Copenhagen Airport
“An Operations Analyst in an Airport is like a kid in a candy store”
Agenda

- Introduction to Copenhagen Airports A/S
- OR Optimization Methods in CPH
- Flow in the Airport
 - Passenger Flow in the Airport
 - Check-in Optimization
 - Manning Security
 - Manning the passport control
 - Baggage handling
 - Customs
 - Aircraft Flow in the Airport
 - Air Traffic Controllers
 - Ground Handling
 - Stands and Gate Optimization
Introduction to Copenhagen Airports A/S

• Copenhagen Airports A/S
 - Owns and operates the airports at Kastrup (CPH) and Roskilde (RKE)
 - Approximately 1900 employees
 - Makes its infrastructure, buildings and service facilities available to the many companies that have business operations at the airport.

• Mission
 - “Connect passengers and airlines — and bring Scandinavia and the world together”

• Vision
 - “Be the best airport in the world for passengers and airlines”

• Goals
 - Satisfaction: Top 3 in Europe by 2010
 - Growth: 30 million passengers in 2015
 - Competitiveness: Total operating costs for airlines: “Best in class”, 2012
Introduction to Copenhagen Airports A/S

• Facts
 - Founded in 1925
 • One of the first civil airports in the world
 - 39.2 % of the share capital held by the Danish State
 - 53.7% of the share capital held by Macquarie Airports Copenhagen ApS
 - 2 groups of customers: airlines and passengers
 - Main airport / hub of Scandinavia
 - Main airport / hub of SAS
 - Scandinavian hub for DHL
 - Largest workplace in Denmark - approximately 22,000
 - Direct connections to a total of 140 destinations (July 2010) worldwide
 - **Number of operations in 2009 (take-offs and landings):** 236,172
 - **Number of passengers in 2009:** 19.7 million
 - **Cargo volumes in 2009:** 312,179 tonnes
OR Optimization Methods in CPH

• CPH is in operation 24/7/365
 - Primary focus is on ensuring a reliable and well driven airport
 - The operation has first priority no matter what (!)
• Historically CPH has had sufficient capacity in all areas
 - Motivation for optimization not present
• Airport = An OR candy store...BUT
 - OR optimization methods are still only applied to a small fraction of its potential areas.
 - If OR optimization methods are used, it is within externally delivered software products, i.e. development is not conducted/decided upon by CPH.
 - OR competences not present in-house (...)
• Next step
 - Is optimization needed?
 - What is optimization?
 - What defines an optimal solution?
OR Optimization Methods in CPH

• Is optimization needed?
 - Can we accommodate today's traffic without optimization?
 • Check-in?
 • Stand and gates?
 • Baggage?
 - Can we go from 19,7 to 30 mio pax in 5 years without investing?
 • Buildings?
 • Employees?
 • Equipment?
 - Can we utilize our facilities better than we do today?
OR Optimization Methods in CPH

• What is optimization?
 – That you have made all of your calculations / planning in Excel?
 – That you are doing things in the same way as always?
 – That you find a feasible solution?
 – That you intelligently use statistical data and apply known OR optimization methods?

• Definition of “optimality” differs a lot within the company
 – Investors define optimality from a purely cost driven perspective.
 – For some departments optimality is when all tasks are covered, regardless of the number of people used.
 – For some departments optimality is when all employees have their wishes fulfilled.
 – For some departments optimality is when things are done in the way they have always been done.
OR Optimization Methods in CPH

• So what are we doing?
 - Establishment of a centralized **Planning and Analysis** department (November 1st, 2010)
 • All analysts in the Operations Department (Passenger Service, Traffic Handling, Baggage Handling, Security, Environment, Quality, Roskilde Airport and Lean) gathered in one place.
 • All analyses relating to the Operations Department.
 - Projects:
 • Check-in optimization
 • Security / Police manning
 • Stand and Gate optimization
 • Baggage Sorting
 • Baggage Racetrack Allocation
 • Capacity Analyses of all of the above
 • “One Set of Numbers”
 • ?
Passenger / Aircraft Flow in the Airport

