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Abstract

Maritime transportation is the backbone of international trade. Over 80% of
global merchandise trade is transported by sea. With an ever increasing vol-
ume of maritime freight, the efficient handling of both ships and containers has
never been more critical. In this paper we consider the problem of allocating
arriving ships to discrete berth locations at container terminals. This problem
is recognized as one of the most important processes for any container terminal.
We review and describe the three main models of the discrete dynamic berth
allocation problem, improve the performance of one model, and, through ex-
tensive numerical tests, compare all models from a computational perspective.
The results indicate that a generalized set-partitioning model outperforms all
other existing models.

1. Introduction

Since the introduction of the container as we know it today in the early 50’s
the development in maritime transportation of cargo has been stunning. Since
1990, container trade is estimated to have increased by a factor of five (United
Nations, UNCTAD Secretariat[2008]). The success is, to a large extent, based
on the international standard size of a container. Containers are measured
in multiples of 20 feet known as Twenty-foot Equivalent Units (TEUs). It is
estimated that the global fleet of containers exceeds 23 million TEUs. In 2007,
container cargo accounted for 1.24 billion of the 8.02 billion tonnes of all shipping
cargo (United Nations, UNCTAD Secretariat[2008]), constituting an increase of
4.8% from the previous year.
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An important part of the global transportation of containers are the termi-
nals where containers are loaded and/or unloaded. Here containers can change
mode from sea to land (road or rail) and vice versa, or they can change from
one vessel to another as a hub-and-spoke network is widely adopted. Large
vessels can carry up to 15,000 TEUs and operate between huge transshipment
terminals (hubs), while smaller vessels (so-called feeders) transport containers
between smaller terminals (spokes) and the hubs. Globally it is estimated that
the container terminals have a throughput of 485 million TEUs (United Nations,
UNCTAD Secretariat[2008]) and that almost half of the container traffic in the
world is handled by the 20 largest terminals.

A container terminal usually consists of three areas: the berth (where ships
berth), the stowage area (where containers are stored temporarily) and the land-
side (where trucks and trains are serviced). The complexity of even medium
sized terminals makes it impossible to consider the entire operation and plan it
manually. Operations Research, therefore, has contributed to the planning and
development within many of the terminal’s processes. An overview of the dif-
ferent terminal operations and the impact of Operations Research are described
in Steenken et al. [2004].

In this paper we focus on the Berth Allocation Problem (BAP). This problem
entails assigning incoming ships to berth positions. Once a vessel is moored,
it will remain at the berth until all required container processing has been
completed. As berth space is very limited at most container terminals, and
thousands of containers must be handled daily, an effective berth allocation is
critical to the efficient management of the container flow. The BAP is recognized
as one of the major container terminal optimization problems in Steenken et al.
[2004], and it naturally lends itself towards a description in a two-dimensional
space. One dimension is spatial, i.e. the quay length, while the other is a
temporal decision horizon, which is often one week. Ships can be represented
as rectangles whose dimensions are length and handling time. The handling
time is defined to be the time the ship is at the berth, whereas the service time
is the total time the ship spends at the port (i.e. the handling time plus any
waiting time the ship experiences as a result of not being immediately serviced
on arrival). These rectangles must be placed in the decision space without
overlapping each other such that the length of the quay and the decision horizon
are not violated (see Figure 1).

The handling time of a ship depends on its position at the quay. This
reflects reality in that containers are prepared for particular ships, and the
driving distances from the stowage area to the berth must be considered. As
mentioned previously, the decision horizon is typically one week; however, this
may be updated based on changes to arrival and departure times of ships.

BAP problems can be classified as being either static (SBAP) or dynamic
(DBAP). The static case assumes that all ships are already in the port when the
berth assignment is planned, while the latter allows for ships to arrive during
container operations at the port. The BAP can be further classified into discrete
and continuous variants. The discrete case allows only one ship at a time at
each berthing location, regardless of its size, while the latter permits more.
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Figure 1: The representation of the berth-time space

This paper focuses on the discrete DBAP which is NP-Hard, see e.g. Monaco
and Sammarra [2007]. We describe the three main models for this variant of
the problem, improve the performance of one, and compare all models from a
computational perspective. Hence, the contributions of this paper are threefold.
Firstly, we show that the MDVRPTW model proposed in Cordeau et al. [2005],
with a few improvements, is competitive with that proposed by Imai et al. [2001].
In Cordeau et al. [2005] it was concluded that the latter model is most efficient.
Secondly, we show that a set-partitioning model proposed by Christensen and
Holst [2008] is able to significantly outperform both aforementioned models.
Finally, with the set-partitioning model we provide, for the first time, optimal
solutions to all instances proposed in Cordeau et al. [2005]. This enables us to
assess the quality of previously proposed heuristics.

The structure of this paper is as follows. We begin with a literature review
in Section 2, while the different models for the discrete and dynamic variant
of the BAP are presented in Section 3. A comparison of the models based on
extensive computational experiments is presented in Section 4, and we conclude
with a discussion on our findings in Section 5.

2. Literature Review

Studies on the BAP have appeared in the literature since the mid 1990’s.
The focus here is on the discrete DBAP. This is the most researched problem
and, in what follows, we review the majority of work in this area. We briefly
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deal with the other variants, as well as possible extensions, at the end of the
review.

