Manpower Planning: Task Scheduling

Anders Høeg Dohn

DTU Management Engineering

Department of Management Engineering

Scope

- During these lectures I will:
 - Go over some of the practical problems encountered in manpower planning.
 - Rostering

- Task Scheduling
 - Propose models that can be used to solve these problems, i.e. present case studies of these methods.
 - Integer Programming
 - Set Partitioning Formulations
 - Column Generation
 - Branch & Price

Task Scheduling

- Allocate employees to tasks
- Assuming that:
 - The roster is fixed
 - The set of tasks is fixed

Task Scheduling

- Task scheduling
 - Consists of:
 - Allocation of tasks
 - Routing of personnel / vehicles between tasks
 - Scheduling of tasks
 - Time horizon is usually at most 24 hours.
 - Shifts may be individual for employees, but have been fixed in advance.
 - May include skills and time windows.
 - May include temporal dependencies between tasks.

An example

- Example from ground handling in an airport.
- Ground handling tasks:
 - Refueling
 - Luggage handling
 - Garbage collection
 - Cleaning
 - Catering
- Usually outsourced to ground handling companies
- A number of teams drive around and carry out tasks at different locations.

Problem Description

- Minimize the number of unassigned
- Each Gale must be assigned to exactly one vale rester.
- Emperal dependencies exist between asks.

- Teams must respect the skill requirement of tasks.
- Teams are only assigned to tasks during under working hours and only to one task as a time.
- Travel times broyeen tasks must be respected.
- A task must be scheruled within its time window.
- Teams must be given to correct amount of breaks.

Column Generation: Restricted Master Problem

Generalizing Synchronization to Other Temporal Dependencies

Synchronizati on:

Overlap:

Min/max gap:

Temporal Dependencies in Practice

- Ground handling in airports
 - Synchronization (Job teaming)
 - Overlap
- Home care crew scheduling
 - Synchronization (Mainly for lifting)
 - Overlap (Lifting)
 - Min and max gap (E.g. medication and laundry)
- Allocation of technicians to service jobs [Li et al. 2005].
- Dial-a-Ride for disabled persons [Rousseau et al. 2003].
- Aircraft fleet assignment and routing [loachim et al. 1999].
- Machine scheduling with precedence constraints [van den Akker et al. 2006].

Synchronizati on:

Overlap:

 $p_{ij} = 0 \land p_{ji} = 0$ $\Rightarrow t_i + 0 \le t_j \land t_j + 0 \le t_i$ $\Leftrightarrow \qquad t_i = t_i$

 $p_{ij} = -du_{j} \wedge p_{ji} = -du_{j}$ $\Rightarrow t_{i} - du_{j} \leq t_{j} \wedge t_{j} - du_{j} \leq t_{i}$ $\Leftrightarrow t_{i} - du_{j} \leq t_{j} \leq t_{i} + du_{j}$

 $p_{ij} = mingap p_{ji} = -maxgap$ $\Rightarrow t_i + mingap t_j$ $\land t_j - maxgap t_i$ $\Leftrightarrow t_i + mingap t_j \le t_i + maxga_i$

