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Column generation is often used to solve problems involving set-partitioning constraints, such as vehicle-routing and
crew-scheduling problems. When these constraints are in large numbers and the columns have on average more than
8–12 nonzero elements, column generation often becomes inefficient because solving the master problem requires very
long solution times at each iteration due to high degeneracy. To overcome this difficulty, we introduce a dynamic constraint
aggregation method that reduces the number of set-partitioning constraints in the master problem by aggregating some
of them according to an equivalence relation. To guarantee optimality, this equivalence relation is updated dynamically
throughout the solution process. Tests on the linear relaxation of the simultaneous vehicle and crew-scheduling problem
in urban mass transit show that this method significantly reduces the size of the master problem, degeneracy, and solution
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solution time is reduced by a factor of 8.
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1. Introduction
Column generation is an iterative process that solves,
at each iteration, a restricted master problem (a linear
program) and one or several subproblems. It is well
known for solving linear relaxations in a variety of
applications, especially in the vehicle-routing and crew-
scheduling fields, where many problems can be formulated
as set-partitioning-type integer problems. In practice, large
instances of these problems involve more than one billion
variables and one thousand constraints, including more than
90% of set-partitioning constraints. Such a large number
of set-partitioning constraints and the presence of columns
having on average more than 8–12 nonzero elements usu-
ally yield high degeneracy in the restricted master prob-
lems, considerably slowing down the column generation
process. In fact, when the simplex algorithm is used for
solving these linear programs, the basis contains a large
percentage of degenerate variables and the algorithm exe-
cutes many degenerate pivots.
In this paper, we propose a new exact column gen-

eration algorithm called the dynamic constraint aggre-
gation algorithm that works with a sequence of linear
programs containing significantly fewer constraints. These

linear programs are much easier to solve than the standard
restricted master problems, yielding a substantial reduction
in the overall linear relaxation solution times.
Without loss of generality, we use the following termi-

nology derived from crew-scheduling applications. A set-
partitioning constraint is associated with a task (for
instance, a flight or a bus trip segment) to be accomplished
by a commodity (a pilot or a bus driver). The main vari-
ables are associated with paths (pilot or driver schedules)
that are feasible with regards to a set of predefined rules.
A path contains an ordered sequence of tasks and possi-
bly other activities (breaks, rests, briefings, etc.). For the
sake of clarity, we assume first that there exists a partial
ordering of the tasks that is sufficient to order completely
the tasks that can be part of the same feasible path. For
instance, such an ordering might correspond to the chrono-
logical order of the task starting times. This assumption is
lifted at the end of §4.2.2.
The motivation behind this work comes from two obser-

vations. First, in crew-scheduling problems, we observe
that crews do not change their vehicles very often; their
rotations thus have many parts in common with the vehi-
cle routes. Second, for reoptimization of crew or vehicle
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schedules during their operation, we notice that reoptimized
solutions deviate slightly from planned ones. Consequently,
many consecutive tasks on the initial paths (the vehicle or
planned solution paths in the examples above) will remain
grouped in an optimal solution. These consecutive tasks can
then be seen as a single aggregated task, in which case their
corresponding set-partitioning constraints can be replaced
by a single set-partitioning constraint. Starting with an ini-
tial aggregation of the tasks, the dynamic constraint aggre-
gation method relies on an aggregated master problem that
contains a set-partitioning constraint for each aggregated
task. Because the size of this master problem is reduced, it
is easier to solve than the nonaggregated one. However, the
task aggregation needs to be adjusted dynamically through-
out the solution process because we do not know a priori
which tasks will be consecutive in the optimal paths. Con-
sequently, to prove the optimality of an aggregated master
problem solution, columns that do not respect the current
task aggregation also need to be priced out, requiring a
dual solution for the nonaggregated master problem. The
dynamic constraint aggregation algorithm uses an efficient
shortest path algorithm to obtain the dual solution of the
nonaggregated master problem.
The idea of dynamic constraint aggregation was first

introduced in the thesis of Villeneuve (1999). He presented
a theoretical framework of the dynamic constraint aggrega-
tion algorithm, but did not provide an implementation. This
paper presents the first implementation of this approach
and refines the theoretical framework based on the insight
gained from the practical point of view. The results at the
end of this paper show that, in some test cases, the total
linear relaxation solution time is reduced by up to 80%
compared to the standard column generation method.
This paper is organized as follows. The next section

presents a generic but simplified mathematical formulation
for the class of problems addressed by the dynamic con-
straint aggregation approach. It also briefly describes the
standard column generation approach. Section 3 proposes
a literature review on different ways of accelerating col-
umn generation. In §4, the dynamic constraint aggregation
algorithm is presented. We discuss its basic concepts and
analyze its convergence. In §5, we report computational
results obtained with this approach on randomly generated
instances of the simultaneous vehicle and crew-scheduling
problem. Conclusions and future research directions are
presented in §6.

2. Generic Formulation and
Column Generation

The dynamic constraint aggregation approach addresses the
linear relaxation of problems having a set of tasks to be
covered exactly once with feasible paths at minimum cost.
These problems can be modeled as set-partitioning-type
problems, which can often be solved using a column gen-
eration method (Dantzig and Wolfe 1960, Gilmore and

Gomory 1961) embedded in a branch-and-bound scheme.
This decomposition method divides the problem into a
master problem and a set of subproblems. The constraints
linking the various commodities (such as task-covering
constraints) are handled in the master problem, while the
constraints separable by commodity (such as the total dura-
tion of a crew schedule) are treated in the subproblems.
We present below a generic formulation of a master

problem. To lighten the text, this formulation is simplified
and contains only the essential elements for understanding
the dynamic constraint aggregation algorithm, that is, the
set-partitioning linking constraints. The following notation
is required.
Let W and K be the sets of tasks and commodities,

respectively. The set of feasible paths for commodity k ∈K
is denoted by Pk. With each path p ∈ Pk, k ∈K, we asso-
ciate a cost ckp and a parameter akwp that takes value 1 if it
covers task w ∈W and 0 otherwise. Without loss of gen-
erality, we assume that for each path p, at least one of its
associated parameter akwp takes value 1. The model relies
on two types of variables: path flow variables 	kp that indi-
cate the flow of commodity k ∈ K along path p ∈ Pk and
artificial variables Yw, w ∈W , that guarantee problem fea-
sibility. These variables are given a cost M large enough
to ensure that their value is zero if there exists a solution
involving only path variables. They are introduced in this
model to simplify the proofs of §4.3. Note that, for real-
world applications, each artificial variable could bear the
real cost of executing the associated task by external means
and would therefore be fully part of the model.
The generic master problem formulation, denoted by MP,

is as follows:

Minimize
∑
k∈K

∑
p∈Pk

ckp	
k
p +M

∑
w∈W

Yw (2.1)

subject to
∑
k∈K

∑
p∈Pk

akwp	
k
p + Yw = 1 ∀w ∈W� (2.2)

	kp � 0 ∀p ∈ Pk� k ∈K� (2.3)

Yw � 0 ∀w ∈W (2.4)

