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1. Introduction

Modern Portfolio Theory (for a survey see Constantinides and Malliaris, 1995) was de-
veloped after Markowitz (1952) introduced the mean-variance portfolio selection model
and the idea of diversification. A number of researchers refined the theory in several
directions and developed alternative models, mostly in a single period myopic setting. In
reality, however, managing a portfolio of assets under changing market conditions leads
to a sequence of buying and selling actions after observing new information. Asset and
liability management models have been developed that incorporate the dynamics of the
problem and approximate the real world behavior more closely. Especially multi-stage sto-
chastic optimisation models are well suited for this task (see Ziemba and Mulvey, 1998).
However, if a number of assumptions are satisfied, such as normality and intertempo-
ral independence of the return distributions, no transaction costs and no cash infusion
or withdrawal, the single period model provides a good solution to multi-period asset
management problems (see Grauer and Hakansson, 1985).

Fixed-income portfolio management strategies evolved in a similar direction. Immunisa-
tion strategies that build portfolios that are hedged against small changes in the current
term structure of interest rates date back to Reddington (1952). However these immuni-
sation techniques ignore the true stochastic nature of todays markets. Mulvey and Zenios
(1994) argued that bond portfolios should be managed by looking at co-movements of
securities, hence applying Markowitz’s ideas of diversification to fixed-income portfolio
management. Unfortunately, mean-variance analysis is not directly applicable as a num-
ber of assumptions underlying the analysis are violated when fixed-income instruments are
considered. For example, securities with embedded options (e.g. callable bonds) lead to
skewed holding period return distributions, and path-dependent securities (e.g. mortgage-
backed securities) violate the assumption of temporally independent returns. However a
number of fixed-income portfolio management problems (single- and multi-period) were
tackled by integrating simulation and optimisation. Worzel et al. (1994) apply integrated
simulation and optimisation models for tracking bond indices in a single-period setting.
Zenios et al. (1998) address dynamic multi-period models for fixed-income portfolio man-
agement. Consiglio and Zenios (2001) extend the single period formulation to the joint
problem of asset allocation and bond picking in international bond markets. A general
overview of fixed-income portfolio and asset and liability management problems can be
found in Hiller and Schaak (1990).

In this paper we contribute to existing literature on fixed-income portfolio management by
taking into account market and credit risk in a portfolio context. Low government bond
yields and the reduced liquidity of government debt has attracted investors to corporate
products over the last few years. This increased demand in corporate securities and
the Russian crises (August 1998), including the “flight to quality” thereafter, led to an
increased demand for risk management approaches that integrate disparate sources of
risks. Furthermore it is likely that the growing credit derivatives market will impact
the practice of fixed-income portfolio and risk management over the next few years. For
example, some European telecommunication companies already issue their bonds with
embedded credit derivative protection. Gregory-Costello (2000) discusses how this credit
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protection changes bond markets. As Schönbucher (2000) points out credit derivatives
make large and important risks tradeable. They form an important step towards market
completion and efficient risk allocation by bridging the market segmentation between
corporate loans and bond markets.

Credit risk losses may result from a counterparty default or a decline in the market
value due to credit quality downgrading. For a single instrument, credit risk may be
decomposed into default risk and the corresponding recovery risk, migration risk, and
a security specific risk causing idiosyncratic spread changes. The correlation between
migrations and defaults in a portfolio context is very important for both, risk management
and derivatives pricing. As a result, the distribution of credit losses can be described by a
large chance of small earnings and a very small probability of (extremely) large investment
losses. They are non-normal and heavily skewed. Details about credit risk models and
management can be found in, e.g., Saunders (1999).

The various risk factors involved and the (un)availability of quality data poses challenges
to credit risk modelling. It is still common practice in risk management to treat credit
and market risk separately. Furthermore, analytic tractability in VaR calculations can be
reached if, for example, market risk is ignored. In general, most methods are purely sim-
ulation based and only recently some promising attempts towards optimizing credit risk
started; see Mausser and Rosen (1999). In both studies, however, the scenario generation
method used as input in the optimization models ignores market risk and considers only
credit migrations and defaults sampled from historical transition matrices. However, the
actual portfolio risk involved can only be assessed correctly if all risks are considered in
an integrated framework (see for example Kijima and Muromachi (2000) and Jarrow and
Turnbull (2000)). As a result, simulation methods that incorporate market and credit risk
factors in a unified framework combined with suitable portfolio optimisation techniques
need to be developed.