Compact formulation

$\min w_1 \sum_{k \in \mathcal{K}} \sum_{i \in \mathcal{N}^k} \sum_{j \in \mathcal{N}^k} c_{ij}^k x_{ij}^k + w_2 \sum_{k \in \mathcal{K}} \sum_{i \in \mathcal{C}} \sum_{j \in \mathcal{N}^k} \delta_i^k x_{ij}^k +$	$w_3 \sum_{i \in \mathcal{C}} \gamma_i y_i$
s.t. $\sum_{k \in \mathcal{K}} \sum_{j \in \mathcal{N}^k} x_{ij}^k + y_i = 1$	$\forall i \in \mathcal{C}$
$\sum_{j \in \mathcal{N}^k} x_{ij}^k \le \rho_i^k$	$\forall k \in \mathcal{K}, \forall i \in \mathcal{C}$
$\sum_{j \in \mathcal{N}^k} x_{0^k, j}^k = 1$	$\forall k \in \mathcal{K}$
$\sum_{i \in \mathcal{N}^k} x_{i,n^k}^k = 1$	$\forall k \in \mathcal{K}$
$\sum_{i \in \mathcal{N}^k} x_{ih}^k - \sum_{j \in \mathcal{N}^k} x_{hj}^k = 0$	$\forall k \in \mathcal{K}, \forall h \in \mathcal{C}$
$\alpha_i \sum_{j \in \mathcal{N}^k} x_{ij}^k \le t_i^k \le \beta_i \sum_{j \in \mathcal{N}^k} x_{ij}^k$	$\forall k \in \mathcal{K}, \forall i \in \mathcal{C} \cup \{0^k\}$
$\alpha_{n^k} \le t_{n^k}^k \le \beta_{n^k}$	$\forall k \in \mathcal{K}$
$t_i^k + s_{ij}^k x_{ij}^k \le t_j^k + \beta_i (1 - x_{ij}^k)$	$\forall k \in \mathcal{K}, \forall i, j \in \mathcal{N}^k$
$\alpha_i y_i + \sum_{k \in \mathcal{K}} t_i^k + p_{ij} \le \sum_{k \in \mathcal{K}} t_j^k + \beta_j y_j$	$\forall (i,j) \in \mathcal{P}$
$x_{ij}^k \in \{0, 1\}$	$\forall k \in \mathcal{K}, \forall i, j \in \mathcal{N}^k$
$t_i^k \in \mathbb{Z}_+$	$\forall k \in \mathcal{K}, \forall i \in \mathcal{N}^k$
$y_i \in \{0, 1\}$	$\forall i \in \mathcal{C}$

Branch & Price - Overview

Branch & Price

- Necessary considerations:
 - How do we model and solve the master problem?
 - How do we model and solve the subproblem?
 - How do we ensure integrality in the master problem?

- Solving the set partitioning problem with generalized precedence constraints:
 - The master problem is a Set Partitioning Problem with additional nonbinary constraints.
 - The subproblem is an Elementary Shortest Path Problem with Time Windows and Linear Node Costs.
 - Only the acyclic case has been considered in the literature [loachim et al. 1997].
 - Gives a harder subproblem.
 - Leads to highly fractional solutions for the master problem.

$$\begin{split} \min \sum_{k \in \mathcal{K}} \sum_{r \in \mathcal{R}^k} c_r^k \lambda_r^k + \sum_{i \in \mathcal{C}} c_i \Lambda_i \\ \text{s.t.} \sum_{k \in \mathcal{K}} \sum_{r \in \mathcal{R}^k} a_{ir}^k \lambda_r^k + \Lambda_i = 1 & \forall i \in \mathcal{C} \\ \sum_{r \in \mathcal{R}^k} \lambda_r^k = 1 & \forall k \in \mathcal{K} \\ \alpha_i \Lambda_i + \sum_{k \in \mathcal{K}} \sum_{r \in \mathcal{R}^k} t_{ir}^k \lambda_r^k + p_{ij} \leq \sum_{k \in \mathcal{K}} \sum_{r \in \mathcal{R}^k} t_{jr}^k \lambda_r^k + \beta_j \Lambda_j & \forall (i, j) \in \mathcal{P} \\ \lambda_r^k \in \{0, 1\} & \forall k \in \mathcal{K}, \forall r \in \mathcal{R}^k \\ \Lambda_i \in \{0, 1\} & \forall i \in \mathcal{C} \end{split}$$

Variables:

 $=\lambda_{r}^{k} \begin{cases} 1 \text{ if route } r \text{ is chosen for} \\ \text{team } k \end{cases}$ $=_{\Lambda_{i}} \begin{cases} 0 \text{ otherwise} \\ 1 \text{ if task } i \text{ is uncovered} \\ 0 \text{ otherwise} \end{cases}$