Model (2.1)–(2.4) is a set-partitioning model. The objec-
tive function (2.1) seeks to minimize the total cost, which
includes the penalties for violating the set-partitioning
constraints (2.2). These constraints ensure that each task
is covered exactly once. Constraint sets (2.3) and (2.4)
impose nonnegativity on the 	kp and Yw variables. It should
be noted that the MP is feasible and bounded. A less-
simplified model would contain additional linear con-
straints (for instance, constraints on vehicle availability),
possibly involving additional variables, to reflect the speci-
ficity of the problem.
In practice, this formulation often contains a huge num-

ber of 	kp path variables and is solved using an iterative col-
umn generation method. At each iteration, such a method
considers a restricted master problem (RMP) that involves
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a small subset of the path variables. The RMP is usually
solved by means of a standard linear programming algo-
rithm, such as the primal simplex algorithm, to obtain a
pair of primal and dual solutions. Then, taking into account
this dual solution, a series of subproblems (one per com-
modity) are solved to generate negative reduced-cost path
variables (columns), if any. If none are generated, the algo-
rithm stops, as the computed primal solution of the cur-
rent RMP is also optimal for MP. Otherwise, the negative
reduced-cost columns (or a subset of them) are added to
the RMP, which is reoptimized at the next iteration.
In general, for time-constrained vehicle-routing and

crew-scheduling problems, the subproblems correspond to
constrained shortest path problems (see Desrosiers et al.
1984, Desrochers and Soumis 1989, Barnhart et al. 1998,
Desaulniers et al. 1998, Gamache et al. 1999). We assume
that an oracle is available for efficiently solving them.

3. Literature Review
The overall solution time of a column generation method
is equal to the sum of the time spent at each iteration.
Two strategies can be used to reduce it: (i) use less time
per iteration without increasing the number of iterations
too much, or (ii) reduce the number of iterations without
increasing the time spent at each iteration too much. We
next review the main approaches proposed in the literature
for both strategies.
To reduce the computational cost per iteration, partial

pricing can often be used when a large proportion of the
time is devoted to the solution of the subproblems. This
acceleration technique consists of solving restricted sub-
problems or a subset of the subproblems at each itera-
tion (see Gamache et al. 1999). However, the number of
iterations might increase because the information used by
the subproblems is poorer. Also, when the master prob-
lem contains a large number of constraints that have a high
probability of being inactive at optimality, these constraints
can be relaxed a priori and individually reintroduced at
subsequent column generation iterations when the current
solution violates them. This constraint generation approach
was, for instance, successfully applied by Cordeau et al.
(2001) for simultaneously assigning locomotives and cars
to passenger trains. Constraint generation usually increases
the number of iterations because the cascading effect of
reintroducing a constraint on the other still relaxed con-
straints might be discovered only at future iterations. This
approach can therefore be beneficial when a large number
of constraints are set aside at the beginning and most of
them are not reintroduced.
Freling et al. (1999) proposed to approximately solve

each RMP using Lagrangean relaxation (Geoffrion 1974,
Fisher 1981). In this approach, constraints are trans-
ferred in the objective function using multipliers, forming
Lagrangean subproblems that provide lower bounds on the
MP optimal value. Then, the problem of finding the mul-
tiplier values yielding the largest lower bound, called the

Lagrangean dual problem, is solved by an algorithm for
nonsmooth convex optimization. When using an algorithm
whose convergence is asymptotic, such as the subgradient
algorithm (Held and Karp 1971), the algorithm is stopped
according to heuristic criteria. If the approximate (feasible
but not necessarily optimal) dual solution to the RMP is
sufficiently close to the set of optimal solutions, the num-
ber of column generation iterations needed to solve the MP
stays more or less the same as with the column generation
algorithm described in §2. However, the Lagrangean relax-
ation approach does not directly compute a primal solution
for the RMP. Primal solutions are useful both for finding
heuristic integer feasible solutions and for defining branch-
ing rules when column generation is used within a branch-
and-price framework. To compensate for this shortcoming,
Barahona and Anbil (2000) developed the so-called volume
algorithm, an extension of the subgradient algorithm that
also computes an approximate primal solution.
Lagrangean relaxation can also be applied for solving

the whole MP, that is, not only the RMP at each column
generation iteration. In this case, it is well known (see
Nemhauser and Wolsey 1988) that it produces the same
optimal value as column generation when these two meth-
ods rely on the same subproblems. Lagrangean relaxation
is then a dual formulation of the column generation prob-
lem, where the set of all columns in the latter is replaced
implicitly in the former by the use of optimization subprob-
lems. This dual formulation has historically been associated
with simple solution procedures at each iteration, such as
a single step in the direction of the last subgradient pro-
duced by a subproblem, with asymptotic convergence as a
consequence.
Solving the MP via a sequence of RMPs is a dual upper

bounding algorithmic strategy first described by Kelley
(1960) and having weak theoretical convergence properties.
The major drawback of Kelley’s method stems from the
lack of significant guarantees on the amount of dual space
being cut by the adjunction of new generated columns. This
fact has motivated the development of central cutting-plane
methods with better theoretical convergence properties,
that is, yielding in theory a reduced number of iterations.
Goffin and Vial (1990, 2002) describe an analytic cen-
ter cutting-plane method (ACCPM) in which a logarith-
mic barrier function is maximized over a dual localization
set to identify the next dual point to be used for solv-
ing the Lagrangean subproblems. They provide a conver-
gence analysis and many references to problems solved
either more efficiently or more reliably using ACCPM than
Kelley’s method.
Pursuing the same goal of accelerating the theoretical

and practical convergence of the sequence of dual solu-
tions toward a solution of the MP, bundle methods (see
Hiriart-Urruty and Lemaréchal 1991) add to the linearized
(column generated) model of the Lagrangean subproblems
a parameterized quadratic penalty centered at the current
dual iterate to prevent oscillations in the dual space. By
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taking advantage of a priori information on optimal dual
solutions to the MP, du Merle et al. (1999) could obtain
important reductions in the overall solution time by using
a three-piece linearization of the bundle methods idea.
The contribution of this paper is algorithmic and prac-

tical. We propose an original solution strategy for solving
a special class of MPs by column generation, in which
there is a large proportion of set-partitioning constraints.
The solution strategy is a specialization of the usual col-
umn generation algorithm, where we exploit some (partial)
knowledge of the structure of primal solutions to reduce
the number of constraints to be considered simultaneously
when solving an RMP. The originality of the approach
lies in the definition of an auxiliary network flow problem
used both to drive the selection of the subset of consid-
ered constraints and to efficiently produce values for the
dual variables associated with unselected constraints. We
then demonstrate the practical efficiency of our approach
by solving large instances of a vehicle and crew-scheduling
problem.

4. Dynamic Constraint Aggregation
Algorithm

This section presents the proposed dynamic constraint
aggregation method and analyzes its convergence. Before-
hand, we discuss the basic concepts of this new method-
ology.