A number of researchers have implemented models for the term structure of interest rate
to derive possible future realisations of security prices sensitive to interest rate move-
ments. Similarly, we extend credit risk pricing models for scenario generation (see Jobst
and Zenios, 2001) in order to apply stochastic optimisation models to solve fixed-income
portfolio management problems with credit risk. In this paper we extend our previous
work by integrating our simulations into portfolio optimisation. This framework builds the
foundation for further studies regarding the integration of more complex securities such
as swap products and credit derivatives for integrated asset and liability management.

The rest of the paper is organized as follows. Section 2 describes the problem and the
dataset used throughout the paper. Section 3 outlines the scenario generation method
and Section 4 develops the optimisation model. Section 5 presents computational results
and Section 6 concludes.

2. Problem description and data analysis

We consider the problem of a fixed-income fund manager whose target is to track a certain
corporate bond index, such as the Merril Lynch Euro Dollar, the US Domestic Corporate
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or the US Agency index. Indexed fixed-income funds have gained popularity over the last
decade and especially higher yielding fixed-income securities gained popularity lately. We
focus on the Merril Lynch Euro Dollar index since it offers good liquidity.

In the numerical studies below we backtest the performance of the models over the 30
months period from January 31, 1999 to July 31, 2001. The growth of an initial investment
of $100 is shown in Figure 1. We can note that during the first 17 month the index returns
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Figure 1. Performance of the Merril Lynch Euro Dollar index from January 1999 to
July 2001.

are low as this period can be described by rising yields and widening credit spreads. For
example, for Aaa rated bonds, spreads moved from about 50bp to over 75bp and for
A rated bonds from about 100bp to 150bp. However, the Eurodollar index performed
well compared to other indices (obtained from the Global Bond Index Monitor) over this
period (January, 6 1999 to June, 5 2000) as shown in Table 1. The third column of table

Index Total Return Price Return
Eurodollar 2.778 -5.939
AAA Agency 1.882 -6.560
Domestic Corp. -0.807 -10.284
US Treasury 2.099 -6.633

Table 1. Global Bond Index Monitor.

1 reports the effect of this rising yields and widening spreads in all rating classes leading
to big losses due to decreasing prices. This period was followed by decreasing yields and
hence increasing index returns (Figure 1).

Important from an optimisation point of view is the number of bonds in the index. The
index contained about 450 securities on January 31, 1997. The number of securities
increased to more that 1000 by August 31, 2000 from 665 before March 2000. All bonds
issued in the index are investment grade quality and rated Baa or higher. On January
31, 1999, approximately 84% of the index value was in bonds rated Aa or higher.
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3. Scenario generation

Because of the non-normality of the return distributions, the extreme events and the
complexity of the risk factors, we apply simulation methods to generate sets of plausible
scenarios as the input to our optimisation models. The simulation model is described
in detail in Jobst and Zenios (2001) where a number of credit risk pricing models are
discussed for simulation and valuation purposes. The holding period returns are not
simply forecasted on the basis of information variables, instead they are obtained from
scenarios of the underlying risk factors such as interest rates, credit spreads, migrations,
defaults and recovery.

3.1. Models for credit risk. Two different modelling principles have been developed
for modelling credit risky security prices. Black and Scholes (1973) and Merton (1974)
introduced structural or firm’s value models where the idea is that default happens when
the underlying diffusion process for the value of the firm hits a ‘default’ boundary. In-

tensity or reduced form models assume that the default event is unpredictable and hits
the security holders by surprise (Duffie and Singleton, 1999, Lando, 1998, Jarrow and
Turnbull, 1995). This approach is not based on any information on the firm’s value or
its balance sheet. The event of default is described by its probability derived from its
instantaneous likelihood, i.e., the hazard rate (intensity).1 This is often modelled as the
intensity λ of a point process where each jump of the process denotes a default event. Fre-
quently, λ is a function of state variables X representing for example interest rates, stock
prices, time etc., hence λ(t) = λ(Xt). Commonly Poisson or Cox processes are applied. If
the random intensity is modelled as a finite state space Markov chain representing credit
ratings, the model is frequently denoted as rating based model (see Jarrow, Lando and
Turnbull, 1997). Our scenario generation method builds on and extends reduced form
models as explained below.

3.2. Integrated market and credit risk simulations. The simulation framework of
Jobst and Zenios (2001) incorporates stochastic intensity and rating based elements in a
manner which is consistent with market risk. In order to simulate an indexed portfolio
at future points in time T̄ disparate sources of risk are considered simultaneously. In our
method we assume that corporate bonds are exposed to changes in interest rates, credit
spreads, rating migrations, default and uncertainty in recovery amounts when in default.