<u>Sets:</u>

- C Tasks
- K Teams / Vehicles
- *R^k* Routes
- P Temporal Dependencies

- Solving a time index model.
 - Common in solution of machine scheduling problems.
 - Change the coefficient a_{ir}^k to a_{ir}^k
 - $a_{i\tau}^{k} = 1$ if team k is allocated to task i at time τ in route r.
 - Each generalized precedence constraint introduces a set of new constraints in the master problem.
 - The master problem becomes a Set Partitioning Problem with a huge amount of constraints.
 - However, it can be proven that the formulation is stronger than the master problem formulation with a continuous timevariable.
 - All constraints cannot be generated a priori: Branch & Cut & Price

- Solving a time index model.
- Each generalized precedence constraint introduces a set of new constraints in the master problem:

$$\begin{split} \sum_{k \in \mathcal{K}} \sum_{r \in \mathcal{R}'} t_{ir}^k \lambda_r^k + p_{ij} &\leq \sum_{k \in \mathcal{K}} \sum_{r \in \mathcal{R}'} t_{jr}^k \lambda_r^k \qquad \forall (i,j) \in \mathcal{P} \\ \downarrow \\ \sum_{k \in \mathcal{K}} \sum_{r \in \mathcal{R}'} \sum_{\tau' = \tau, \dots, \beta_0} a_{ir\tau'}^k \lambda_r^k + \sum_{k \in \mathcal{K}} \sum_{r \in \mathcal{R}'} \sum_{\tau' \in \mathcal{T}_{rij}^p} a_{jr\tau'}^k \lambda_r^k \leq 1 \qquad \forall (i,j) \in \mathcal{P}, \forall \tau \in \mathcal{T} \\ \mathcal{T}_{\tau ij}^p = \{\alpha_0, \dots, \min\{\beta_0, \tau + p_{ij} - 1\}\} \\ \text{Time window for task i:} \\ \sum_{l = 1}^{l} \sum_{l = 1}^{$$

- Relaxing the generalized precedence constraints:
 - The master problem is a Set Partitioning Problem.
 - The subproblem is an Elementary Shortest Path Problem with Time Windows.
 - Temporal dependencies are enforced by branching.
- This is the simplest approach to solving the set partitioning problem with generalized precedence constraints.
 - We use this approach in the following.

Variables:

- $=\lambda_{r}^{k} \begin{cases} 1 \text{ if route } r \text{ is chosen for} \\ \text{team } k \end{cases}$ $=_{\Lambda_{i}} \begin{cases} 0 \text{ otherwise} \\ 1 \text{ if task } i \text{ is uncovered} \end{cases}$
- $\Lambda_i = \begin{bmatrix} 1 & \text{if task } i & \text{is uncovered} \\ 0 & \text{otherwise} \end{bmatrix}$
- 24 DTU Management Engineering, Technical University of Denmark

<u>Sets:</u>

- C Tasks
- K Teams / Vehicles
- *R^k* Routes
- P Temporal Dependencies

Branch & Price

DTU

- Necessary considerations:
 - How do we model and solve the master problem?
 - How do we model and solve the subproblem?
 - How do we ensure integrality in the master problem?

The label setting algorithm

- Label: I = $(v, p, \tilde{t}, \tilde{c}, W)$
- Pseudo code:
 - 1. Create initial label: I_0
 - 2. Pick label with minimum *t*
 - 3. Extend label to all possible successors
 - 4. If more unprocessed labels exist: Go to 2