4.1. Basic Concepts

The dynamic constraint aggregation approach deals with
reducing the number of set-partitioning constraints (2.2) in
the MP by aggregating some of them. This aggregation is
performed according to a partition of the tasks in W that is
defined by the following equivalence relation:
Given a set of paths C, two tasks w1 and w2 in W are

said to be equivalent with respect to C if every path in C
covers both w1 and w2, or none of them.
This relation, which is denoted by �C , partitions the

tasks into equivalence classes. Let L be the set of classes,
Wl the subset of tasks in class l ∈ L, and Q= �Wl� l ∈ L�
the resulting task partition, where any reference to C is
omitted to lighten the notation. At the beginning, parti-
tion Q is defined with respect to the initial set of paths C
that is provided by an external heuristic or a planned solu-
tion. Then, throughout the solution process, Q is adjusted
dynamically by modifying the composition of C until an
optimal solution is found.
Now let us define some compatibility criteria between

partition Q and the 	kp path variables. Let p be a path in Pk,
k ∈K, and Tp be the set of tasks it covers. Path p is said to
be compatible with the equivalence class l ∈ L if Wl∩Tp is
empty or equal to Wl. It is also said to be compatible with
partition Q if it is compatible with all equivalence classes
in L. In this case, we also say that 	kp or its corresponding
column is compatible with Q.

Instead of using the traditional RMP, the dynamic con-
straint aggregation algorithm relies on a so-called aggre-
gated restricted master problem (ARMP) that considers
smaller subsets of variables and constraints than the RMP.
The partition Q plays a central role in defining the ARMP.
First, it restricts the set of columns that can be added to
the ARMP to the columns that are compatible with Q. Sec-
ond, Q also restricts the set of partitioning constraints (2.2)
considered in the ARMP to one representative partition-
ing constraint for each equivalence class l ∈ L. The task
in Wl associated with that constraint is denoted by wl and
said to be the representative task for this class. The other
set-partitioning constraints are removed from the ARMP
as they are identical to their representative constraint with
respect to the path variables considered by the ARMP. They
might, however, reappear in the ARMP when Q is updated.
Besides the columns compatible with Q, the ARMP also
contains the artificial variables Ywl , l ∈ L, involved in the
representative set-partitioning constraints. The cost of such
a variable is, however, set to M �Wl� to ensure a uniform
cost structure when different partitions are used. We say
that the ARMP is restricted to partition Q and, to be more
explicit when necessary, we will denote it by ARMPQ.
The dynamic constraint aggregation algorithm is made

up of two types of iterations: minor and major ones. In a
minor iteration, the ARMPQ is optimized and columns are
generated by the subproblems, whereas in a major itera-
tion a series of minor iterations are executed before adjust-
ing the partition Q. To generate columns, the subproblems
require a complete dual solution, that is, a dual variable
value for each set-partitioning constraint (2.2) in the MP.
Therefore, a procedure is needed to disaggregate the dual
solution of the ARMPQ. Finally, let us mention that the
subproblems can generate columns that are compatible or
incompatible with Q. The incompatible columns are obvi-
ously not added to the ARMPQ, but they are used to decide
when and how to modify the task partition.

4.2. Algorithm Description

The dynamic constraint aggregation algorithm constitutes a
new version of the standard column generation method in
which some constraints of the RMP are aggregated. This
new version speeds up the solution process. It can also be
easily adapted to adequately exploit specific structures of a
given problem.
The algorithm pseudocode is given in Algorithm 1 and

commented upon in the subsequent paragraphs. Compre-
hensive details are further provided in §§4.2.1 and 4.2.2.
We begin by giving some useful notation:
• Q denotes a partition of the tasks.
• For a given set P of feasible columns, PQ ⊂ P denotes

the subset of columns compatible with partition Q.
• P ′ denotes the set of columns generated by the oracle

since the beginning of the algorithm.
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• oracle(�) is a function that solves the subproblems
and returns negative reduced cost columns, if any, accord-
ing to a disaggregated dual variable vector �.
• P ′′ denotes the set of columns generated by the oracle

at a given minor iteration.
• modify(�) is a predicate that, based on a disaggre-

gated dual variable vector �, decides whether or not it is
better to switch to another partition.
• Zold stores the objective value at the end of each major

iteration and is initially set to 
.
• B denotes the set of basic columns taking a positive

value at a given minor iteration.
In Step 1 of Algorithm 1, an initial set of columns C

is chosen. This set may be found by a heuristic pro-
cedure such as the simple one presented in §5.3. It is
used to define an initial partition according to the equiv-
alence relation �C . On the one hand, we shall highlight
the importance of accurately choosing the initial partition
to maximize the effectiveness of the linear programming
optimizer and to minimize the number of column genera-
tion iterations. This initial partition should group together,
as much as possible, tasks having a high probability of
being grouped together in an optimal solution of the linear
relaxation. The design of this partition is therefore problem
dependent. On the other hand, it is not essential that these
initial columns form a feasible solution to the MP, and even
that they be associated with valid paths, because they are
only used to partition the tasks. The set of path variables
considered for the first ARMPQ is then initialized to the
empty set in Step 2. Obviously, if some of the columns
in C are valid, they can be added to P ′

Q.

Algorithm 1. Dynamic Constraint Aggregation
Algorithm

1. Choose an initial set of columns C and create an
initial partition Q from C.

2. P ′
Q ←�

3. Zold =

4. while True do
5. repeat
6. Solve the ARMPQ restricted to P ′

Q to obtain a
primal solution x of value Z and a dual
solution �.

7. Compute a vector of disaggregated dual
variables � from �.

8. P ′′ ← oracle���
9. if P ′′ = � then
10. STOP {x is an optimal solution}
11. end if
12. P ′ ← P ′ ∪P ′′

13. until P ′′
Q =� or modify���

14. Let I ⊆ P ′ be a nonempty set of negative reduced
cost columns incompatible with Q.

15. if Z=Zold or ∃l ∈ L such that Ywl > 0 then
16. C←C ∪ I
17. else

18. C← B ∪ I
19. end if
20. Redefine Q and the ARMPQ according to C.
21. Zold ←Z
22. end while

Major iterations begin at Step 4 and end at Step 22,
while minor ones go from Step 5 to Step 13. In Step 6, the
ARMPQ is solved using a linear programming optimizer
to yield a primal solution x and a vector of dual variables
�= � �l � l ∈ L� associated with the aggregated constraints.
In Step 7, this vector of dual variables is disaggregated

to obtain one dual variable for each set-partitioning con-
straint (2.2) of the original problem. To do so, the following
linear system, which possesses an infinite number of feasi-
ble solutions when at least two constraints are aggregated,
needs to be solved:

∑
w∈Wl

�w = �l ∀ l ∈ L (4.1)

An efficient strategy for disaggregating dual variable vec-
tors is discussed in §4.2.2.
In Step 8, the oracle returns a set of feasible columns

with negative reduced costs. If this set is empty, then
the fractional solution x is optimal and the algorithm is
stopped. Otherwise, this set is added to the set P ′ in
Step 12. In Step 13, the algorithm decides if it is desirable
to change the partition by completing a major iteration or to
keep it unchanged and perform another minor iteration. The
partition is changed if none of the columns generated in
Step 8 are compatible with Q or if the predicate modify(�)
decides so. Such a predicate can be very simple, as shown
by the example given in §4.2.1.
In Steps 14–20, partition Q is redefined according to a

new set of columns C. This new set is formed either by
adjoining a set of incompatible columns to the previous
set C or by merging this set of incompatible columns with
the set B of positive-valued columns in the current basis.
The first alternative necessarily increases the number of
equivalence classes in the partition, while the second one
aims at reducing it.