Figure 1: The Airport Boundary

Key:
- Orange: ATC
- Blue: Airline
- Gray: Handling Agent
- Airport
- Choke points
Passenger / Aircraft Flow in the Airport

Figure 1: The Airport Boundary

Airport = OR Candy Store!
Passenger Flow in the Airport
Passenger Flow in the Airport

- All passengers are on an inbound or outbound flight.
- We know about all flights in advance.
 - Hence, we have a pretty good idea about passenger appearance.
Passenger Flow in the Airport

• For each flight, we have forecasts on:
 - Load factor
 - Appearance pattern
 - Bag factor
 - Passenger types (e.g. leisure / business)
• Forecast is based on historic data and differentiated on:
 - Airline
 - Destination
 - Aircraft type
 - Seat capacity
 - Flight type
 - Time of day
 - Handler
Appearance at Check-in

Arrivals, forecasted vs. realized - Tuesday September 1
Appearance at Check-in
Arrivals, forecasted vs. realized - Saturday September
Appearance at Check-in
Arrivals, forecasted vs. realized - Sunday September 6
Check-in Optimization

• What is the problem?
 - Opening patterns not optimized to match appearance patterns
 • Driven strictly by SLAs between airlines and handlers
 • CPH: “Only open counters when there are passengers”
 - Allocation of check-in areas
 • Previously handled entirely by the handlers
 • CPH: “Allocation of check-in areas should take baggage belt direction, baggage belt take-away capacity, queue lengths, CUSS kiosk demand and flow into consideration”
• What have we done?
 - Observation of appearance patterns
 - Dialog with airlines and handlers about opening patterns with CPH suggesting new and optimized opening patterns
 - As of May 3, 2010, CPH controls allocation of check-in areas to counters
 • Mathematical Modeling and Optimization
Check-in Optimization

![Check-in Optimization Chart]
Manning security

• Aggregate passenger appearance for all flights.
 - Incorporate the waiting time and processing time for check-in.
• Remove passengers that go through SAS Fast Track.
 - All other international passengers go through CSC.
• We assume that all passengers are identical.
 - However, we differentiate between summer / winter.
 • More clothes means longer processing time.
Manning security
Manning security

• Converting a passenger forecast to a plan:
 - SLA’s (Service Level Agreements) define constraints for the acceptable quality level.
 - Robustness considerations add to the demands.
 - Optimization objectives:
 • Minimize manpower allocation (minimize cost).
 • Maximize employee satisfaction.
Manning security

- Currently, we use a greedy heuristic:
 - Initialize cover with large values.
 - All demand is covered. Solution is very expensive.
 - Lower cover as much as possible, while respecting SLA’s.
 - Solution value drops to an acceptable level.
 - The quality of the service is still acceptable.

- Next step, enhance algorithm:
 - The problem is an optimization problem with:
 - A “nice” structure
 - “Simple” rules
 - Well defined objectives.
 - Solving the problem to optimality using mathematical programming should be possible.
 - Could make the basis of Master’s Thesis!
Manning security: Forecasting and Planning
Manning security: Forecasting and Planning

Antal åbne spor / Antal hold på arbejde - Mandag 22-11-2010 -
Forventet passanttal: 17816

Plan fra prognose
Manning security: Forecasting and Planning

• We need more employees than that.
 - Breaks
 - Lunch breaks
 - Special tasks
 - Buffer
Manning security: Forecasting and Planning

Antal åbne spor / Antal hold på arbejde - Mandag 22-11-2010 -
Forventet passanttal: 17816
Manning security: Forecasting and Planning

• With a demand per time interval, the demand must be covered by employees on shifts.
• From a “demand per time interval” the “demand per shift” is found.
• The employee shift plans are created to cover the “demand per shift”.

