two tasks wy and ws are equivalent with respect
to C if every path in C covers both w; and w», or none of them.

Equivalence classes
@ This relations partitions tasks into equivalence classes.

@ Let L be the set of classes, W, the subset of tasks in class / € L, and
Q={W,:lelL}.

J. Larsen (DTU MgmtEng) Set Partitioning and Applications jesla@man.dtu.dk

Compatibility

>
>
>

Let us define compatibility criteria between partition @ and the 9,’; path
variables. Let p be a path in P¥, k € K and T, the set of task covered
by the path.
@ Path p is said to be compatible with the equivalence class | € L if
Wi N Ty is either the empty set or equal to W;.
@ Path p is compatible with partition @ if it is compatible with all the
equivalence classes in L.
@ If p is compatible with the partition Q we say that 9’,; or its
corresponding column is compatible with Q.

J. Larsen (DTU MgmtEng) Set Partitioning and Applications jesla@man.dtu.dk

Basic ldea

>
>
>

@ Instead of using the traditional restricted master problem with all
the constraints this approach relies on a so-called aggregated
restricted master problem (ARMP).

@ ARMP considers smaller subsets of variables and constraints than
RMP.

>

Representative task

@ For each equivalence class W, the ARMP only contains one
constraint.

@ The task associated with this constraint is denoted the
representative task.

J. Larsen (DTU MgmtEng) Set Partitioning and Applications jesla@man.dtu.dk

Aggregated RMP

>
>
>

@ As a consequence we are restricted in adding columns to the ARMP.
We can only add columns that are compatible with the partition Q.

@ The task aggregation needs to be adjusted dynamically throughout
the solution process because we do not know a priori which tasks
will be consecutive in the optimal paths.

@ We allow for dynamically to update @ and consequently
constructing an new ARMP. We say that ARMP is restricted to
partition Q and denote it ARMP.

J. Larsen (DTU MgmtEng) Set Partitioning and Applications jesla@man.dtu.dk

Remaining issues

M

Initial solution

We initially need some paths in the set C. These can be generated by a
heuristic or taken from a planned solution.

Dual variables

@ As a result of solving the ARMP o we get aggregated dual variables
& for all representative tasks w;. But in the subproblem | need dual
variables for each of the original tasks.

@ To do so, the following linear system needs to be solved.

d aw = & Viel
weWw,

J. Larsen (DTU MgmtEng) Set Partitioning and Applications jesla@man.dtu.dk

Algorithm Description

while True do
repeat
(x, &, Z) < solve ARMP g
compute duals o from &
P" <+ oracle(a)
if P/ = () then

L STOP

P« P'uUP”

until P = () or modify(a)

| repartition @

| M

repartition Q

|/ is a nonempty set of negative
reduced cost columns
incompatible with @

if Z=Z,y0r3l: Yy >0 then
| C+CuUl

else
L C+<BUI/
redefine @ according to C

Zold = £

J. Larsen (DTU MgmtEng)

Set Partitioning and Applications

jesla@man.dtu.dk

Redefinition of @

repartition Q

I is a nonempty set of negative
reduced cost columns
incompatible with @
if Z=2,40r3:Yy >0
then

| C+ CuUl

else
L C+<BUI/
redefine @ according to C

Zold = £

>
>
>

Two alternatives

@ Alternative 1: Invoked if last
partition did not improve the
objective function or the
optimal solution is infeasible.

» Expand based on the previous
set of paths.

@ Alternative 2: Invoked if
successful in decreasing the
objective function value.

» Expand based on the
non-degenerate basic
columns.

J. Larsen (DTU MgmtEng)

Set Partitioning and Applications

jesla@man.dtu.dk

Partition Handling

>
>
>

@ After every minor iteration the algorithm must decide if the partition
must be redefined.

@ Beside updating when 2’3 is empty a strategy is implemented to
redefine Q when it seems profitable.

@ This leaves room for developing your own heuristic. The authors
suggest:

true if{p € Py : G(a) <0} # 0 and
minpepé Cp(o
minpe,—;b Cp(a) <A

false otherwise

modify(a) = r=

@ Problem specific knowledge could be included here.

J. Larsen (DTU MgmtEng) Set Partitioning and Applications jesla@man.dtu.dk

Dual Variables Disaggregation

>
>
>

Strategy

@ One difficulty with the dynamic constraint aggregation method is
that it does not provide a complete dual solution.

@ We need a complete dual solution for solving the pricing problem.
@ Instead it provides an aggregated dual solution &.

@ To find a disaggregated one we need a feasible solution a to

Zaw = & VieLl (1)

weWw,

J. Larsen (DTU MgmtEng) Set Partitioning and Applications jesla@man.dtu.dk

Finding a disaggregated dual

>
>
>

Simple solution

Setting a, = &;/||W)|| YVw € W, | € L defines a feasible solution to this
system. It is although a crude and inefficient solution.

Complex solution

@ For every generated incompatible column p it must hold that

E AwpQw < Cp

weW

@ These can be added to (1).

@ Only problem is that this problem is potentially as hard to solve as
our original master problem.

@ An intelligent restriction of constraints added to (1) makes it
possible to solve the problem as a shortest path problem.

J. Larsen (DTU MgmtEng) Set Partitioning and Applications jesla@man.dtu.dk

Computational Experimentation

>
>
>

Test setup

@ Computational experiments are conducted on instances of the
vehicle and crew scheduling problem in urban mass transit systems.

Problem consists of determining bus and crew schedules
simultaneously for a given time table.

©

Objective function is to minimize total cost.
Tests limited to solving the linear relaxation of the instances.

As drivers can only change buses after a break.

¢ © ¢ ¢

Buses must be assigned to trips and drivers to segments.

J. Larsen (DTU MgmtEng) Set Partitioning and Applications jesla@man.dtu.dk

Instance

(=)
=
=

M

Instances

@ |nstances were randomly generated.

@ In total 32 instances containing
between 20 to 160 trips are generated.

@ The number of segments per trip is 2,
4, 6 or 8.

@ The number of task in an instance is
the number of trips times the number
of segments.

J. Larsen (DTU MgmtEng) Set Partitioning and Applications jesla@man.dtu.dk

Results

M

@ Reduction factor in solution time is between 1.7 and 12.2.
@ The factors grows with the size of the problems.

@ For problems with more than 700 tasks the reduction factor is at
least 3, and at least 4 for problems with more than 1000 tasks.

@ In the standard column generation method more than 70% of the
time is used solving the master strongly motivating dynamically
aggregating some MP constraints.

@ Number of constraints are reduced by an average of 39% and the
MP time by up to 90%.

J. Larsen (DTU MgmtEng) Set Partitioning and Applications jesla@man.dtu.dk

	Introduction
	Column Generation

	Branching Strategies
	Variable Branching
	Constraint Branching
	Follow-on branching

	Dynamic Constraint Aggregation
	Characteristics
	Notation
	Formulation

	Aggregation/Disaggregation
	The Algorithm
	Dual Variables Disaggregation Strategy

	Computational Results
	Setup
	Results