4.2.1. Partition Handling. After every minor itera-
tion, the algorithm must decide at Step 13 if partition Q
requires an update. Obviously, when no columns compat-
ible with Q have been generated in the current iteration
(that is, P ′′

Q is empty), Q is updated. Otherwise, the pred-
icate modify(�) decides whether or not such an update is
deemed profitable. An example for such a predicate is as
follows:

modify���=





true if �p ∈ �P ′
Q� c̄p��� < 0� �= � and

r =
minp∈P ′′

Q
c̄p���

minp∈ �P ′
Q
c̄p���

<  �

false otherwise�
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where �P ′
Q = P ′\P ′

Q and c̄p��� denotes the reduced cost of
path p ∈ Pk, k ∈K, with respect to the disaggregated dual-
variable vector �, and  is a nonnegative parameter. This
predicate returns a true value (which triggers a partition
update) whenever there exists at least one incompatible
path with a negative reduced cost and the ratio r is less
than  . When  is given a very large value �
�, the algo-
rithm completes a major iteration as soon as there exists
one incompatible column with a negative reduced cost. The
other extreme is to fix  at 0. This case dictates executing
a minor iteration every time there is a compatible column
with a negative reduced cost. Neither of these extremes is
a good value for this parameter. In fact, a value between 0
and 1 seems to be a more appropriate choice because mod-
ifying the partition can substantially change the structure
of the dual domain of the ARMP, yielding an increase in
its solution time at the next minor iteration. Note that this
strategy is similar to the partial pricing mechanism used in
the simplex algorithm.
Two ways are used to update partition Q. On the one

hand, when the last partition did not succeed in improving
the objective function value Z = Zold, or when the cur-
rent ARMP solution involves positive-valued artificial vari-
ables, the set C is augmented in Step 16 by adding to
it all columns in I . This refines the partition by breaking
some of its elements to make them compatible with the
columns in I . To avoid increasing the partition size too
much, I is restricted to a maximum of ! columns, favoring
the columns with the most negative reduced costs. On the
other hand, when partition Q was successful in decreas-
ing the objective function value, the partition is aggregated
to prevent its explosion into singletons. This is done by
redefining the set C in Step 18 as a union of I and the non-
degenerate basic columns of B. For practical purposes, we
also impose another condition for aggregating the partition:
�Q�/�W � must exceed a ratio #. This condition ensures that
the partition is not too aggregated.
Finally, note that the columns incompatible with parti-

tion Q at a given iteration are removed temporarily from
the ARMP and kept in memory for future use, namely, in
the dual variables disaggregation strategy discussed in the
next section.

4.2.2. Dual Variables Disaggregation Strategy. The
optimal primal solution x, of value Z, computed for the
ARMP in Step 6 is also optimal for the MP if there exists
a dual solution � for the MP that is dual feasible and
whose cost is Z. One difficulty with the dynamic constraint
aggregation method is that it does not provide a complete
dual solution when solving the ARMP. It rather provides an
aggregated dual solution � that needs to be disaggregated.
To do so, one can find a feasible solution � to the linear

system (4.1). This solution has a cost of Z and guarantees
that the reduced costs of the basic variables of the cur-
rent ARMP remain zero. Note that setting �w = �l/�Wl�
∀w ∈Wl, l ∈ L, defines a feasible solution to this sys-
tem. However, preliminary tests have shown that it is more

efficient to find a solution that also satisfies a large number
of dual constraints

∑
w∈W

awp�w � cp ∀p ∈ �P ∗
Q ⊆ �P ′

Q� (4.2)

where �P ∗
Q denotes the subset of generated incompatible

columns for which we want these constraints to be satis-
fied, and the commodity index k was ignored for notational
simplification. In fact, these constraints must all be satisfied
at optimality. Consequently, instead of only looking for a
feasible solution to system (4.1), it is preferable to search
for a feasible solution to the linear system of equalities and
inequalities composed of (4.1) and (4.2).
This enlarged linear system represents the intersection

between a hyperplane and a polyhedron. Solving this sys-
tem can be as difficult as solving the original MP itself.
Because the main goal of the dynamic constraint aggrega-
tion algorithm is to answer precisely the lack of efficient
methods for solving it, we propose an alternative that con-
sists of restricting the set �P ∗

Q to some interesting incompati-
ble columns (as explained below) so that this linear system
can be transformed into a shortest-path problem that is eas-
ier to solve.
The rest of this section shows how to derive this shortest-

path problem. First, the set of incompatible columns is
classified into six categories to identify the interesting
incompatible columns. Then, a variable substitution is pro-
posed to transform the linear system (4.1) and (4.2) into
another linear system whose inequalities correspond to the
optimality conditions of the sought shortest-path problem.
These conditions allow the definition of the nodes and arcs
of this problem.
Given the assumption on the partial ordering of the tasks,

the tasks within each equivalence class of Q can be ordered.
Thus, we refer to a task wj ∈W as wh

l if wj ∈Wl and h is
its order number in this set. Given a partition Q, incompati-
ble columns are grouped into six categories. Figure 1 illus-
trates an example for each category. In this figure, which
is divided into three parts to enhance visibility, seven tasks
(numbered from 1-1 to 1-4 and from 2-1 to 2-3) are par-
titioned into two equivalence classes according to partition
Q = �W1�W2�, where W1 = {1-1, 1-2, 1-3, 1-4} and W2 =
{2-1, 2-2, 2-3}. Incompatible columns (numbered from p1
to p6) are illustrated by polygonal lines that pass through
the tasks they cover. The six incompatibility categories are
defined as follows.
• A column p is said to be S-incompatible with Q if it

is incompatible with only one class i of L and covers the
starting (S) tasks of this class, i.e., if there exist i ∈ L and
a positive integer m< �Wi� such that:

1. p is compatible with l ∈ L\�i�, and
2. Wi ∩ Tp = �w1

i �    �w
m
i �.• A column p is said to be E-incompatible with Q if it

is incompatible with only one class i of L and covers the
ending (E) tasks of this class, i.e., if there exist i ∈ L and
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Figure 1. Column incompatibilities with a given
partition.

1-1

p1

1-2 1-3 1-4 2-1 2-2 2-3

1-1 1-2 1-3 1-  4                     2-1 2-2 2-3

1-1 1-2 1-3 1- 4 2-1 2-2 2-3

p2

p3

p4

p5

p6

Legend. p1: S-incompatible, p2: E-incompatible, p3: M-incompatible,
p4: SE-incompatible, p5: ES-incompatible, p6: O-incompatible.

a positive integer m> 1 such that:
1. p is compatible with l ∈ L\�i�, and
2. Wi ∩ Tp = �wm

i �    �w
�Wi �
i �.