<table>
<thead>
<tr>
<th>Shift Name</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>A0</td>
<td>04:00-14:00</td>
</tr>
<tr>
<td>A1</td>
<td>05:00-14:00</td>
</tr>
<tr>
<td>C</td>
<td>06:00-18:00</td>
</tr>
<tr>
<td>D</td>
<td>10:00-20:00</td>
</tr>
<tr>
<td>F0</td>
<td>13:00-21:00</td>
</tr>
<tr>
<td>F1</td>
<td>14:00-23:00</td>
</tr>
<tr>
<td>H3</td>
<td>20:30-06:30</td>
</tr>
<tr>
<td>H4</td>
<td>18:00-04:00</td>
</tr>
<tr>
<td>K2</td>
<td>08:00-16:00</td>
</tr>
</tbody>
</table>
Manning security: Forecasting and Planning

<table>
<thead>
<tr>
<th>ST 05</th>
<th>S 005</th>
<th>MANDAG</th>
<th>TIRSDAG</th>
<th>ONSDAG</th>
<th>TORSDAG</th>
<th>FREDAG</th>
<th>LØRDAG</th>
<th>SØNDAG</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tj.nr:</td>
<td>Nøgle:</td>
<td>Vfri</td>
<td>Kfri</td>
<td>C</td>
<td>C</td>
<td>Vfri</td>
<td>Lfri</td>
<td>Lfri</td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>A1</td>
<td>A1</td>
<td>Vfri</td>
<td>Kfri</td>
<td>C</td>
<td>C</td>
<td>C</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>Lfri</td>
<td>Lfri</td>
<td>A1</td>
<td>A1</td>
<td>Vfri</td>
<td>Lfri</td>
<td>Lfri</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>C</td>
<td>C</td>
<td>Lfri</td>
<td>Lfri</td>
<td>A1</td>
<td>A1</td>
<td>A1</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>Vfri</td>
<td>Kfri</td>
<td>C</td>
<td>C</td>
<td>Vfri</td>
<td>Lfri</td>
<td>Lfri</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td>A1</td>
<td>A1</td>
<td>Vfri</td>
<td>Kfri</td>
<td>C</td>
<td>C</td>
<td>C</td>
</tr>
<tr>
<td>7</td>
<td></td>
<td>Lfri</td>
<td>Lfri</td>
<td>A1</td>
<td>A1</td>
<td>Vfri</td>
<td>Lfri</td>
<td>Lfri</td>
</tr>
<tr>
<td>8</td>
<td></td>
<td>C</td>
<td>C</td>
<td>Lfri</td>
<td>Lfri</td>
<td>A1</td>
<td>A1</td>
<td>A1</td>
</tr>
<tr>
<td>9</td>
<td></td>
<td>Vfri</td>
<td>Kfri</td>
<td>C</td>
<td>C</td>
<td>Vfri</td>
<td>Lfri</td>
<td>Lfri</td>
</tr>
<tr>
<td>10</td>
<td></td>
<td>A1</td>
<td>A1</td>
<td>Vfri</td>
<td>Kfri</td>
<td>C</td>
<td>C</td>
<td>C</td>
</tr>
<tr>
<td>11</td>
<td></td>
<td>Lfri</td>
<td>Lfri</td>
<td>A1</td>
<td>A1</td>
<td>Vfri</td>
<td>Lfri</td>
<td>Lfri</td>
</tr>
<tr>
<td>12</td>
<td></td>
<td>C</td>
<td>C</td>
<td>Lfri</td>
<td>Lfri</td>
<td>A1</td>
<td>A1</td>
<td>A1</td>
</tr>
<tr>
<td>13</td>
<td></td>
<td>Vfri</td>
<td>Kfri</td>
<td>C</td>
<td>C</td>
<td>Vfri</td>
<td>Lfri</td>
<td>Lfri</td>
</tr>
<tr>
<td>14</td>
<td></td>
<td>A1</td>
<td>A1</td>
<td>Vfri</td>
<td>Kfri</td>
<td>C</td>
<td>C</td>
<td>C</td>
</tr>
<tr>
<td>15</td>
<td></td>
<td>Lfri</td>
<td>Lfri</td>
<td>A1</td>
<td>A1</td>
<td>Vfri</td>
<td>Lfri</td>
<td>Lfri</td>
</tr>
<tr>
<td>16</td>
<td></td>
<td>C</td>
<td>C</td>
<td>Lfri</td>
<td>Lfri</td>
<td>A1</td>
<td>A1</td>
<td>A1</td>
</tr>
</tbody>
</table>