The main components of the scenario generator are models for the uncertainty in interest
rates and credit spreads, an intensity based pricing model, a set of observable migration
processes described via a finite state space Markov chain, and a model of recovery rates
when in default. Interest rates and credit spread processes are modelled via correlated
stochastic processes of the form

(1) dx(t) = µx(x, t)dt+ σx(x, t)dWx(t)

1This is a measure of propensity of default per unit of time and is widely used in the insurance practice
and literature.
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where dWx(t) denotes the standard Brownian motion under the real measure P . The risk
neutral dynamics (under the measure Q) can be obtained by introducing a market price of
risk. Such a process is considered for the short interest rate, i.e., x = r, and for the credit
spreads, i.e., x = sk of each rating class k = 1, ..., K−1 where 1 denotes the highest (Aaa)
and K−1 denotes the lowest pre-default rating Caa-C. Correlation between interest rates
and each spread process is captured by correlating the Wiener terms, i.e.

(2) dWr(t)dWsk(t) = ρrkdt

where k ∈ {1, ..., K − 1}.

Given these dynamics, the prices for risky zero-coupon bonds can be obtained from the
intensity based pricing model (Jobst and Zenios 2001). We denote by vκnt (t, Tn) the
price of a risky zero-coupon bond n at time t with maturity Tn currently in credit rating
κn
t ∈ {1, 2, ..., K − 1}. The index superscript n for κn

t is dropped when there is no
ambiguity. The price of a risky coupon bond is given as

(3) P κt
n (t, Tn) =

Tn
∑

τ=t

Fn(τ)v
κτ (τ, Tn)

where Fn(t) denotes the coupon payments (plus principal at maturity t = Tn).

At time t = 0 the current rating κn
0 of each bond n is known and in principle prices can be

obtained by taking into consideration the risk-neutral evolution of the interest rate and the
κn
0 -spread process until maturity. However, if we want to obtain future prices we need to

simulate interest rates and spreads at the time horizon T̄ and the future rating of bond n

at time T̄ , i.e. κn
T̄
. Given this rating, the zero-coupon bond prices vκn

T̄ (T̄ , Tn) are obtained
according to the intensity based pricing model, taking into consideration the risk-neutral
dynamics of the short rate and the κn

T̄
-spread process from time T̄ onwards. Future credit

ratings are generated according to a Markov model describing rating transitions, including
a transition to the absorbing default state.

The intensity based pricing model was implemented using the tree building method of
Schönbucher (1999). This method has the advantage to implement alternative forms
of stochastic processes (hence there is not restriction to the Gaussian process and its
limitations) and can be implemented and a large large range of credit risky securities
can be priced consistent with the current risk free and risky term structures. The rating
migrations are simulated from the one year transition matrix published by Moody’s. Table
1 reports the average one year transition probabilities (1980 to 1998).

Aaa Aa A Baa Ba B Caa− C Default

Aaa 0.8866 0.1029 0.0102 0.0000 0.0003 0.0000 0.0000 0.0000

Aa 0.0108 0.8870 0.0955 0.0034 0.0015 0.0015 0.0000 0.0003

A 0.0006 0.0288 0.9021 0.0592 0.0074 0.0018 0.0001 0.0001

Baa 0.0005 0.0034 0.0707 0.8524 0.0605 0.0101 0.0008 0.0016

Ba 0.0003 0.0008 0.0056 0.0568 0.8357 0.0808 0.0054 0.0146

B 0.0001 0.0004 0.0017 0.0065 0.0659 0.8270 0.0276 0.0706

Caa− C 0.0000 0.0000 0.0066 0.0105 0.0305 0.0611 0.6297 0.2616

Default 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 1.0000

Table 2. Average 1-year transition matrix (1980 - 1998).
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In the event of default, a recovery value consistent with the intensity model recovery
assumption or sampled from real world distribution is added to Fn(t) and no future
cashflows outstanding are received.

Figure 2 provides an overview of the simulation method. Given input data on the individ-
ual securities, term structures on default free and defaultable bonds of different ratings,
and the rating transition probabilities, we simulate a set of economic scenarios of interest
rates and credit spreads for all rating classes. In addition we simulate a set of credit sce-
narios reflecting migrations into different ratings or default. Given that bond n at time
T̄ is in rating κn

T̄
we need to obtain the price of this bond conditioned on the state of the

economic scenarios at T̄ and according to the evolution of the state variables under the
risk neutral measure Q from T̄ until maturity.2

Given the current prices of bond n, P κ0
n (0, Tn), and its simulated future price P

κT̄ ,s
n (T̄ , Tn)

under scenario s, it is straightforward to calculate the returns needed in the indexation
model (see Worzel et al. 1994).