• A column p is said to be M-incompatible with Q if it
is incompatible with only one class i of L and covers the
middle (M) tasks of this class, i.e., if there exist i ∈ L and
positive integers m and n with 1<m� n< �Wi�, such that:

1. p is compatible with l ∈ L\�i�, and
2. Wi ∩ Tp = �wm

i �    �w
n
i �.• A column p is said to be SE-incompatible with Q if

it is incompatible with only one class i of L and covers the
starting (S) and the ending (E) tasks of this class, i.e., if
there exist i ∈ L and positive integers m and n with n� 2
and m+ n� �Wi�, such that:

1. p is compatible with l ∈ L\�i�, and
2. Wi ∩ Tp = �w1

i �    �w
m
i �w

m+n
i �    �w

�Wi �
i �.

• A column p is said to be ES-incompatible with Q if
it is incompatible with two classes i and j of L and covers
the ending (E) tasks of class i followed by the starting (S)
tasks of class j , i.e., if there exist i ∈ L, j ∈ L with i �= j ,
and positive integers m> 1 and n< �Wj �, such that:

1. p is compatible with l ∈ L\�i� j�,
2. Wi ∩ Tp = �wm

i �    �w
�Wi �
i �, and

3. Wj ∩ Tp = �w1
j �    �w

n
j �.• Any other incompatible column with Q is said to be

O-incompatible.
The subset �P ∗

Q of incompatible columns in (4.2) is
restricted to the columns that fall within the first five cat-
egories. The O-incompatible columns are not considered

because they would destroy the structure of the shortest-
path problem described below. Note, however, that these
columns, which represent less than 18% of the incompat-
ible columns in the tests we made, might have the oppor-
tunity to be considered in subsequent iterations when the
partition Q is readjusted.
Given a set �P ∗

Q of generated incompatible columns, the
linear system (4.1)–(4.2) is transformed using a new set of
variables ,h

l , h ∈ �1�    � �Wl�� and l ∈ L, defined by

,h
l =

h∑
j=1

�
j
l ∀h ∈ �1�    � �Wl��� l ∈ L� (4.3)

where �j
l is the dual variable of the set-partitioning con-

straint (2.2) associated with task wj
l ∈W . For the example

above, these variables correspond to

,1
1 = �1

1� ,1
2 = �1

2�

,2
1 = �1

1 +�2
1� ,2

2 = �1
2 +�2

2�

,3
1 = �1

1 +�2
1 +�3

1� ,3
2 = �1

2 +�2
2 +�3

2

,4
1 = �1

1 +�2
1 +�3

1 +�4
1�

Using these new variables, equalities (4.1) can be writ-
ten as

,
�Wl �
l = �l ∀ l ∈ L� (4.4)

while inequalities (4.2), depending on the column incom-
patibility category, can be expressed as in Table 1, where Lp

denotes the set of equivalence classes completely covered
by path p and the notation (i, j , m, and n) used for each
category corresponds to the one used earlier to define these
categories. Using (4.4) for replacing the , �Wi �

i variables in
the right-hand side of these inequalities, we obtain constant
right-hand sides. Table 2 presents the resulting constraints
for the example above (assuming that there are no other
tasks in the problem).
The new inequalities are called difference inequalities

because they involve a difference of two variables on the
left-hand side, where one of these two variables might be
missing. Note that O-incompatible columns cannot be writ-
ten like difference inequalities.
As one can see, the difference inequalities correspond

to the optimality conditions of a shortest-path problem

Table 1. Transformation of inequalities (4.2).

Category Transformed constraint

p is S-incompatible ,m
i � cp −

∑
l∈Lp �l

p is E-incompatible −,m−1
i � cp − �i −

∑
l∈Lp �l

p is M-incompatible ,n
i −,m−1

i � cp −
∑

l∈Lp �l

p is SE-incompatible ,m
i −,m+n−1

i � cp − �i −
∑

l∈Lp �l

p is ES-incompatible ,n
j −,m−1

i � cp − �i −
∑

l∈Lp �l
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Table 2. Transformed inequalities for the example.

Category Dual constraint Transformed constraint

p1 is S-incompatible �1
2 +�2

2 � cp1 ,2
2 � cp1

p2 is E-incompatible �3
1 +�4

1 +�1
2 +�2

2 +�3
2 � cp2 −,2

1 � cp2 − �1 − �2

p3 is M-incompatible �2
1 +�3

1 � cp3 ,3
1 −,1

1 � cp3
p4 is SE-incompatible �1

2 +�3
2 � cp4 ,1

2 −,2
2 � cp4 − �2

p5 is ES-incompatible �3
1 +�4

1 +�1
2 +�2

2 � cp5 ,2
2 −,2

1 � cp5 − �1

(see Ahuja et al. 1993, pp. 135–136) defined on the directed
network G= �V �E�, where V and E denote its node and
arc sets, respectively. Node set V contains a source node S
and a node N j

l for each task w
j
l , j ∈ �1�    � �Wl�−1�, l ∈ L.

No node is created for j = �Wl� because the value of , �Wl �
l

is given by (4.4). In arc set E, an arc is defined for each
difference inequality as described in Table 3, where the
same notation as in Table 1 is again used. The cost of such
an arc is equal to the right-hand term of the inequality it
represents.
Arc set E also contains artificial arcs from S to the nodes

for which no path from S exists. These arcs are assigned
a cost 0 , which is large enough to ensure that the artificial
arcs cannot be part of a negative directed cycle. An artifi-
cial arc connecting S to a node N j

l is equivalent to adding
the difference inequality ,

j
l � 0 to the linear system. The

network built for our example is shown in Figure 2.
To compute the , variable values, the shortest-path prob-

lem from S to all the other nodes in V is solved using
Bellman’s (1958) dynamic programming algorithm because
network G can contain cycles and arc costs can be nega-
tive. The value of ,j

l , j ∈ �1�    � �Wl� − 1�, l ∈ L, corre-
sponds to the length of the computed shortest path between
node S and node N j

l . When network G contains a negative
cost cycle, the system of difference inequalities is infeasible
because the dual problem of an unbounded primal prob-
lem is always infeasible. In this case, the detected cycle is
simply broken up by removing some of its arcs (that is,
by omitting the corresponding constraints (4.2)), and the
shortest-path problem is solved again.
Note that once the , variables have been computed, the

� variables can easily be computed as follows: �1
l = ,1

l

and �
j
l = ,

j
l − ,

j−1
l ∀ j ∈ �2�    � �Wl��, l ∈ L. Recall that

the values of , �Wl �
l , l ∈ L, are provided by Equation (4.4).

Table 3. Arcs created from difference inequalities.

Category Arc Cost

p is S-incompatible �S�Nm
i � cp −

∑
l∈Lp �l

p is E-incompatible �Nm−1
i � S� cp − �i −

∑
l∈Lp �l

p is M-incompatible �Nm−1
i �N n

i � cp −
∑

l∈Lp �l

p is SE-incompatible �Nm+n−1
i �Nm

i � cp − �i −
∑

l∈Lp �l

p is ES-incompatible �Nm−1
i �N n

j � cp − �i −
∑

l∈Lp �l

To conclude this section, let us discuss the assumption on
the partial ordering of the tasks that is only needed to clas-
sify the incompatible columns and to transform inequali-
ties (4.2) into difference inequalities. When this assumption
does not hold, the dynamic constraint aggregation method
can still be applied. Indeed, on the one hand, if the order
of the tasks in a path is totally irrelevant for the problem as
in the binary cutting-stock problem (see Vance et al. 1994),
then an arbitrary task ordering can be defined at the begin-
ning of the solution process and the tasks in a path can
always be ordered according to it. On the other hand, if this
order is important as in the vehicle-routing problem with
(large) time windows, where the cost of a path depends
on the order of the tasks it contains (see Desrochers et al.
1992), an arbitrary task ordering can be defined at the
beginning of the solution process and revised each time that
the partition is modified. In this case, a path that covers in
disorder two tasks belonging to the same equivalence class
is simply associated with an O-incompatible column.