Imai et al. [2001] first proposed the DBAP. The ship handling time is as-
sumed to be dependent on the assigned berth. Their model is an extension
of that developed for the SBAP in Imai et al. [1997]. The Lagrangean Relax-
ation (LR) results in a linear assignment problem. In addition, three simple
procedures are used to produce a feasible solution. Running times for the larger
problems are terminated at 1500 seconds, and these still have considerable gaps
to the lower bound. The instances contain at most 50 vessels and 10 berths. A
similar approach is adopted in Monaco and Sammarra [2007]. A stronger LR
is, however, given due to a reformulation of the problem. In Nishimura et al.
[2001], a genetic algorithm is proposed. This approach divides the problem into
subproblems based on time. Results are comparable in quality to Imai et al.
[2001]; however, there is no comparison of running times for the two approaches.

Cordeau et al. [2005] model the problem as a Multi-Depot Vehicle Rout-
ing Problem with Time Windows (MDVRPTW). The objective function is to
minimize the total ship service time. Furthermore, different positions along the
berth lead to a different handling time for each vessel. With the MDVRPTW
approach, ships are represented as customers, while berths are considered de-
pots. A tabu search metaheuristic is then developed for the problem and tested
on real-life instances. The MDVRPTW is also the basis of Mauri et al. [2008].
Their algorithm heuristically implements column generation. The master prob-
lem is a set-partitioning problem where each column is a sequence of vessels
that use a given berth. The subproblem is solved using an evolutionary-based
metaheuristic.

An alternative approach is presented in Christensen and Holst [2008]. Here
the problem is formulated as a generalized set-partitioning problem. Time is
discretized and for each berth and time interval a packing constraint ensures that
at most one ship can be at the berth at any given time. A column in the model
is a ship at a given berthing position in time and space. GUB constraints ensure
that one column for each ship is selected. For small problems total enumeration
is possible, for larger ones a branch-and-price approach is suggested.

In the SBAP, all ships are already in the port and it is merely a question
of assigning positions at the quay to the ships. This problem was shown in
Imai et al. [1997] to be solvable in polynomial time since it can be formulated
as a linear assignment problem. The problem is initially stated as a multi-
criteria problem that minimizes overall handling time and dissatisfaction of the
berthing order. The instances have up to 40 vessels and up to 5 berths. Dai
et al. [2004] solve the continuous version of the SBAP as a rectangle packing
problem with release time constraints. The authors implement a neighborhood
search algorithm using simulated annealing. The problem is represented using
sequence pairs (see Murata et al. [1995]), and running times are at most 650 s.
High-quality solutions are achieved for light loads on the terminal. Furthermore,
the paper also describes a simulation tool.

Several papers consider the length of a berth location to be continuous. A
first approach is Lim [1998], and this uses a graph representation to solve the
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problem as a restricted form of a two-dimensional packing problem. The edges
must be assigned an orientation to determine the order of berthing. Experimen-
tal results are sparse. In Wang and Lim [2007], the approach is extended to a
metaheuristic using a beam search framework. Results are reported based on 40
instances and suggest that the approach is state-of-the-art. Tong et al. [1999]
is also based on Lim [1998]. The authors present an ant colony metaheuristic.
Computational results are compared to a randomized first-fit heuristic and are
not impressive.

In Guan and Cheung [2004] weights in the objective reflect the relative im-
portance of vessels. Two mathematical models (a relative position formulation
and position assignment formulation) are given, and an LR approach is used for
the latter. A tree search is used to guide the search. Due to large running times,
vessels are clustered and the tree search algorithm is then run on each cluster.
Note that Guan et al. [2002] also describe a similar, but simpler, solution method
for the continuous SBAP. It should be mentioned that Cordeau et al. [2005] also
describe a continuous version of their tabu search metaheuristic. A heuristic for
the continuous problem is also given in Imai et al. [2005].

Park and Kim [2002] model the continuous BAP as a mixed-integer linear
program. The objective function minimizes the penalty cost associated with
service delays and the handling cost that is incurred when placing a ship at a
non-optimal location. The model ensures that the rectangles representing the
ships do not overlap in both space and time. This is similar to the container
loading and block layout from Onodera et al. [1991] and Chen et al. [1995].
However, the experimental results show that the computation time was too ex-
cessive for practical purposes. A grid is therefore introduced to approximate
the continuous solution. This allows an efficient LR approach utilizing subgra-
dient optimization to be adopted. A simple heuristic is used to obtain a feasible
solution. The authors consider 50 realistic instances, and all are solved within
500 seconds. Due to the high running times, Kim and Moon [2003] present a
simulated annealing heuristic based on exchanging the position of two rectan-
gles. Solution times of up to 160 seconds are reported for the larger instances
(up to 40 vessels). The authors state that the heuristic produces near optimal
solutions.

The generalized set-partitioning approach of Christensen and Holst [2008]
for the discrete case can intuitively be extended to the continuous case. Berth
length is discretized into the required level of detail, and one has a packing
constraint for each segment of the quay and time interval. Preliminary tests
in Christensen and Holst [2008] show that the method suffers from symmetry
and highly fractional LP relaxations. The authors also conclude that further
research is necessary to make this model competitive.