Figure 3 shows the typical distribution for a portfolio of 16 Baa rated bonds from the index
on January 31, 1999 at a risk horizon of 8 months. This distribution was generated by
considering 250 interest rate and spread scenarios, and 2000 rating and default scenarios
under each economic scenario, for a total of half a million scenarios. In the event of
default no recovery was assumed. Further results on the price sensitivity of bonds and of
a portfolio of assets to the various risk factors can be found in Jobst and Zenios (2001).

In order to keep the optimisation model tractable, we reduce the sample size by dividing
the index return distribution at the risk horizon in a number of buckets, and sampling
a fixed number of scenarios (typically 2000) out of the original scenarios. Scenarios are
sampled out of each bucket with the frequency observed in the original scenario set.
This sampling scheme is a simplified variant of stratified sampling. Figure 4 shows the
simulated returns of the Eurodollar index over the period from April 1999 to July 2000.
The figure shows the 3-month scenarios together with the ex post realized index returns.
The scenarios are generated using only information that was available three months before
the shown date. The stratified sampled scenarios cover the true index return for every
period.

Overall, the simulation model combines elements of reduced-form and rating based mod-
els to incorporate a large number of risk factors driving security returns. As such, the
simulation model might as well share some of the weaknesses of this type of models. Re-
duced form models are based on the assumption of unpredictable default events, whereas
in reality there is some evidence that defaults may be predicted from market data such
as equity returns. Most of this models (such as the KMV approach) are based on the

2It is important to note that we do not assume a different intensity or spread process for every issuer,
instead we assume that bonds in a given rating class evolve according to the same process. However
bonds are priced using the OAS methodology and hence, there is an individual element involved. The
main reason for this assumption is that it is difficult to specify a process for each individual issuer as
there is not enough data and a number of issuers have only very few bonds outstanding.
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Market Data
- market prices of bonds
- default free and defaultable

term structures
- spreads, ratings, sectors

Credit Data
- transition matrices
- seniority classes
- recovery rates

Pricing Model
- intensity based model
- parameter estimates of stochastic
processes

- historical spread, default data
- implied from prices

Credit Event Model
- correlated Markov Chains
- recovery model
- recovery rates 

-historical or implied

Simulation models: real 
probabilities (Monte Carlo or 
lattice)

- default free short rate
- credit spreads
- credit migrations and defaults
- recovery payments 

Security Pricing: risk-neutral 
probabilities
(Closed form, Monte Carlo or lattice)
- valuation of current portfolio
- risk adjustment factors
- cashflow generators (coupon payments, 
derivative payoffs, fees etc.)

Applications
- dynamic price evolution
- holding period return calculations, 
- stochastic programming – optimisation

- Index Tracking, ALM
- future portfolio valuation (distributions, VaR)

Figure 2. An overview of the general simulation framework.

structural (Merton) approach which suffer from drawbacks, too, such as unsatisfactory
description of the spreads dynamics.

Hence, building simulation models for credit risky securities requires tradeoffs and de-
pends heavily on the application of the model. In the current study, we focus entirely on
investment grade, high quality securities contained in the Eurodollar index. Based on the
intensity models and the option-adjusted spread methodology, a main source of risk we
try to capture is spread risk, whereas the migrations and defaults are based on historical
rating matrices. This approach can be justified by recent results of Kiesel et al. 2001,
where it is reported that for high-quality debt, most risk stems from spread changes. This
is significant, as most (commercial) credit models focus on defaults and rating migrations
assuming no spread risk. However, the other sources of risk should not be ignored as ex-
treme events happen and we want to build portfolios that are well diversified with respect
to the different risks involved.
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scenarios.

However, investment and risk management models for very low quality debt may require
a different treatment. There, the risk of migrations and defaults may dominate the spread
risk and hence, a detailed modelling of these individual defaults and even default corre-
lations may be of paramount importance. The simulation model described above can be
extended along this lines. One possibility is to follow the ordered probit approach devel-
oped in the Creditmetrics methodology of JP Morgan (1997) which allows to incorporate
dependencies between distributions of transitions of different exposures. Another ap-
proach focusing on correlated defaults is developed in Schönbucher and Schubert (2001),
where a default dependency structure is specified by the Copula of default times and
combined with individual intensity based models for each obligor.
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4. The optimisation models

We now formulate the optimisation models to address different problems facing a portfolio
manager of corporate bonds. Given an index and all bonds therein, a model is required
that picks a subset of bonds to achieve a good tracking performance. From a strategic
point of view the manager is interested in determining the weight to put into general
asset classes. An asset class may consist of all bonds with a certain rating, or in a certain
industrial sector, or with a given maturity range, or combinations of such characteristics.
The actual bond picking decisions follow the broad asset allocation, and credit analysts
bring in expert knowledge about specific companies at that point. For very large indices
or multi-country applications, the asset allocation decision may be used to reduce the
problem size and the subsequent bond-picking problems may be solved via optimization
models on the reduced set as well.