4.3. Algorithm Convergence

In this section, we show that the dynamic constraint aggre-
gation method presented above converges to an optimal
solution of the MP (2.1)–(2.4) in a finite number of minor
iterations, that is, a finite number of times where the ARMP
is solved in Step 6. The demonstration relies on three
propositions that are stated and proven below. We conclude
this section by highlighting the fact that this convergence is
similar to the convergence of the primal simplex algorithm.
Observe first that the artificial variables Yw, w ∈ W ,

ensure the feasibility of the MP as well as the feasibility of
the ARMPQ for any partition Q. The following proposition
provides a relationship between the optimal basic solutions

Figure 2. Directed network G for the example.

1-1S

Legend: Arcs derived from difference inequalities
Artificial arcs

1-2 1-3 2-1 2-2
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computed by the simplex algorithm for the ARMP and the
solutions of the MP.

Proposition 1. Let Q be the partition at a given minor
iteration, xQ the optimal basic solution computed for the
ARMPQ at this iteration, and zQ the cost of this solution.
Then, xQ can be extended to form a basic feasible solu-
tion x of the MP, whose cost is also zQ.

Proof. Let RQ be the set of representative tasks associated
with the rows of the ARMPQ. It is easy to prove that the
solution x can be obtained by assigning to all variables
considered in the ARMPQ their corresponding values in xQ,
to all artificial variables Yw, w ∈W\RQ, the values of their
corresponding representative task artificial variables, and to
all other variables the zero value. The basis associated with
x is then composed of all the positive-valued variables and
a subset of the artificial variables, including all the artificial
variables Yw, w ∈W\RQ. �

Next, denote by Zi the optimal value of the ARMP com-
puted in Step 6 at minor iteration i. The following propo-
sition shows that the optimal value of the ARMP cannot
increase from one minor iteration to the next.

Proposition 2. For any two consecutive minor iterations i
and i+1 of the dynamic constraint aggregation algorithm,
Zi �Zi+1.

Proof. First, assume that no partition adjustment is per-
formed after iteration i (the test in Step 13 is false). In this
case, a standard column generation iteration is executed for
an MP that involves a restricted number of set-partitioning
constraints. Hence, Zi �Zi+1.
Next, assume that a partition adjustment is performed

after iteration i, where the set C is updated in Step 16 or
in Step 18. Denote by Qi and Qi+1 the partitions used in
Step 6 at minor iterations i and i+1, respectively. Observe
that all path variables taking a positive value in the solu-
tion of the ARMPQi

are also compatible with the parti-
tion Qi+1. Thus, they are part of P ′

Qi+1 and considered in
the ARMPQi+1 . Consequently, a feasible solution for the
ARMPQi+1 can be built by keeping the same values for these
variables, setting the other path variables to zero and dupli-
cating appropriately the values of the artificial variables as
in the proof of Proposition 1. Because this feasible solution
has a cost of Zi, the optimal value Zi+1 of the ARMPQi+1
cannot exceed Zi. �

The following proposition completes the proof on the
finite convergence of the algorithm. The proof proceeds
by analyzing the sequence of blocks of minor iterations
defined by the sequence of major iterations: We show that
the objective cannot increase between major iterations, that
the number of consecutive major iterations with the same
objective value is bounded, and that the number of different
objective values is finite. Here we assume that the primal
simplex algorithm used to solve the ARMP includes an
anticycling strategy that takes care of degeneracy and that

the oracle always solves the subproblems in finite time.
Also, recall from §2 that the MP is bounded. It therefore
possesses an optimal solution because it is also feasible.

Proposition 3. The dynamic constraint aggregation algo-
rithm requires a finite number of minor iterations to find
an optimal solution to the MP.

Proof. As mentioned earlier, minor iterations correspond
to standard column generation iterations on the ARMP.
Therefore, due to the finite convergence of the column gen-
eration method, there can only be a finite number of minor
iterations within a major iteration. The proof thus consists
of showing that there cannot be an infinite number of major
iterations.
First, Proposition 2 specifies that the optimal value Z of

the ARMP cannot increase from one major iteration to the
next. Second, let us show that there can only be a finite
number of major iterations where the optimal value Z of
the ARMP decreases. By Proposition 1, we know that every
computed solution for the ARMP corresponds to a basic
feasible solution of the MP that bears the same cost. From
linear programming theory, the MP has a finite number of
basic solutions and, consequently, a finite number of basic
solutions with different costs. Putting these two remarks
together, we deduce that an infinite number of ARMP basic
solutions with different costs cannot exist. Because Z is
nonincreasing between two consecutive major iterations,
the same ARMP solution cannot be computed more than
once when Z decreases, and there can only be a finite num-
ber of such decreases.
Third, there can only be a finite number of consecutive

major iterations without a decrease in the optimal value Z
of the ARMP. Indeed, when there is no decrease between
two major iterations (that is, Z = Zold in Step 15), parti-
tion Q is disaggregated to enlarge the set of compatible
columns. Because Q becomes fully disaggregated after a
maximum of �W � − 1 consecutive disaggregations, at most
�W � − 1 consecutive major iterations can be performed
without a decrease of Z. Note that when Q is fully disag-
gregated, all columns are compatible with it, and either the
algorithm stops or a decrease must occur.
The proof is complete because we have shown that there

are no two consecutive minor iterations with an increase
in Z, and a finite number of consecutive minor iterations
with a decreased or constant Z value. �

To conclude this section, we would like to point out
that the dynamic constraint aggregation algorithm can have
a convergence that is similar to the convergence of the
simplex algorithm in the sense that the objective value of
the solutions computed after every simplex pivot does not
increase. Proposition 2 shows that the optimal value of the
ARMP is not increasing from one iteration to the next,
while the simplex algorithm ensures such a property when
solving the ARMP in Step 6. Now consider what happens
to the objective value between the last simplex pivot of an
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iteration and the first pivot of the next iteration. When no
partition adjustment is performed, this transition is smooth
and the objective does not increase. However, when the
partition changes, one can always build (as discussed in
the proof of Proposition 2) from the solution of the last
iteration a feasible basic solution for the next ARMP that
has the same cost. This basic solution can be supplied to
the simplex algorithm to avoid executing a feasibility phase
that would inevitably cause the objective value to increase.

5. Computational Experimentation
A series of computational experiments were conducted to
test the efficiency of the dynamic constraint aggregation
algorithm proposed in this paper. We performed these tests
on instances of the vehicle and crew-scheduling problem
(VCSP) in urban mass transit systems, an NP-hard prob-
lem that has recently been addressed by Freling et al.
(1999) and Haase et al. (2001) using column generation
approaches. The VCSP was chosen because good initial
task partitions can easily be obtained for this type of prob-
lem. Before presenting the results, we briefly define the
VCSP and discuss details on the implementation of the
dynamic constraint aggregation approach for the VCSP.