A recent, popular extension of the BAP is to integrate it into the plan-
ning of quay cranes. Contributions include Park and Kim [2003], Imai et al.
[2008], Liang et al. [2009], Meisel and Bierwirth [2009]. All approaches are
based on heuristics. The method proposed by Park and Kim [2003] decomposes
the problem into a BAP and a Crane Assignment Problem (CAP). The BAP
is solved with an adaptation of the method from Park and Kim [2002], while
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the CAP is solved using dynamic programming. Both Imai et al. [2008] and
Liang et al. [2009] are based on genetic algorithms that build on a similar two-
phase approach in which the crane scheduling is added to check for feasibility
and re-scheduling of the cranes. In this sense Imai et al. [2008] is basically an
extension of the genetic algorithm already presented in Nishimura et al. [2001].
Finally Meisel and Bierwirth [2009] try to use the metaheuristic squeaky wheel
optimization and tabu search on the problem.

In a few other papers the BAP is extended with service priority. Service
priority assigns a priority (or importance) to each ship. In Imai et al. [2003] this
simply adds a term to the objective function to capture the different priorities.
This extension is also added to the genetic algorithm of Nishimura et al. [2001],
and a similar feature is included in the model proposed in Cordeau et al. [2005].
Contrastingly, the extension in Hansen et al. [2008] is more elaborate. Here
each ship has both a handling time and a handling cost; however, in addition,
a premium is included in the objective function for each ship that reflects early
departure. The problem is solved with a variable neighborhood search.

3. Modeling the BAP

This section describes several mixed integer programming (MIP) models for
the discrete and dynamic berth allocation problem. We begin, in Section 3.1,
with a description of the first model proposed by Imai et al. [2001] and the exten-
sion DBAP+ proposed in Monaco and Sammarra [2007]. Section 3.2 describes
a heterogeneous vehicle routing problem with time windows (HVRPTW) for-
mulation which is based on the multi-depot vehicle routing problem with time
windows (MDVRPTW) formulation proposed by Cordeau et al. [2005]. Section
3.3 describes a model that improves upon the HVRPTW formulation in order
to make it easier to solve. Finally, in Section 3.4 we describe a generalized set-
partitioning (GSPP) formulation that was originally proposed by Christensen
and Holst [2008].

3.1. Imai et al. [2001] DBAP Formulation
The MIP model for the DBAP that is presented in Imai et al. [2001] is an

extension of that which is proposed in Imai et al. [1997] for the static case. The
decision variables govern the assignment of ships to berths as well as the order in
which the ships will be processed at the berths. That is, each decision variable
is a binary variable of the form xk

ip which states that ship i will be serviced
as the pth ship at berth k. To understand the model below, we introduce the
following notation. Let us assume we have a set of berthing locations M (with
|M | = m), a set of ships N (with |N | = n) that wish to berth, and a set of
service orders P (with |P | = n). Further assume that the handling time spent
by ship i at berth k is given by hk

i , that the arrival time of ship i is given by ai,
and that sk defines the time at which berth k becomes available for the berth
allocation planning. The aforementioned parameters and sets are sufficient to
formulate the SBAP (see Imai et al. [1997] for details); however, the following
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additional information is needed for the DBAP. Unlike the SBAP, in the DBAP
not all ships arrive at the assigned berth before sk. Thus, the set Wk is needed
to indicate the set of ships satisfying ai ≥ sk. In addition, one must also define
P(p) = {q ∈ P : q < p}, which gives the set of service orders before p, and the
decision variables yk

ip which give the idle time at berth k between the departure
of the (p− 1)th ship and the arrival of the pth ship, if ship i is the pth ship to
be serviced. The model in Imai et al. [2001] can then be stated as follows.

min
∑
k∈M

∑
i∈N

∑
p∈P

{
(n− p+ 1)hk

i + sk − ai

}
xk

ip

+
∑
k∈M

∑
i∈Wk

∑
p∈P

(n− p+ 1)yk
ip (1)

s.t.

∑
k∈M

∑
p∈P

xk
ip = 1 ∀i ∈ N, (2)

∑
i∈N

xk
ip ≤ 1 ∀k ∈M, p ∈ P, (3)∑

l∈N

∑
q∈P(p)

(
hk

l x
k
lq + yk

lq

)
+ yk

ip ≥
(
ai − sk

)
xk

ip ∀i ∈Wk, p ∈ P, k ∈M, (4)

xk
ip ∈ {0, 1} ∀i ∈ N, p ∈ P, k ∈M, (5)

yk
ip ≥ 0 ∀i ∈ N, p ∈ P, k ∈M. (6)

The objective function, given by (1), minimizes the total waiting and han-
dling times of every ship. Constraint sets (2) and (3) ensure that each ship is
serviced at one berth and that each berth can service at most one ship at any
time, respectively. Constraint set (4) (along with (6)) controls the idle time
variables. Such a constraint states that for any ship i which arrives after berth
k opens, the time at which it can start being serviced (given by the accumu-
lated service times of all the ships preceding it on berth k and the respective
idle times) must be no less than ai − sk. Obviously, if ship i is the pth ship
serviced at berth k and its arrival time, ai, is less than the completion time of
the ship in position p − 1, then yk

ip = 0. Finally, constraints (5) enforce the
binary integer restriction on the xk

ip variables, and constraints (6) ensure that
the idle time variables, yk

ip, are non-negative. Cordeau et al. [2005] point out
that this initial model neglects the fact that each berth k ∈M is likely to have a
closing time ek. The following additional set of constraints ensure that all ship
servicing conducted at berth k falls within its respective time window [sk, ek]:

∑
i∈N

∑
p∈P

(hk
i x

k
ip + yk

ip) ≤ ek − sk ∀k ∈M. (7)
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Monaco and Sammarra [2007] show that the basic formulation in Imai et al.
[2001] can be strengthened by realizing that the idle times are independent of
which ship is eventually serviced in the pth position at berth k. Thus, the ship
subscript can be dropped, and the idle time variables are restated as yk

p , which
simply gives the idle time between the start of the pth service and the completion
of the (p − 1)th service at berth k. Suppose Ck

(p−1) gives the completion time
of service p− 1 at berth k, then the value of each yk

p variables is given as:

yk
p = max

{
0,
∑
i∈N

aix
k
ip − Ck

(p−1)

}
∀k ∈M, p ∈ P. (8)

The authors also show how constraint set (8) can be linearized and further
strengthened to the following:

∑
i∈Wk

(ai − sk)xk
ip −

∑
l∈P(p)

yk
l +

∑
j∈N

hk
jx

k
jl

− yk
p ≤ 0 ∀k ∈M, p ∈ P. (9)

The improved Imai et al. [2001] model is identical to the formulation pro-
vided above with the exception that the yk

p variables are used instead of the yk
ip

variables, constraint set (4) is replaced with constraint set (9), and the objective
function is rewritten using the new variables:

min
∑
k∈M

∑
i∈N

∑
p∈P

{
(n− p+ 1)hk

i + sk − ai

}
xk

ip

+
∑
k∈M

∑
p∈P

(n− p+ 1)yk
p (10)

The basic model (1)–(6) is denoted DBAP, while the improved formulation
is denoted as DBAP+ in the following. Both are tested in Section 4, where we
compare the performance of the different formulations. Cordeau et al. [2005]
observe that the objective function of this model cannot be decomposed into a
weighted sum of ship service times and, for this reason, developed the following
formulation.

3.2. Heterogeneous Vehicle Routing Problem With Time Windows Formulation
Cordeau et al. [2005] present a multi-depot vehicle routing problem with

time windows (MDVRPTW) formulation of the BAP where berths correspond
to depots, ships correspond to customers and a mooring sequence at a particular
berth corresponds to a vehicle route (this was originally proposed in Legato et al.
[2001]). We note that the notation can be simplified by viewing the problem as
a heterogeneous vehicle routing problem with time windows (HVRPTW). By
using the HVRPTW model one can define the problem on a graph instead of
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a multigraph as in Cordeau et al. [2005]. The complexity of the problem does,
however, remain unchanged.

In the following we use the same notation as in the previous section, unless
otherwise stated. The HVRPTW is defined on a graph G = (V,A) where the
set of vertices V = N ∪ {o, d} contains a vertex for each ship as well as vertices
o and d which mark the origin and destination nodes for any route in the graph.
The set of arcs is a subset of V × V . Each ship i ∈ N has a time window
[ai, bi] that indicates the time at which the ship first arrives at the port and
the time by which its departure from the port must be ensured. For the origin
and destination vertices, the time window [sk, ek] depends on the vehicle k as
berths can be available at different times. Each ship has a relative importance
vi (objective function weight) similar to the service priority approach of Imai
et al. [2003], and handling times hk

i that are dependent on the respective berth
locations. The full HVRPTW formulation is given below. This model has two
types of decision variables: the binary decision variables xk

ij , k ∈ M, (i, j) ∈ A
and the continuous variables T k

i , i ∈ V, k ∈ M . Each xk
ij takes the value one

if ship j immediately succeeds ship i at berth k and is zero otherwise. Each
T k

i gives the time at which ship i moors at berth k, or is equal to ai if ship i
does not use berth k. The variables T k

o and T k
d define the start and end time of

activities at berth k ∈M
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min
∑
i∈N

∑
k∈M

vi

T k
i − ai + hk

i

∑
j∈N∪{d}

xk
ij

 (11)

s.t. ∑
k∈M

∑
j∈N∪{d}

xk
ij = 1 ∀i ∈ N (12)

∑
j∈N∪{d}

xk
o,j = 1 ∀k ∈M (13)

∑
i∈N∪{o}

xk
i,d = 1 ∀k ∈M (14)

∑
j∈N∪{d}

xk
ij =

∑
j∈N∪{o}

xk
ji ∀k ∈M, i ∈ N (15)

T k
i + hk

i − T k
j ≤ (1− xk

ij)Mk
ij ∀k ∈M, (i, j) ∈ A (16)

ai ≤ T k
i ∀k ∈M, i ∈ N (17)

T k
i + hk

i

∑
j∈N∪{d}

xk
ij ≤ bi ∀k ∈M, i ∈ N (18)

sk ≤ T k
o ∀k ∈M (19)

T k
d ≤ ek ∀k ∈M (20)

xk
ij ∈ {0, 1} ∀k ∈M, (i, j) ∈ A (21)

T k
i ∈ R+ ∀k ∈M, i ∈ V (22)

The objective function (11) minimizes the weighted sum of ship service times.
Constraint set (12) states that each ship must be assigned to exactly one berth
k, while constraints (13) and (14) guarantee that for each berth k the degree of
origin (resp. destination) nodes is one. Flow conservation for the remaining ver-
tices is ensured by constraints (15). Consistency for berthing time and mooring
sequence on each berth is achieved with constraints (16). Note that the con-
stants Mk

ij are defined as Mk
ij = max{bi + hk

i − aj , 0}, where k ∈M, (i, j) ∈ A.
Constraints (17) and (18) enforce the time window requirements for each ship.
The berth availability time windows are enforced by constraints (19) and (20).
Finally, constraints (21) and (22) define the respective domains of the decision
variables. In the data sets used in Cordeau et al. [2005] there are some infeasible
assignments of ships to berths. Let I ⊆ N ×M be a set containing all infeasible
ships × berth allocations. That is, if (i, k) ∈ I then it is infeasible to assign ship
i to berth k. Such infeasibilities can be handled by adding the constraint∑

(i,k)∈I

∑
j∈N

(xk
ij + xk

ji) = 0
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The model presented in this section is denoted HVRPTW in the following.