The label setting algorithm

Extend	New label: $(v, p, \tilde{t}, \tilde{c}, W)$	U	ULPQ
	$l_{0}=(0,l_{\varnothing},0,0,\varnothing)$	Ø	$[l_0]$
<i>l</i> ₀ :	$l_1=(1,l_{0},12,0,\varnothing)$	$\{3\}$	$[l_1]$
	$l_2 = (2, l_0, 10, 0, \varnothing)$	Ø	$[l_2, l_1]$
	$l_{3} = (3, l_{0}, 5, 0, \varnothing)$	Ø	$[l_3, l_2, l_1]$
l_3 :	$l_4 = (1, l_3, 12, -2, \{3\})$	${3}$	$[l_2, l_4, l_1]$
	$l_5 = (2, l_3, 10, -2, \{3\})$	{3}	$[l_5, l_2, l_4, l_1]$
	$l_6^* = (4, l_3, 12, -2, \{3\})$	${3}$	$[l_5, l_2, l_4, l_1]$
l_5 :	$l_7 = (1, l_5, 16, -3, \{2, 3\})$	$\{2, 3\}$	$[l_2, l_4, l_1, l_7]$
	$l_8^* = (4, l_5, 17, -3, \{2, 3\})$	$\{2, 3\}$	$[l_2, l_4, l_1, l_7]$
l_2 :	$l_9 = (1, l_2, 16, -1, \{2\})$	$\{2, 3\}$	$[l_4, l_1, l_7, l_9]$
	$l_{10} = (3, l_2, 15, -1, \{2\})$	$\{2\}$	$[l_4, l_1, l_{10}, l_7, l_9]$
	$l_{11}^* = (4, l_2, 17, -1, \{2\})$	$\{2, 3\}$	$[l_4, l_1, l_{10}, l_7, l_9]$
l_4 :	$l_{12} = (2, l_4, 19, -\frac{5}{2}, \{1, 3\})$	$\{1, 3\}$	$[l_1, l_{10}, l_7, l_9, l_{12}]$
	$l_{13}^* = (4, l_4, 19, -\frac{5}{2}, \{1, 3\})$	$\{1, 3\}$	$[l_1, l_{10}, l_7, l_9, l_{12}]$
l_1 :	$l_{14} = (2, l_1, 19, -\frac{1}{2}, \{1\})$	$\{1, 3\}$	$[l_{10}, l_7, l_9, l_{12}, l_{14}]$
	$l_{15}^* = (4, l_1, 19, -\frac{1}{2}, \{1\})$	$\{1, 3\}$	$[l_{10}, l_7, l_9, l_{12}, l_{14}]$
l_{10} :	$l_{16} = (1, l_{10}, 20, -3, \{2, 3\})$	$\{2, 3\}$	$[l_7, l_9, l_{12}, l_{14}, l_{16}]$
	$l_{17}^* = (4, l_{10}, 22, -3, \{2, 3\})$	$\{2, 3\}$	$[l_7, l_9, l_{12}, l_{14}, l_{16}]$
$l_7:$	$l_{18}^* = (4, l_7, 23, -\frac{7}{2}, \{1, 2, 3\})$	$\{1, 2, 3\}$	$[l_9, l_{12}, l_{14}, l_{16}]$
<i>l</i> ₉ :	$l_{19}^* = (4, l_9, 23, -\frac{3}{2}, \{1, 2\})$	$\{1, 2, 3\}$	$[l_{12}, l_{14}, l_{16}]$
l_{12} :	$l_{20}^* = (4, l_{12}, 26, -\frac{7}{2}, \{1, 2, 3\})$	$\{1, 2, 3\}$	$[l_{14}, l_{16}]$
l_{14} :	$l_{21}^* = (4, l_{14}, 26, -\frac{3}{2}, \{1, 2\})$	$\{1, 2, 3\}$	$[l_{16}]$
l_{16} :	$l_{22}^* = (4, l_{16}, 27, -\frac{7}{2}, \{1, 2, 3\})$	$\{1, 2, 3\}$	[]

Dominance

DTU

• The idea: By applying dynamic programming techniques, labels can be removed while still ensuring optimality:

$$l_a \leq l_b \iff \begin{array}{ccc} \tilde{c}_a &=& c_b \\ \tilde{t}_a &\leq& \tilde{t}_b \\ \tilde{c}_a &\leq& \tilde{c}_b \\ U_a \subseteq U_b \end{array}$$

21

211

Dominance

• The dominance may be strengthened further:

The label setting algorithm

Extend	New label: $(v, p, \tilde{t}, \tilde{c}, U)$	Dominance	ULPQ
	$l_{0} = (0, l_{\varnothing}, 0, 0, \varnothing)$		$[l_0]$
l ₀ :	$l_1 = (1, l_0, 12, 0, \{3\})$		$[l_1]$
	$l_2 = (2, l_0, 10, 0, \varnothing)$		$[l_2, l_1]$
	$l_{3}=(3,l_{0},5,0,\varnothing)$		$\left[l_3,l_2,l_1\right]$
l ₃ :	$l_4 = (1, l_3, 12, -2, \{3\})$	$l_4 \preceq l_1$	$[l_2, l_4, l_{\rm T}]$
	$l_5 = (2, l_3, 10, -2, \{3\})$	$l_5 \leq l_2$	$[l_5,\!l_2,l_4]$
	$l_6^* = (4, l_3, 12, -2, \{3\})$		$[l_5,l_4]$
l_5 :	$l_7 = (1, l_5, 16, -3, \{2, 3\})$		$[l_4, l_7]$
	$l_8^* = (4, l_5, 17, -3, \{2, 3\})$		$[l_4, l_7]$
$l_4:$	$l_{12} = (2, l_4, 19, -\frac{5}{2}, \{1, 3\})$		$[l_7, l_{12}]$
	$l_{13}^* = (4, l_4, 19, -\frac{5}{2}, \{1, 3\})$		$[l_7, l_{12}]$
l ₇ :	$l_{18}^* = (4, l_7, 23, -\frac{7}{2}, \{1, 2, 3\})$		$[l_{12}]$
l_{12} :	$l_{20}^* = (4, l_{12}, 26, -\frac{7}{2}, \{1, 2, 3\})$		[]

The label setting algorithm

Extend	New label: $(v, p, \tilde{t}, \tilde{c}, W)$	U	ULPQ
	$l_{0} = (0, l_{\varnothing}, 0, 0, \varnothing)$	Ø	[<i>l</i> ₀]
<i>l</i> ₀ :	$l_1 = (1, l_0, 12, 0, \varnothing)$	{ 3 }	$[l_1]$
	$l_2 = (2, l_0, 10, 0, \varnothing)$	Ø	$[l_2, l_1]$
	$l_3 = (3, l_0, 5, 0, \varnothing)$	Ø	$[l_3, l_2, l_1]$
l ₃ :	$l_4 = (1, l_3, 12, -2, \{3\})$	{ 3 }	$[l_2, l_4, l_1]$
	$l_5 = (2, l_3, 10, -2, \{3\})$	{ 3 }	$[l_5, l_2, l_4, l_1]$
	$l_{6}^* = (4, l_{3}, 12, -2, \{3\})$	{ 3 }	$[l_5, l_2, l_4, l_1]$
l_5 :	$l_7 = (1, l_5, 16, -3, \{2, 3\})$	$\{2, 3\}$	$[l_2, l_4, l_1, l_7]$
	$l_8^* = (4, l_5, 17, -3, \{2, 3\})$	$\{2, 3\}$	$[l_2, l_4, l_1, l_7]$
l_2 :	$l_{9} = (1, l_{2}, 16, -1, \{2\})$	$\{2, 3\}$	$[l_4, l_1, l_7, l_9]$
	$l_{10} = (3, l_2, 15, -1, \{2\})$	<i>{</i> 2 <i>}</i>	$[l_4, l_1, l_{10}, l_7, l_9]$
	$l_{11}^* = (4, l_2, 17, -1, \{2\})$	$\{2, 3\}$	$[l_4, l_1, l_{10}, l_7, l_9]$
l_4 :	$l_{12}=(2,l_4,19,-\tfrac{5}{2},\{1,3\})$	$\{1, 3\}$	$[l_1, l_{10}, l_7, l_9, l_{12}]$
	$l_{13}^* = (4, l_4, 19, -\frac{5}{2}, \{1, 3\})$	$\{1, 3\}$	$[l_1, l_{10}, l_7, l_9, l_{12}]$
l_1 :	$l_{14} = (2, l_1, 19, -\frac{1}{2}, \{1\})$	$\{1, 3\}$	$[l_{10}, l_7, l_9, l_{12}, l_{14}]$
	$l_{15}^* = (4, l_1, 19, -\frac{1}{2}, \{1\})$	$\{1, 3\}$	$[l_{10}, l_7, l_9, l_{12}, l_{14}]$
l_{10} :	$l_{16} = (1, l_{10}, 20, -3, \{2, 3\})$	$\{2, 3\}$	$[l_7, l_9, l_{12}, l_{14}, l_{16}]$
	$l_{17}^* = (4, l_{10}, 22, -3, \{2, 3\})$	$\{2, 3\}$	$[l_7, l_9, l_{12}, l_{14}, l_{16}]$
$l_7:$	$l_{18}^* = (4, l_7, 23, -\frac{7}{2}, \{1, 2, 3\})$	$\{1, 2, 3\}$	$[l_9, l_{12}, l_{14}, l_{16}]$
<i>l</i> ₉ :	$l_{19}^* = (4, l_9, 23, -\frac{3}{2}, \{1, 2\})$	$\{1, 2, 3\}$	$[l_{12}, l_{14}, l_{16}]$
l_{12} :	$l_{20}^* = (4, l_{12}, 26, -\frac{7}{2}, \{1, 2, 3\})$	$\{1, 2, 3\}$	$[l_{14}, l_{16}]$
l_{14} :	$l_{21}^* = (4, l_{14}, 26, -\frac{3}{2}, \{1, 2\})$	$\{1, 2, 3\}$	$[l_{16}]$
l ₁₆ :	$l_{22}^* = (4, l_{16}, 27, -\frac{7}{2}, \{1, 2, 3\})$	$\{1, 2, 3\}$	[]