5.1. VCSP Definition

The following VCSP definition is a summary of the defi-
nition presented in Haase et al. (2001). The VCSP consists
of determining bus and crew schedules simultaneously to
accomplish at minimum cost a set of timetabled trips run-
ning along a set of bus lines while satisfying a variety of
crew-scheduling constraints imposed by collective agree-
ment and internal regulations. Bus schedules correspond
to alternating sequences of deadhead and timetabled trips.
Deadhead trips are empty of passengers and used to reposi-
tion buses. We assume that all buses are identical and based
in a single depot.
Driver schedules, called duties, are more complex

because driver exchanges can occur at various locations
along the timetabled trips. These locations are called relief
points and divide each trip into consecutive segments.
A duty is composed of a sequence of segments, dead-
head trips, and breaks. In general, there are several valid
duty types. For our tests, two duty types were considered:
straight duties that contain no breaks and split duties that
include a single break. Note that a driver can only change
buses after a break. Therefore, it is quite obvious that most
consecutive segments along the trips will also be consec-
utive in optimal VCSP driver schedules, hence the idea of
task aggregation.
The main constraints of this problem are as follows:

A bus must be assigned to each timetabled trip, a driver
must be assigned to each segment, and a driver must be
assigned to each deadhead trip that is part of a bus sched-
ule. The cost structure involves operational costs propor-
tional to the mileage traveled by the buses and to the time
worked by the drivers, as well as bus and driver fixed costs.

5.2. Implementation Details

As proposed by Haase et al. (2001), we formulated the
VCSP as a set-partitioning-type model solvable by branch
and price. In the corresponding MP, a commodity is defined
for each type of duty, a 	kp variable for each feasible driver
duty, and a set-partitioning constraint for each following
task: drive a bus to the start location of each timetabled trip,
operate a bus along each segment, and drive a bus away
from the end location of each trip. This MP also includes an
additional variable and a supplementary set of constraints
to count the buses and ensure the optimality of the bus
schedules, which are derived a posteriori. A subproblem is
defined for each duty type. These subproblems correspond
to constrained shortest-path problems that are solved by a
generalization of the dynamic programming algorithm of
Desrochers and Soumis (1988).
The dynamic constraint aggregation algorithm was cus-

tomized as follows for the VCSP. First, the partial ordering
of the tasks is given by the chronological order of the task
start times. Second, an initial set of paths C is created by
constructing for each timetabled trip a path that starts from
the depot with a deadhead trip, covers all the segments in
this trip, and returns to the depot with another deadhead
trip. Indeed, it is very likely that the consecutive segments
along each timetabled trip remain consecutive in an optimal
solution. Note, however, that some of these paths might not
be feasible with respect to the working rules but, as men-
tioned earlier, this is not necessary. An initial partition Q is
then defined with respect to the equivalence relation �C .
Third, for computing the disaggregated dual variables,

the linear system (4.1) and (4.2) is transformed into a
shortest-path problem, as explained in §4.2.2. In the VCSP
context, the set �P ∗

Q used to define the underlying network
is restricted to a subset of the previously generated incom-
patible columns, namely, the S-, M-, and ES-incompatible
columns. The SE- and E-incompatible columns are ignored
to ensure that this network is free of negative directed
cycles, a rare situation when they were considered in the
preliminary tests that we performed. Furthermore, ignoring
these columns yields an acyclic network. The correspond-
ing shortest-path problem can then be solved by sorting
the nodes in topological order before executing a single
pass of Bellman’s (1958) shortest-path algorithm. The solu-
tion provides the values of the , variables, which allows
us to compute the values of the disaggregated � variables
through the lower triangular linear systems (4.3).
Fourth, the set I in Step 14 of the algorithm is restricted

to a subset of disjoint incompatible columns, where two
columns p1 and p2 are said to be disjoint if Tp1 ∩ Tp2 =�.
This restriction originates from the fact that any feasible
solution of a set-partitioning problem is formed of disjoint
columns.
Finally, let us specify that the parameters  , #, and !

used for partition handling (see §4.2.1) were set for the
computational experiments to 0.5, 0.6, and 6, respectively.
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5.3. Computational Results

The tests on the VCSP instances were limited to solv-
ing the linear relaxations of these instances. This way, the
dynamic constraint aggregation algorithm and the standard
column generation method can be fairly compared with-
out the interference of the branch-and-bound process. All
tests were performed on a DELL i386 single processor
Redhat Linux machine (Intel Pentium 4, Type i686 CPU,
1.8 GHZ) using GENCOL 4.3, a software developed at
the GERAD research center in Montreal and now owned
by AD OPT Technologies. GENCOL supports the standard
column generation method and relies on the CPLEX opti-
mizer (release 7.5) for solving the restricted MPs. It also
constitutes a benchmark for this research.
Test instances were randomly generated using the same

generator as in Haase et al. (2001). Overall, 32 instances
that differ from the number of timetabled trips to cover
(20, 40, 60, 80, 100, 120, 140, or 160) and the number of
segments per trip (2, 4, 6, or 8) were generated, one for
each possible combination. For all instances, the trips were
generated using the same bus lines. Therefore, instances
with a high (respectively, low) number of segments per trip
have short (respectively, long) segments. From §5.1, we
can deduce that the number of tasks (or equivalently, the
number of set-partitioning constraints in the MP) is equal
to the number of trips times the number of segments per
trip plus two.
For the 32 instances studied, the dynamic constraint

aggregation algorithm succeeded in reducing the MP solu-
tion time when compared to the standard column generation
method. Figure 3 presents the reduction factor obtained as
a ratio of the MP solution times (standard column gener-
ation time over dynamic constraint aggregation time) for
all 32 instances. In this graph, points are illustrated using
three symbols (−, +, and ·). The − signs correspond to the
instances with two segments per trip. These instances with
longer segments have a mean of 5.8 tasks per column in the
optimal solution. Instances with eight segments per trip are
represented by the + points. These short segment instances

Figure 3. Reduction factor of the master problem
solution time.
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exhibit a mean of 12.2 tasks per column in the optimal
solution. Finally, the · points correspond to instances with
four and six segments per trip. The optimal solutions of
these problems contain a mean of 8.8 tasks per column
when the mean is taken over all instances, while this mean
varies between 6.3 and 12.2 for individual instances.
One can observe that, for these instances, the reduc-

tion factor ranges between 1.7 and 12.2. This factor grows
significantly with the size of the instances. In fact, for
instances with 700 tasks or more the reduction factor is
at least 3, for those with 1,000 tasks or more the reduction
factor is at least 4, and for those with 1,300 tasks or more
the reduction factor is at least 7. Also, we observe that the
reduction factor grows as the number of tasks per column
increases.
Three tables of results are presented (Tables 4–6). Each

table is divided into two parts: The size of the instances
are presented in the top part, while the bottom part shows
the results. In these tables, we refer to the dynamic con-
straint aggregation method with the acronym “dca” and to
the standard column generation method with the acronym
“std.” Because the time consumed by the initial parti-
tion heuristic is not significant (<0001 second), it is not
reported. Note that, as shown in these tables, the MP solu-
tion time often represents more than 70% of the total solu-
tion time (the average is 79%) when the standard column
generation method is used. This fact motivates dynamically
aggregating some MP constraints.
Table 4 presents the results for 40-trip instances when