3.3. Improved HVRPTW Model
In this section we modify the model proposed in Section 3.2 with the aim

of reducing computation time. To improve the model we consider breaking
symmetries (Section 3.3.1), variable fixing (Section 3.3.2), and adding valid
inequalities (Section 3.3.3). We denote the model presented in this section
HVRPTW+.

3.3.1. Berth Symmetry
In the data sets used in Cordeau et al. [2005] several berths are identical in

terms of their availability time window and the handling times for all ships. One
also expects that identical berths would be present in real life data. Identical
berths introduce many equivalent solutions, which makes solving the model
difficult. Therefore, we propose changing the model in such a way that it deals
with berth types rather than individual berths. Let us now denote the set of
berth types as M and define βk, k ∈M to be the number of berths of type k in
the problem instance. It is an easy preprocessing step to determine the set of
berth types given the set of berths. We hence replace constraints (13) and (14)
with the following:

∑
j∈W

xk
o,j = βk ∀k ∈M (23)

∑
i∈N∪{o}

xk
i,d = βk ∀k ∈M (24)

Constraints (23) and (24) allow the origin (destination) node for each berth
type k to have as many outgoing (incoming) arcs as there are berths of type
k. Since berths can be left unused, one must also change the domain of the
variable representing the arc from origin to destination node for berths type
with multiplicity greater than one:

xk
o,d ∈ {0, ..., βk} ∀k ∈M (25)

We expect this change to improve the model’s performance as soon as an
instance contains some identical berths; both symmetry and the number of
decision variables are reduced.

3.3.2. Variable Fixing
It is well known from the VRPTW literature that an arc (i, j) can be removed

from the instance if the time windows make it impossible to serve node j directly
after node i. Such arc removals are valid because one can guarantee that the arc
cannot be part of a feasible solution. For the the HVRPTW model for the BAP
we do not expect such reductions to be effective as the time windows considered
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are very wide. For the same reason we do not expect time window reduction
techniques like those proposed in Desrochers et al. [1992] to be effective.

Instead we propose to fix variables that can be part of a feasible solution.
One can fix a variable xk

ij if one can guarantee that an optimal solution exists
in which berth type k does not use the arc (i, j). It is possible to fix xk

ij to zero
if variable xk

ji is not fixed and hk
i ≥ hk

j ∧ ai ≥ aj ∧ bi ≥ bj . To see that it
is valid to fix the variable, consider a solution s1 that uses arc (i, j) in a route
for berth type k and assume that hk

i ≥ hk
j ∧ ai ≥ aj ∧ bi ≥ bj . In this case,

one can obtain a solution s2 that is at least as good as s1 by exchanging ship
i and j such that ship j is served right before i. This is because 1) the service
time of ship j gets reduced by at least hk

i as ship j can start as early as ship
i can, 2) the service time of ship i gets increased by at most hk

j , 3) in solution
s2, ship i finishes earlier or, at worst, the same time as ship j did in solution s1

(as ai ≥ aj). Observations 1) and 2) ensure that the objective does not increase
when looking at ship i and j as hk

i ≥ hk
j , while observation 3) ensures that the

ships following ships i and j on berth k do not get delayed and thereby increase
the objective value. Furthermore, solution s2 is feasible with respect to the end
of the time windows due to observation 3 and the assumption that bi ≥ bj .

Figure 2 shows an example. Ship j has an earlier and shorter time window
than ship i. The handling time of ship j is also shorter than that of ship i. In
solution s1, ship i is served just before ship j and both are on berth k. The
service time of ship i is only the handling time hk

i , but ship j has to wait until
ship i arrives and is served before the handling can begin. If the ships are
exchanged solution, s2 is obtained. The service time of ship j is reduced to the
handling time, while that of ship i is only increased by the handling time of ship
j minus the time until ship i arrives. Solution s2 is clearly better than s1.

  

i

k

j

s1

s2k ihjh

j

ia

jh
j

jhih

ih

a
jjb

jib

Figure 2: The variable fixing

One may wonder if it could be problematic to remove an arc (i, j) if the arc
(h, i) is present for some h ∈ V while (h, j) is removed by the arc reduction.
This implies that the partial path consisting of the nodes h → i → j would
be feasible while h → j → i would not. One can observe that, in this case,
the partial path j → h → i would be feasible because the arc reduction never
removes arcs in both directions for a pair of nodes. The partial path j → h→ i
would also be at least as good as h → i → j since (h, j) is only removed if the
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solution where h and j are exchanged is at least as good.

3.3.3. Valid Inequalities
We formulate a class of valid inequalities that aim to increase the lower

bound of the T k
i variables. Increasing these bounds will, most likely, increase

the lower bound obtained from the solution to the LP relaxation as the T k
i

variables play an important role in the objective function. The valid inequality
is:

skxo,j +
∑
i∈N

(
max

{
ai, s

k
}

+ hk
i

)
xk

ij ≤ T k
j ∀j ∈ N, k ∈M (26)

To see that the inequality is valid, first observe that at most one of the x
variables on the left hand side can be 1 in a feasible solution. This is because
of constraints (12) and (15). Having realized this, it is easy to see that the
inequality is valid no matter which one of the x variables on the left hand side
is non-zero. Note that we need the max

{
ai, s

k
}

expression since ai may be
smaller than sk. The inequality is equivalent to a valid inequality proposed for
the VRPTW proposed by Desrochers and Laporte [1991].

