Operations Research at Copenhagen Airport

Anders Høeg Dohn

DTU Management Engineering

Department of Management Engineering

Copenhagen Airport

"An Operations Analyst in an Airport is like a kid in a candy store"

Agenda

- Introduction to Copenhagen Airports A/S
- OR Optimization Methods in CPH
- Flow in the Airport
 - Passenger Flow in the Airport
 - Check-in Optimization
 - Manning Security
 - Manning the passport control
 - Baggage handling
 - Customs
 - Aircraft Flow in the Airport
 - Air Traffic Controllers
 - Ground Handling
 - Stands and Gate Optimization

Introduction to Copenhagen Airports A/S

- Copenhagen Airports A/S
 - Owns and operates the airports at Kastrup (CPH) and Roskilde (RKE)
 - Approximately 1900 employees
 - Makes its infrastructure, buildings and service facilities available to the many companies that have business operations at the airport.
- Mission
 - "Connect passengers and airlines and bring Scandinavia and the world together"
- Vision
 - "Be the best airport in the world for passengers and airlines"
- Goals
 - Satisfaction: Top 3 in Europe by 2010
 - Growth: 30 million passengers in 2015
 - Competitiveness: Total operating costs for airlines: "Best in class", 2012

Introduction to Copenhagen Airports A/S

- Facts
 - Founded in 1925
 - One of the first civil airports in the world
 - 39.2 % of the share capital held by the Danish State
 - 53.7% of the share capital held by Macquarie Airports Copenhagen ApS
 - 2 groups of customers: airlines and passengers
 - Main airport / hub of Scandinavia
 - Main airport / hub of SAS
 - Scandinavian hub for DHL
 - Largest workplace in Denmark approximately 22.000
 - Direct connections to a total of 140 destinations (July 2010) worldwide
 - Number of operations in 2009 (take-offs and landings): 236,172
 - Number of passengers in 2009: 19,7 million
 - Cargo volumes in 2009: 312,179 tonnes

- CPH is in operation 24/7/365
 - Primary focus is on ensuring a reliable and well driven airport
 - The operation has first priority no matter what (!)
- Historically CPH has had sufficient capacity in all areas
 - Motivation for optimization not present
- Airport = An OR candy store...BUT
 - OR optimization methods are still only applied to a small fraction of its potential areas.
 - If OR optimization methods are used, it is within externally delivered software products, i.e. development is not conducted/decided upon by CPH.
 - OR competences not present in-house (...)
- Next step
 - Is optimization needed?
 - What is optimization?
 - What defines an optimal solution?

- Is optimization needed?
 - Can we accommodate todays traffic without optimization?
 - Check-in?
 - Stand and gates?
 - Baggage?
 - Can we go from 19,7 to 30 mio pax in 5 years without investing?
 - Buildings?
 - Employees?
 - Equipment?
 - Can we utilize our facilities better than we do today?

- What is optimization?
 - That you have made all of your calculations / planning in Excel?
 - That you are doing things in the same way as always?
 - That you find a feasible solution?
 - That you intelligently use statistical data and apply known OR optimization methods?
- Definition of "optimality" differs a lot within the company
 - Investors define optimality from a purely cost driven perspective.
 - For some departments optimality is when all tasks are covered, regardless of the number of people used.
 - For some departments optimality is when all employees have their wishes fulfilled.
 - For some departments optimality is when things are done in the way they have always been done.

- So what are we doing?
 - Establishment of a centralized **Planning and Analysis** department (November 1st, 2010)
 - All analysts in the Operations Department (Passenger Service, Traffic Handling, Baggage Handling, Security, Environment, Quality, Roskilde Airport and Lean) gathered in one place.
 - All analyses relating to the Operations Department.
 - Projects:
 - Check-in optimization
 - Security / Police manning
 - Stand and Gate optimization
 - Baggage Sorting
 - Baggage Racetrack Allocation
 - Capacity Analyses of all of the above
 - "One Set of Numbers"
 - ?

Passenger / Aircraft Flow in the Airport

Passenger / Aircraft Flow in the Airport

- All passengers are on an inbound or outbound flight.
- We know about all flights in advance.
 - Hence, we have a pretty good idea about passenger appearance.