the number of segments per trip varies. This table shows
that the dynamic constraint aggregation algorithm reduces
the MP solution time by a percentage ranging from 66%
to 88%. This is due to a substantial reduction in the mean
number of constraints in the MP at each column generation
(minor) iteration. On the other hand, the number of minor
iterations is increased because the new algorithm performs
several iterations with a nonoptimal partition. This increase
yields higher subproblem solution times. Nevertheless, the
overall solution times are reduced by percentages that range
from 21% to 62%.
Better results for the 80-trip instances with a varying

number of segments are reported in Table 5. For these
larger instances, the MP solution times are reduced by per-
centages ranging from 66% to 92% when the dynamic con-
straint aggregation approach is used. Gains on the total
solution time vary between 33% and 77%. Note that the
amount of memory used is also reduced by up to 40%.
Table 6 provides the results for instances with eight seg-

ments per trip and different numbers of trips. Again, the
dynamic constraint aggregation method succeeds in reduc-
ing the MP solution time by up to 90%, as well as the
total solution time by up to 80%. For these instances, the
mean number of MP constraints is diminished by an aver-
age of 39% in the dynamic constraint aggregation algo-
rithm. Note also that the algorithm updates the partition
about once every two minor iterations. Most of the partition
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Table 4. Results for 40-trip instances.

Instance size
Number of segments per trip 2 4 6 8
Number of tasks 160 240 320 400

Results dca std dca std dca std dca std

Number of column generation iterations 38 36 69 41 99 53 121 76
Number of partition changes 16 — 33 — 48 — 56 —
Mean number of constraints 114 175 156 255 192 335 228 415
Memory (Mb) 19 18 42 44 76 88 112 153
Dual variable disaggregation (sec.) <01 — <01 — 01 — 03 —
Partition adjustment (sec.) <01 — 01 — 02 — 04 —
Subproblem time (sec.) 05 04 2 2 6 4 12 8
Master problem time (sec.) 02 07 1 5 3 9 5 42
Total time (sec.) 10 13 4 7 11 14 20 52

changes occur at the beginning of the solution process, and
the number of partition updates (major iterations) decreases
progressively. For example, for the 40-trip instances with
eight segments per trip, 20 partition changes are performed
in the first 40 column generation iterations, 19 in the next
40 iterations, and only 8 in the remaining 41 iterations
(see Figure 4). This shows that on the road to the optimal
solution, the algorithm updates the partition less frequently
towards the end, that is, the partition stabilizes. Figure 4
also shows that, in this example, the partition is only aggre-
gated twice after the initial aggregation.
Table 6 also provides the mean number of degenerate

basic variables throughout the solution process and the
number of fractional variables at the end of it. The dynamic
constraint aggregation algorithm again produces very inter-
esting results with regard to those two statistics. Indeed,
the mean number of degenerate basic variables at each
iteration is reduced by an average of 58%. In percent-
age of the number of constraints, this mean number repre-
sents 38% when using the dynamic constraint aggregation
algorithm and 56% when using the standard column gen-
eration method. This reduction comes from the diminution
of the number of nonzero elements per column with the

Table 5. Results for 80-trip instances.

Instance size
Number of segments per trip 2 4 6 8
Number of tasks 320 480 640 800

Results dca std dca std dca std dca std

Number of column generation iterations 82 45 137 79 191 121 270 174
Number of partition changes 30 — 66 — 95 — 123 —
Mean number of constraints 241 353 311 513 397 673 459 833
Memory (Mb) 65 67 173 201 304 431 477 792
Dual variable disaggregation (sec.) 01 — 04 — 09 — 17 —
Partition adjustment (sec.) 03 — 11 — 22 — 44 —
Subproblem time (sec.) 5 3 23 14 61 41 144 101
Master problem time (sec.) 4 12 12 80 40 291 72 884
Total time (sec.) 10 15 40 96 108 337 230 993

aggregation process. Consequently, the effects of degen-
eracy are reduced. We observe also that the number of
fractional-valued variables at the end of the solution pro-
cess is less when dynamic constraint aggregation is used for
solving large instances (�120 trips). Therefore, we expect
that the dynamic constraint aggregation algorithm will also
reduce the number of branch-and-bound nodes for large
instances.
In all of the test cases above, the computational times

of dual variable disaggregation and partition adjustment
were not significant. Indeed, they were less than 1.5%
and 3% of the total time, respectively. This illustrates the
efficiency of the dual variable and partition handling strate-
gies. In particular, it shows that it is not too time consuming
to compute dual variables that satisfy a large number of
constraints (4.2).
The dynamic constraint aggregation approach outper-

forms the standard column generation method in all test
cases. They behave in the same way for small test instances,
with a slight advantage for the dynamic constraint aggrega-
tion method, but for large instances, the ratio of time reduc-
tion becomes very significant. We can say that the dynamic
constraint aggregation algorithm is very useful when the
size of the problem is large.
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Table 6. Results for instances with eight segments per trip.

Instance size
Number of trips 40 80 120 160
Number of tasks 400 800 1,200 1,600

Results dca std dca std dca std dca std

Number of column generation iterations 121 76 270 174 528 343 640 547
Number of partition changes 56 — 123 — 194 — 304 —
Mean number of constraints 228 415 459 833 832 1�252 1�017 1�662
Mean number of degenerate 98 248 176 496 313 622 375 895
basic variable

Number of fractional variable 37 40 73 71 117 173 151 212
Memory (Mb) 11 15 48 79 140 190 245 314
Dual variable disaggregation (sec.) 03 — 17 — 89 — 152 —
Partition adjustment (sec.) 04 — 43 — 172 — 425 —
Subproblem time (sec.) 12 8 144 101 861 547 1�952 1�698
Master problem time (sec.) 5 42 72 884 1�405 5�835 2�373 19�771
Total time (sec.) 20 52 230 993 2�312 6�402 4�421 21�508

6. Conclusion
Dynamic constraint aggregation is a novel approach that
reduces the number of set-partitioning constraints in col-
umn generation MPs, allowing shorter solution times. The
algorithm defines and modifies an equivalence relation over
the tasks (associated with the set-partitioning constraints),
solves linear programs of reduced size, and uses a shortest-
path algorithm to recover the nonaggregated dual informa-
tion needed by the column generation subproblems.
Results for the VCSP show that the dynamic constraint

aggregation approach outperforms the standard column
generation method in all test cases. In fact, the dynamic
constraint aggregation algorithm reduces the number of
constraints by an average of 39% and the MP time by
up to 90%. We have also shown that the linear relaxation
solution time is reduced by up to 80% for large instances.
This technique is especially useful for solving very large
instances not yet solved efficiently by the present methods.

Figure 4. Number of set-partitioning constraints at
each iteration.
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Even though we have only used basic strategies, results
are very significant. Future research will focus on designing
and analyzing more sophisticated strategies, on merging
this new methodology with interior point methods, and on
integrating it within a branch-and-bound scheme.
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