There are only |N | × |M | constraints of this type and these can be added
to the formulation in advance. However, it should be noted that (26) uses the
berth opening time and the arrival times of the ships. Therefore, it is most
effective for the first couple of ships at each berth. In other words, we expect
the inequalities to be most useful when the ratio of ships to berths is small.

3.4. Generalized Set-Partitioning
The BAP can also be modelled as a generalized set-partitioning problem

(GSPP). This model was proposed by Christensen and Holst [2008]. The model
assumes that all time measurements are integers. In order to illustrate how the
constraint matrix is composed, a small example is provide below. This example
has 2 berths, number 1 is open from time 1-3, and number 2 from 2-3. Ships
1 and 2 have handling time 2 and 1, respectively (on both berths) and ship
number 2 must leave before time 3.

Berths Ships
1 2

1 - 2
Time 2 1

3 -

In the GSSP model, a column (variable) represents a feasible assignment
of a single ship to a berth at a specific time. The first n rows correspond to
the n ships. If a column represents an assignment of ship i, there will be a 1
in row i and zeros in the rest of the n first rows. Furthermore, there is one
row for each available time unit at each berth. An entry in a column is equal
to one if the ship occupies the berth at the considered time unit, otherwise
it is zero. The cost of each column is equal to the service time arising from

13



the ship/berth/time assignment. The full column matrix corresponding to the
example is given below:

x1 x2 x3 x4 x5 x6

Cost 2 3 3 1 2 2
ship 1 1 1 1
ship 2 1 1 1

berth1/time1 1 1
berth1/time2 1 1 1
berth1/time3 1
berth2/time2 1 1
berth2/time3 1

We now define the model more formally. The set of columns is denoted by
Ω. We define two matrices A and B, both containing |Ω| columns. Matrix
A = (Aiω) contains a row for each ship, and Aiω = 1 if and only if column ω
represents an assignment of ship i ∈ N . Each column of A contains exactly one
non-zero element. Matrix B = (Bpω) contains a row per (berth,time) position.
The rows of B are indexed by the set P , with |P | =

∑
k∈M (ek − sk). The entry

Bpω is one if and only if position p ∈ P is contained in the assignment that
column ω represents. The cost cω of any column ω ∈ Ω is the service time of
the respective position assignment and can be multiplied by the priority factor
vi if necessary. A binary variable xω is equal to one if column ω is used in the
solution, and is zero otherwise. With these definitions we can present the GSPP
formulation of the BAP.

min
∑
ω∈Ω

cωxω (27)

s.t. ∑
ω∈Ω

Aiωxω = 1 ∀i ∈ N (28)∑
ω∈Ω

Bpωxω ≤ 1 ∀p ∈ P (29)

xω ∈ {0, 1} ∀ω ∈ Ω (30)

The objective function minimizes the ships service time. Constraints (28)
ensure that all ships are served, while constraints (29) enforce the restriction that
only one ship can use any berth during each time interval. It is straightforward
to write a program that generates the entire constraint matrix.

The GSPP is in general NP-hard. However, constraints (28) act as so-called
generalized upper bound (GUB) constraints. The addition of which makes each
of the submatrices containing only the columns of a specific ship perfect. This
property guarantees that all extreme points of the feasible region (defined by
the constraint system and the columns of any submatrix) are integer solutions.
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When putting the submatrices together, however, this property is lost. In most
cases, the addition of the GUB constraints makes the problem easier and often
gives integer or less fractional solutions (see Ryan and Foster [1981] and Padberg
[1974]).

In the following the models DBAP, DBAP+, HVRPTW and HVRPTW+
are denoted compact models while the GSPP model is denoted an extensive
model. The reason for this vocabulary is the different growth of number of
variables and constraints as a function of the instance size.

The GSPP model offers some modeling advantages compared to the compact
models. It is easy to incorporate advanced constraints on the placement of ships
as long as the constraints only consider a single ship because such constraints
can be handled while generating the columns. For similar reasons it is possible
to handle complicated objective functions as long as the objective function can
be expressed as a sum of column costs. On the other hand, it is not easy to
handle constraints that involves several ships in the GSPP model. It would for
example be problematic to model a problem where the handling time of a ship
is dependent on which ship that was served immediately before, on the same
berth.

4. Computational Results

The models presented in Section 3 are compared in this section. For the
comparison of the compact models five instance sizes were considered: 25 ships
with 5, 7, and 10 berths; 35 ships with 7 and 10 berths. A set of 10 instances
were generated for each. These correspond to the I2 set from Cordeau et al.
[2005]. We also compare the GSPP model with the best heuristic methods from
the literature (specifically, T2S from Cordeau et al. [2005] and PTA/LP from
Mauri et al. [2008]). For this, the I3 set from Cordeau et al. [2005] was used.
The data consists of 30 instances and contains up to 60 ships and 13 berths. In
all instances we have vi = 1 for all ships i ∈ N .