Table											
ATO - (CET) Timestamp	Operation type	Flight category	Operator	*	Destination 1	÷	Plane type	Routenumber	Counter	Seat Capacity	
2010/11/27 01:35:00	D	J	PC	PEGASUS HAVA TASIMACILIGI	SAW	Sabiha Gocken (Istanbul)	738	000834	1	189	
2010/11/27 05:50:00	D	J	LH	LUFTHANSA	FRA	Frankfurt	733	000833	1	122	
2010/11/27 06:00:00	D	J	DY	NORWEGIAN AIR SHUTTLE	RAK	Marrakesh	73H	003406	1	186	
2010/11/27 06:05:00	D	С	PF	PRIMERA AIR SCANDINAVIA	LPA	Las Palmas	738	000533	1	189	
2010/11/27 06:10:00	D	С	BLX	TUIFLY NORDIC	LPA	Las Palmas	73H	000295	1	189	
2010/11/27 06:25:00	D	J	DY	NORWEGIAN AIR SHUTTLE	FAO	Faro	73H	003620	1	1 186	
2010/11/27 06:30:00	D	J	DY	NORWEGIAN AIR SHUTTLE	AGA	Agadir	73H	003400	1	186	
2010/11/27 06:30:00	D	J	DY	NORWEGIAN AIR SHUTTLE	MLA	Malta	73H	003530	1	186	
2010/11/27 06:35:00	D	J	KL	KLM ROYAL DUTCH AIRLINES	AMS	Schiphol	73J	001124	1	189	
2010/11/27 06:35:00	D	J	SN	BRUSSELS AIRLINES	BRU	Bruxelles	AR1	002268	1	97	
2010/11/27 06:50:00	D	J	AF	AIR FRANCE	CDG	Paris Charles De Gaulle	320	001351	1	165	
2010/11/27 07:00:00	D	С	DK	THOMAS COOK AIRLINES SCANDINAVIA	LPA	Las Palmas	320	003733	1	177	
2010/11/27 07:00:00	D	С	SK	SCANDINAVIAN AIRLINES	SSH	Sharm El Sheikh	321	007769	1	198	
2010/11/27 07:05:00	D	С	SK	SCANDINAVIAN AIRLINES	AQJ	Aqaba	319	007787	1	141	
2010/11/27 07:05:00	D	J	AB	AIR BERLIN	TXL	Berlin Tegel	319	008093	1	144	
2010/11/27 07:05:00	D	J	OS	AUSTRIAN AIRLINES	VIE	Vienna	320	000308	1	159	
2010/11/27 07:10:00	D	С	SK	SCANDINAVIAN AIRLINES	LPA	Las Palmas	321	007737	1	198	
2010/11/27 07:10:00	D	J	JK	SPANAIR	BCN	Barcelona	321	000038	1	212	
2010/11/27 07:15:00	D	J	BA	BRITISH AIRWAYS	LCY	London City	E70	008466	1	76	
2010/11/27 07:15:00	D	J	SK	SCANDINAVIAN AIRLINES	FRA	Frankfurt	321	000639	1	198	
2010/11/27 07:40:00	D	J	BT	AIR BALTIC	VNO	Vilnius	DH4	000162	1	76	
2010/11/27 07:45:00	D	J	SK	SCANDINAVIAN AIRLINES	LHR	London Heathrow	321	000501	1	198	
2010/11/27 07:55:00	D	С	SK	SCANDINAVIAN AIRLINES	TFS	Tenerife Sur Reina Sofia	321	007711	1	198	
2010/11/27 07:55:00	D	J	BT	AIR BALTIC	RIX	Riga Splive	DH4	000132	1	76	
2010/11/27 08:05:00	D	J	BA	BRITISH AIRWAYS	LHR	London Heathrow	321	000811	1	188	
2010/11/27 08:10:00	D	J	KF	BLUE 1	HEL	Helsinki	AR8	000638	1	84	
2010/11/27 08:10:00	D	J	SK	SCANDINAVIAN AIRLINES	BGO	Bergen	M81	002862	1	150	
2010/11/27 08:10:00	D	J	SK	SCANDINAVIAN AIRLINES	SVG	Stavanger	CR9	001870	1	88	
2010/11/27 08:15:00	D	J	SK	SCANDINAVIAN AIRLINES	AGP	Malaga	M81	000583	1	150	
2010/11/27 08:15:00	D	J	SK	SCANDINAVIAN AIRLINES	AMS	Schiphol	M81	002551	1	150	
2010/11/27 08:15:00	D	J	SK	SCANDINAVIAN AIRLINES	KRS	Kristiansand Kjevik	CR9	002880	1	88	
2010/11/27 08:15:00	D	J	SK	SCANDINAVIAN AIRLINES	TXL	Berlin Tegel	CRJ	001673	1	50	
2010/11/27 08:20:00	D	J	SK	SCANDINAVIAN AIRLINES	CDG	Paris Charles De Gaulle	321	000565	1	198	
2010/11/27 08:20:00	n	1	ek.	SCANDINAVIAN AIDLINES	DUB	Dublin	M81	000537	4	150	