| | | 4-4 | 4-4 | 4-4 | 4-4 | 4-4 | 4-4 | 4-4 |

- Tj.nr.: Tjernummer
- Nøgle: Nøgle
- TIMER: Timer
- Vfri: Vfredag
- Kfri: Kfredag
- C: Cede
- Lfri: Lfredag
- A1: 5-14
- C = 6-18

Norm: 592,00 **Diff:** -4,00
Manning security: Forecasting and Planning

• Currently, most of this is a manual process.
 - We are currently in the process of buying a Resource Management System to optimize plans.

• Possible Master’s Thesis projects:
 - Find optimal “demand per shift”.
 • A (much) extended version of the assignment that I gave you at the previous lecture.
 - Generate optimal rosters.
Manning security: Evaluating

- Performance is evaluated.
 - Was performance acceptable?
 - If not, what are the causes.
 - The only way to improve is to find the origin of the causes.
- Passenger forecast is evaluated.
 - Even small variations can lead to queues.
 - Hence, the forecast must be very accurate.
 - We are constantly working to improve this.
- Plan is compared to realized opening of lanes.
 - If there are deviations, there should be a good reason.
- Productivity is compared to expected productivity.
Manning security: Evaluating

- Bad performance:
 - Find cause.
 - We know what the causes could be.
 - If we find consistencies over several days, the forecast and planning must be revised.
Manning security: Evaluating
Manning security: Evaluating

Open lanes, realized vs. forecast, Monday, 22-11-2010

Waiting time, in mins,

Lanes open

Waiting time

Lanes, realized

Lanes, forecasted

KPI
Manning security: Evaluating
Manning security: Evaluating
Passenger Flow in the Airport

• Other planning problems:
 - Manning the passport control
 • We are cooperating with the Danish Police.
 - Baggage handling
 • We are currently developing models and planning tools in the Baggage Department.
 - Customs
 • We are not looking at this problem, at the moment.
Aircraft Flow in the Airport
Aircraft Flow in the Airport

• The airlines are in control of their own schedules.
 - We have limited influence.
 - Usually, we consider them to be fixed.

• Optimization Tasks in the Aircraft Flow:
 - Air Traffic Controllers
 • Rostering
 • Task Scheduling
 - Ground Handling
 • Rostering
 • Task Scheduling
 - Stands and Gate Optimization
Stands and Gate Optimization

- A **stand** is an area on the apron where aircraft are parked
- A stand is (primarily) characterized by the following properties
 - Remote / gate
 - Size / physical conditions
 - What aircraft can / may at a given stand?
 - Passenger Status (Schengen, non-Schengen, non-EU, domestic)
 - Regulatory requirements
- CPH
 - **108 stands (including cargo and GA)**
 - 9 domestic
 - 43 gate stands
 - 54 remote stands
 - 2 helicopter stands
Stands and Gate Optimization

- Aircraft Types on B17
Stands and Gate Optimization

- Schengen
- Non-Schengen
- Schengen / Non-Schengen
- Non-Schengen / Non-EU inbound + outbound
- Schengen / Non-Schengen / Non-EU inbound + outbound
- Non-Schengen / Non-EU outbound

Terminal 1 / Domestic

Numre med "a" eftir nummeret er et ankomstområde/ankomst busgate

T-hus = Trappehus
And then things don’t go as planned, anyway
And then things don’t go as planned, anyway
And then things don’t go as planned, anyway
Merry Christmas!