The three compact models from the literature: DBAP, DBAP+ and HVRPTW
as well as HVRPTW+ were implemented in OPL Studio. The greedy algorithm
described in Section 4.1 was used in order to compute an initial solution for all
of them. All tests were run on an Intel Xeon 5430 (2.66 GHz) processor and
used a 32-bit version of CPLEX 11. The time limit for the solver was 2 hours
and all computation times are given in seconds. We have used the standard
parameters of CPLEX in all experiments. Section 4.2 compares the four mod-
els. The GSPP formulation from Section 3.4 was implemented by generating
all columns a priori using a JAVA program and solving the resulting IP using
CPLEX 11. In Section 4.3 we demonstrate that the GSPP model is superior to
the four compact models and detailed comparisons with the two best compact
models (DBAP+ and HVRPTW+) and the best heuristics from the literature
are also provided.
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4.1. Greedy Heuristic
A simple greedy heuristic was implemented in order to compute an upper

bound for the BAP. It assumes that all berths become available at the same
time and sorts the ships by arrival time. Then, it loops through the time and
looks at all the available ships. It assigns ships one at a time by choosing the
combination of berth and ship that will end first. The time is increased when
there are no ships available or all berths are busy. This continues until all ships
have been assigned, or one has reached a time point where all berths are closed,
in which case the remaining ships cannot be serviced.

4.2. Computational Results for the DBAP, DBAP+,
HVRPTW and HVRPTW+ Models

In this section the four compact models from Sections 3.1 to 3.3 are com-
pared. The results can be seen in Table 1 and Table 2. Comparing DBAP
and DBAP+ one can observe that the DBAP+ always provides a significant
improvement over DBAP. This confirms the results in Monaco and Sammarra
[2007]. Even though the CPLEX solver runs out of memory for many instances,
the solution values that it calculates before running out of memory are far bet-
ter than the ones that the DBAP formulation provided within the time limit.
It may be possible to avoid some of the out-of-memory situations by tweaking
the parameters of CPLEX but we have decided not to do so to enable a clean
and fair comparison of the different models. Observe that the DBAP+ model
can solve 12 out 25 instances to optimality.

For the HVRPTW and HVRPTW+ models, one can observe that HVRPTW+
always provides a significant improvement. HVRPTW+ performs much better
as the ships/berths ratio decreases. This is due to the type of valid inequalities
introduced; they mainly tighten the formulation for the first couple of ships at
each berth (see Section 3.3.2). Observe that the HVRPTW+ model can solve
14 instances to optimality.

In Cordeau et al. [2005, p. 531] it was concluded that, from a computational
point of view, DBAP is better than MDVRPTW (HVRPTW) in that it can solve
larger instances. We have shown here that the MDVRPTW model proposed in
Cordeau et al. [2005], with a few improvements, is competitive with the DBAP
model proposed in Imai et al. [2001]. In fact, the HVRPTW+ formulation
provides a much better optimality gap in most cases and solves more instances
to optimality. However, the DBAP provides good upper bounds.

Based on the experiments we cannot conclude that DBAP+ dominates
HVRPTW+ or vice versa. When comparing the DBAP+ and HVRPTW+
formulations it can be seen that the latter solves to optimality two new in-
stances with respect to the DBAP+. In general, the DBAP+ formulation takes
much more time than the HVRPTW+ (average on the same 12 instances:
DBAP+ 1539 seconds and HVRPTW+ 337 seconds). However, in general
DBAP+ provides the best upper bounds, especially for those instances with
higher ships/berths ratio.
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4.3. GSPP Model Results
The best compact models, DBAP+ and HVRPTW+, are compared, in Table

3, with the GSPP and the heuristic T2S from Cordeau et al. [2005] on the
instances containing 25 and 35 ships. For the compact models we only indicate
whether the instances are solved to optimality (

√
), or not (÷). The time to

generate all columns for the GSPP was always less than one tenth of a second and
was not included in the computation time presented in Table 3. The percentage
difference between the GSPP and T2S is shown in the table: with an average
difference of 1.0% and a worst case of 2.8%, we conclude that T2S performs well
within a few seconds. (Cordeau et al. [2005] is not more specific about running
times for T2S). However, the GSPP is also fast and guarantees optimality.

The computational results obtained on the bigger instances (60 ships and 13
berths) for the GSPP and the two heuristics (T2S and PTA/LP) are compared
in Table 4. The PTA/LP heuristic was executed on an AMD Athlon 64 3500
(2.2GHZ) which must be expected to be slower than our computer. It can
be seen that PTA/LP dominates T2S in terms of solution quality. In fact,
PTA/LP is only 1 time unit away from optimality in 3 out of 30 cases. However,
its runtime is slower than the GSPP, even when taking the different CPUs
into account. It should be noted that Cordeau et al. [2005] report a solution
of 1212 on instance i10 which is better than the optimal solution. Private
correspondence with the authors revealed that this is due to a typo in Table 7
in Cordeau et al. [2005]. The solution found by their heuristic was actually the
optimal one, with cost 1213.

5. Conclusion

In this paper we have reviewed and compared five different models for the
discrete and dynamic berth allocation problem. We have demonstrated that the
GSPP model is superior to all others on the set of instances from Cordeau et al.
[2005]. The performance of the model is quite remarkable. For all the instances
considered, the model finds the optimal solution within 30 seconds. This is in
sharp contrast to the results in the previous state-of-the-art paper (Monaco and
Sammarra [2007]), where none of the instances could be solved to optimality
within two hours.