- For each flight, we have forecasts on:
 - Load factor
 - Appearance pattern
 - Bag factor
 - Passenger types (e.g. leisure / business)
- Forecast is based on historic data and differentiated on:
 - Airline
 - Destination
 - Aircraft type
 - Seat capacity
 - Flight type
 - Time of day
 - Handler

Appearance at Check-in

Arrivals, forecasted vs. realized - Tuesday September 1

Appearance at Check-in

Arrivals, forecasted vs. realized - Saturday September

Appearance at Check-in

Arrivals, forecasted vs. realized - Sunday September 6

Check-in Optimization

- What is the problem?
 - Opening patterns not optimized to match appearance patterns
 - Driven strictly by SLAs between airlines and handlers
 - CPH: "Only open counters when there are passengers"
 - Allocation of check-in areas
 - Previously handled entirely by the handlers
 - CPH: "Allocation of check-in areas should take baggage belt direction, baggage belt take-away capacity, queue lenghts, CUSS kiosk demand and flow into consideration"
- What have we done?
 - Observation of appearance patterns
 - Dialog with airlines and handlers about opening patterns with CPH suggesting new and optimized opening patterns
 - As of May 3, 2010, CPH controls allocation of check-in areas to counters
 - Mathematical Modeling and Optimization

Check-in Optimization

- Aggregate passenger appearance for all flights.
 - Incorporate the waiting time and processing time for check-in.
- Remove passengers that go through SAS Fast Track.
 - All other international passengers go through CSC.
- We assume that all passengers are identical.
 - However, we differentiate between summer / winter.
 - More clothes means longer processing time.

DTU

- Converting a passenger forecast to a plan:
 - SLA's (Service Level Agreements) define constraints for the acceptable quality level.
 - Robustness considerations add to the demands.
 - Optimization objectives:
 - Minimize manpower allocation (minimize cost).
 - Maximize employee satisfaction.

- Currently, we use a greedy heuristic:
 - Initialize cover with large values.
 - All demand is covered. Solution is very expensive.
 - Lower cover as much as possible, while respecting SLA's.
 - Solution value drops to an acceptable level.
 - The quality of the service is still acceptable.
- Next step, enhance algorithm:
 - The problem is an optimization problem with:
 - A "nice" structure
 - "Simple" rules
 - Well defined objectives.
 - Solving the problem to optimality using mathematical programming should be possible.
 - Could make the basis of Master's Thesis!
- 24 DTU Management Engineering, Technical University of Denmark

- We need more employees than that.
 - Breaks
 - Lunch breaks
 - Special tasks
 - Buffer

- With a demand per time interval, the demand must be covered by employees on shifts.
- From a "demand per time interval" the "demand per shift" is found.
- The employee shift plans are created to cover the "demand per shift".

Shift Name	Time
A0	04:00-14:00
A1	05:00-14:00
\mathbf{C}	06:00-18:00
D	10:00-20:00
$\mathbf{F0}$	13:00-21:00
F1	14:00-23:00
H3	20:30-06:30
H4	18:00-04:00
K2	08:00-16:00