Extend	New label: $(v, p, \tilde{t}, \tilde{c}, U)$	Dominance	ULPQ
	$l_{0} = (0, l_{\varnothing}, 0, 0, \varnothing)$		$[l_0]$
<i>l</i> ₀ :	$l_1 = (1, l_0, 12, 0, \{3\})$		$[l_1]$
	$l_2 = (2, l_0, 10, 0, \varnothing)$		$[l_2,l_1]$
	$l_{3}=(3,l_{0},5,0,\varnothing)$		$\left[l_3,l_2,l_1\right]$
l_3 :	$l_4 = (1, l_3, 12, -2, \{3\})$	$l_4 \preceq l_1$	$[l_2, l_4, l_1]$
	$l_5 = (2, l_3, 10, -2, \{3\})$	$l_5 \preceq l_2$	$[l_5,\!\!l_2,l_4]$
	$l_6^* = (4, l_3, 12, -2, \{3\})$		$[l_5, l_4]$
l_5 :	$l_7 = (1, l_5, 16, -3, \{2, 3\})$		$[l_4, l_7]$
	$l_8^* = (4, l_5, 17, -3, \{2, 3\})$		$[l_4, l_7]$
l_4 :	$l_{12} = (2, l_4, 19, -\frac{5}{2}, \{1, 3\})$		$[l_7, l_{12}]$
	$l_{13}^* = (4, l_4, 19, -\frac{5}{2}, \{1, 3\})$		$[l_{7}, l_{12}]$
l_7 :	$l_{18}^* = (4, l_7, 23, -\frac{7}{2}, \{1, 2, 3\})$		$[l_{12}]$
l_{12} :	$l_{20}^* = (4, l_{12}, 26, -\frac{7}{2}, \{1, 2, 3\})$		[]

Branch & Price

DTU

- Necessary considerations:
 - How do we model and solve the master problem?
 - How do we model and solve the subproblem?
 - How do we ensure integrality in the master problem?

Branching

- Branching on task allocation (sum of fractions) ٠
 - "How much of task *i* is assigned to team *k*"?
 - Fractional variables \Rightarrow At least one S_i is fractional _ $S_{ik} = \sum_{p \in \mathcal{P}'_k} a^p_{ik} \lambda^p_k$
 - Branch on S_{ik} : _
 - 0-branch: Team k cannot do task i
 - 1-branch: Team k must do task i ٠
 - Remove infeasible columns _
 - Force / remove task in solution of pricing problem -

DTU

- Will remove most fractional values.
- Will enforce all temporal dependencies.
- Proposed as branching strategy to solely remove fractional values in traditional VRPTW [Gélinas et al. 1995].