This paper also shows that the MDVRPTW/HVRPTW model proposed in
Cordeau et al. [2005] is also quite attractive from a computational point of view.
With a few, simple improvements the model is competitive with all other models
except the GSPP model.
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Instance DBAP+ HVRPTW+ GSPP T2S Differenced

Solved Solved Time Value Value (%)
2
5
×

5

01 ÷ ÷ 5.99 759 759
02 ÷ ÷ 3.70 964 965 0.1
03 ÷ ÷ 2.95 970 974 0.4
04 ÷ ÷ 2.72 688 702 2.0
05 ÷ ÷ 6.97 955 965 1.0
06 ÷ ÷ 3.10 1129 1129
07 ÷ ÷ 2.31 835 835
08 ÷ ÷ 1.92 627 629 0.3
09 ÷ ÷ 4.76 752 755 0.4
10 ÷ ÷ 6.38 1073 1077 0.4

Mean 0 0 4.08 0.5

2
5
×

7

01
√ √

3.62 657 667 1.5
02

√ √
3.15 662 671 1.4

03 ÷ ÷ 4.28 807 823 2.0
04 ÷ ÷ 3.78 648 655 1.1
05 ÷

√
3.85 725 728 0.4

06 ÷ ÷ 3.60 794 794
07 ÷ ÷ 3.54 734 740 0.8
08 ÷ ÷ 3.93 768 782 1.8
09

√ √
3.73 749 759 1.3

10
√ √

3.82 825 830 0.6
Mean 4 5 3.73 1.1

2
5
×

1
0

01
√ √

5.83 713 717 0.6
02

√ √
6.99 727 736 1.2

03
√ √

6.12 761 764 0.4
04 ÷ ÷ 5.38 810 819 1.1
05

√ √
6.77 840 855 1.8

06
√ √

5.57 689 694 0.7
07

√ √
5.83 666 673 1.1

08
√ √

5.87 855 860 0.6
09 ÷

√
5.38 711 726 2.1

10
√ √

5.96 801 812 1.4
Mean 8 9 5.97 1.1

3
5
×

7

01 ÷ ÷ 12.57 1000 1019 1.9
02 ÷ ÷ 15.93 1192 1196 0.3
03 ÷ ÷ 7.16 1201 1230 2.4
04 ÷ ÷ 13.59 1139 1150 1.0
05 ÷ ÷ 11.50 1164 1179 1.3
06 ÷ ÷ 29.16 1686 1703 1.0
07 ÷ ÷ 12.89 1176 1181 0.4
08 ÷ ÷ 17.52 1318 1330 0.9
09 ÷ ÷ 8.41 1245 1245
10 ÷ ÷ 15.16 1109 1130 1.9

Mean 0 0 14.39 1.1

3
5
×

1
0

01 ÷ ÷ 19.98 1124 1128 0.4
02 ÷ ÷ 11.37 1189 1197 0.7
03 ÷ ÷ 8.97 938 953 1.6
04 ÷ ÷ 10.28 1226 1239 1.1
05 ÷ ÷ 22.31 1349 1372 1.7
06 ÷ ÷ 10.92 1188 1221 2.8
07 ÷ ÷ 9.74 1051 1052 0.1
08 ÷ ÷ 9.39 1194 1219 2.1
09 ÷ ÷ 29.45 1311 1315 0.3
10 ÷ ÷ 10.36 1189 1198 0.8

Mean 0 0 14.28 1.1
d Comparison between the solutions provided by GSPP and T2S, calculated as

(GSPP − T 2S)/GSPP .

Table 3: Comparison between GSPP and T2S - 25 and 35 ships instances.
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Instance GSPP T2S PTA/LP GSPP vs.
PTA/LPe

Time Value Value Time Value (%)

6
0
×

1
3

i01 17.92 1409 1415 72.14 1409
i02 15.77 1261 1263 58.92 1261
i03 13.54 1129 1139 94.62 1129
i04 14.48 1302 1303 103.16 1302
i05 17.21 1207 1208 72.20 1207
i06 13.85 1261 1262 74.22 1261
i07 14.60 1279 1279 86.73 1279
i08 14.21 1299 1299 48.77 1299
i09 16.51 1444 1444 91.86 1444
i10 14.16 1213 1213 61.81 1213
i11 14.13 1368 1378 95.34 1369 0.07
i12 15.60 1325 1325 77.39 1325
i13 13.87 1360 1360 62.55 1360
i14 15.60 1233 1233 69.05 1233
i15 13.52 1295 1295 71.28 1295
i16 13.68 1364 1375 169.81 1365 0.07
i17 13.37 1283 1283 32.89 1283
i18 13.51 1345 1346 81.78 1345
i19 14.59 1367 1370 122.00 1367
i20 16.64 1328 1328 74.25 1328
i21 13.37 1341 1346 103.52 1341
i22 15.24 1326 1332 104.17 1326
i23 13.65 1266 1266 41.59 1266
i24 15.58 1260 1261 75.81 1260
i25 15.80 1376 1379 95.09 1376
i26 15.38 1318 1330 70.00 1318
i27 15.52 1261 1261 77.38 1261
i28 16.22 1359 1365 51.52 1360 0.07
i29 15.30 1280 1282 196.36 1280
i30 16.52 1344 1351 69.62 1344

Mean 14.98 83.53 0.01
e Comparison between the solutions provided by GSPP and PTA/LP, cal-

culated as (GSPP − PTA/LP )/GSPP .

Table 4: Comparison between GSPP, T2S and PTA/LP - 60 ships instances.
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