-					TURSDAG	FREDAG	LØRDAG	SØNDAG	ΤΟ	
IJ.nr:	Nøgle:								TIMER	
	1	Vfri	Kfri	С	С	Vfri	Lfri	Lfri	24,00	ulige
	2	A1	A1	Vfri	Kfri	С	С	С	54,00	lige
	3	Lfri	Lfri	A1	A1	Vfri	Lfri	Lfri	18,00	ulige
	4	С	С	Lfri	Lfri	A1	A1	A1	51,00	lige
	5	Vfri	Kfri	С	С	Vfri	Lfri	Lfri	24,00	ulige
	6	A1	A1	Vfri	Kfri	С	С	С	54,00	lige
	7	Lfri	Lfri	A1	A1	Vfri	Lfri	Lfri	18,00	ulige
	8	С	С	Lfri	Lfri	A1	A1	A1	51,00	lige
	9	Vfri	Kfri	С	С	Vfri	Lfri	Lfri	24,00	ulige
	10	A1	A1	Vfri	Kfri	С	С	С	54,00	lige
	11	Lfri	Lfri	A1	A1	Vfri	Lfri	Lfri	18,00	ulige
	12	С	С	Lfri	Lfri	A1	A1	A1	51,00	lige
	13	Vfri	Kfri	С	С	Vfri	Lfri	Lfri	24,00	ulige
	14	A1	A1	Vfri	Kfri	С	С	С	54,00	lige
	15	Lfri	Lfri	A1	A1	Vfri	Lfri	Lfri	18,00	ulige
	16	С	С	Lfri	Lfri	A1	A1	A1	51,00	lige
		4-4	4-4	4-4	4-4	4-4	4-4	4-4	588,00	
A1 = 5-14 C = 6-18						Norm:	592.00	Diff:	-4.0	D

- Currently, most of this is a manual process.
 - We are currently in the process of buying a Resource Management System to optimize plans.
- Possible Master's Thesis projects:
 - Find optimal "demand per shift".
 - A (much) extended version of the assignment that I gave you at the previous lecture.
 - Generate optimal rosters.

DTU

- Performance is evaluated.
 - Was performance acceptable?
 - If not, what are the causes.
 - The only way to improve is to find the origin of the causes.
- Passenger forecast is evaluated.
 - Even small variations can lead to queues.
 - Hence, the forecast must be very accurate.
 - We are constantly working to improve this.
- Plan is compared to realized opening of lanes.
 - If there are deviations, there should be a good reason.
- Productivity is compared to expected productivity.

- Bad performance:
 - Find cause.
 - We know what the causes could be.
 - If we find consistencies over several days, the forecast and planning must be revised.

	04:30	05:00	05:30	06:00	06:30	07:00	07:30	08:00	08:30	09:00	09:30	10:00	10:30	11:00
Passages, Diff	-79,5	-165,6	-58,7	78,7	-12,1	-95,2	223,9	103,8	-51,3	-58,6	-54,2	-76,3	12,7	56,5
Lanes, Diff	-0,7	-1,5	-0,2	0,0	0,7	0,0	0,5	2,3	1,2	0,5	1,0	0,3	0,0	0,5
Productivity	15,2	11,9	14,1	15,3	15,4	14,6	15,7	16,3	14,4	12,4	10,8	12,0	12,2	14,7
KPI exceeded	0	0	0	0	1	0	4	6	2	0	0	0	0	0

- Other planning problems:
 - Manning the passport control
 - We are cooperating with the Danish Police.
 - Baggage handling
 - We are currently developing models and planning tools in the Baggage Department.
 - Customs
 - We are not looking at this problem, at the moment.

Aircraft Flow in the Airport

Aircraft Flow in the Airport

DTU

- The airlines are in control of their own schedules.
 - We have limited influence.
 - Usually, we consider them to be fixed.
- Optimization Tasks in the Aircraft Flow:
 - Air Traffic Controllers
 - Rostering
 - Task Scheduling
 - Ground Handling
 - Rostering
 - Task Scheduling
 - Stands and Gate Optimization

Stands and Gate Optimization

- A stand is an area on the apron where aircraft are parked
- A stand is (primarily) characterized by the following properties
 - Remote / gate
 - Size / physical conditions
 - What aircraft can / may at a given stand?
 - Passenger Status (Schengen, non-Schengen, non-EU, domestic)
 - Regulatory requirements
- CPH
 - 108 stands (including cargo and GA)
 - 9 domestic
 - 43 gate stands
 - 54 remote stands
 - 2 helicopter stands

Stands and Gate Optimization

Stands and Gate Optimization

And then things don't go as planned, anyway

And then things don't go as planned, anyway

And then things don't go as planned, anyway

Merry Christmas!