Technical University of Denmark

0

Left branch:

Right branch:

Manpower Planning 22/11/10

36 **DTU Management Engineering,**

Technical University of Denmark

Branching on Time Windows

and route r_3 :

Task *i* in route r_2

Task *j* in route r_1 :

Task k in route r_4 :

Infeasible routes:

 r_2

 r_{2}, r_{4}

 $r_{2}, r_{3},$ r_4

- Choosing the best branching candidate:
 - Create a balanced branching tree.
 - Choose a candidate that has the largest impact on both branches.
 - In this case, choose the right-most point in the time window.

Left branch:

Right branch:

Left branch:

Right branch:

Branch & Price

DTU

- Necessary considerations:
 - How do we model and solve the master problem?
 - How do we model and solve the subproblem?
 - How do we ensure integrality in the master problem?
- Other considerations:
 - Master problem
 - Solve it to optimality every time?
 - Use dual stabilization?
 - Subproblem
 - Use heuristics?
 - In what order should the individual subproblems be solved?
 - Branching

- How do we search the branch-and-bound tree?
- 40 DTU Management Engineering, Technical University of Denmark

Granularity

- The smallest possible difference in solution value between two feasible solutions.
 - All feasible solutions have integer solution values \Rightarrow granularity = 1
- Utilization in the branching tree:
 - The current node can be removed if the difference between the incumbent and the current lower bound is less than the granularity.

Granularity

• Further utilization of granularity:

 $+ \kappa \bar{c}^* \leq z^*_{MP} \leq \bar{z}$ on to the current Restricted Master Problem.

- $\kappa \bar{c}^* \leq \leq \bar{z}$ optimal solution to the Master Problem (this value is only known when no more columns can be added in the current node).
 - $\bar{z} + \kappa \leq z_{MP}^* \leq \bar{z}$ nal solution to the current subproblem.
 - $ar{z} + ar{c}^* \leq z^*_{MP} \leq ar{z}$ of employees

 $\bar{z} + \kappa \bar{c}^* \le z^*_{MP} \le \bar{z}$

• If next integer cannot be reached: branch/fathom immediately

Multiple subproblems

- Usual approach:
 - Solve subproblems in a Round-robin fashion:

- This is inefficient if a few subproblems produce better columns than the rest.
- An alternative approach:
 - Prioritize subproblems according to an expected performance.

- Requires a performance measure. The most recent solution value may be used.
- All subproblems must be solved with the most recent dual values in order to declare the solution of the master problem optimal.

Multiple subproblems

- The solution of some subproblems may be avoided by considering only "relevant" dual variables.
- Some problems are highly segregated.

• If none of the values of the "relevant" variables have changed, the optimal solution to that subproblem has already been found.

Summary

- What you should be able to remember from this lecture:
 - Task Scheduling
 - The practical problem
 - Synchronization
 - Temporal Dependencies in general
 - Generalized Precedence Constraints
 - Solution method
 - Branch & Price
 - Various master problem formulations
 - Solving the subproblem by Label Setting
 - Branching on Time Windows
 - Granularity
 - Prioritizing subproblems

The assignment

- Central Security Control (CSC) at Copenhagen Airport.
- The largest "single" task in the airport.
- Find optimal number of shifts of each type.
 - Given:
 - A set of possible shifts.
 - An estimated demand for one day.
- Questions:
 - What is the optimal cover, if all demand is covered?
 - What is the optimal cover, if undercoverage can be accepted at a certain price?
 - How can breaks be included?
 - How can robustness be included?

The assignment

Shift Name	Time
A0	04:00-14:00
A1	05:00-14:00
\mathbf{C}	06:00-18:00
D	10:00-20:00
$\mathbf{F0}$	13:00-21:00
F1	14:00-23:00
H3	20:30-06:30
H4	18:00-04:00
K2	08:00-16:00

The assignment