We apply a tracking model, which penalizes downside risk only, see Worzel et al. (1994),
which is a variant of the mean absolute deviation model (see Konno and Yamazaki (1991)).
If under any single given scenario the portfolio return is less then the index return under
that scenario, an infinite penalty is imposed. However, we cannot eliminate all downside
risk and we have to accept a small level ε of under-performance. Figure 5 illustrates the
concept of the tracking penalty function compared to the mean absolute deviation penalty
function. We point out that when we apply this penalty function, our tracking portfolio

Return

Penalty

MAD

Tracking

Ilε

Figure 5. Symmetric penalty function of MAD model and the asymmetric penalty
function for the tracking model.

is restricted to stay within ε of the index in its downside movements, however we do not
limit the upside potential. Mimicking the upside potential, too, may be of interest for
some fund managers, and mimicking portfolios (in both, upside and downside) can be
achieved by applying symmetric penalty functions with an infinite penalty on the up- and
downside. For related work on indexation models in an international setting see Consiglio
and Zenios (2001), and for the use of optimisation models for credit risk management see
Mausser and Rosen (1999).

In our empirical models we limit only the downside. This penalty function is well suited for
problems with credit risk when we deal with likely scenarios of small positive returns and
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rare situation of high investment losses. Under scenarios of extreme events of price jumps
due to downgrading and defaults, the resulting investment losses are very high. Usually
the index contains hundreds or thousands of instruments and none of the instruments
dominates the composition. If one of the bonds defaults this will not lead to a extreme
drop in the index value. This implies that the composition of the tracking portfolio
should not consist of investments in only few instruments as in the event of default the
underperformance will eliminate most of the portfolio value. This penalty function and
the nature of credit risk simulations result into portfolios that are well diversified in terms
of the number of bonds and the holding in each bond.

The following notation is used in defining the models. The corporate bond index is defined
by the set U of bonds denoted by i = 1, 2, . . . ,m. Each bond has attached a given rating,
denoted by k = 1, 2, . . . , K − 1. The set of all bonds in rating k is denoted by U k.
Similarly, each bond can belong to a certain asset class such as tall, short, caucasian,
denoted by c = 1, . . . , C. The set of all class c-bonds is denoted by U c. Ω = {1, 2, . . . , N}
is the index set for our scenarios where each scenario occurs with probability pl. With
these definitions we can outline the optimisation models.

First we solve the bond picking problem that chooses a subset of bonds out of the universe
U . We then outline a two step procedure to dealing with a very large universe of bonds
or when dealing with sub-indices such as an Aaa-utility index containing either all bonds
from Uutility or from a different source from alternative markets. Finally an integrated

indexation model is given. This model, in addition to choosing the right bonds from the
universe, controls the portfolio composition with respect to the asset class structure, i.e.,
the holding in each class U k. The detailed operational model is outlined in the Appen-
dix, where real life constraints, transactions costs and the decision variables required for
rebalancing existing portfolios are included.

4.1. Bond-picking model. The model is stated as follows:

Maximizeh

N
∑

l=1

pl

m
∑

i=1

xir
l
i(4)

s.t.
m
∑

i=1

xir
l
i ≥ I l − ε, for all l ∈ Ω,(5)

m
∑

i=1

xi = 1,(6)

xi ≥ 0, for all i ∈ U.(7)

This model maximizes the portfolio return, defined by R̄P =
∑

l∈Ω plR
l
P where Rl

P =
∑

i∈U xir
l
i denotes the return of the tracking portfolio under scenario l. xi denotes the

decision variables, i.e. the holding in bond i, rli denotes the holding period return of bond
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i under scenario l. The index return under scenario l is given as

(8) I l =
m
∑

i=1

βir
l
i, for all l ∈ Ω,

where βi denotes the holding of bond i in the index and is given as input data.

4.2. Asset-allocation model and bond picking. The asset allocation model can be
derived from the model above by substituting the holdings in bond i, xi, by holdings in
asset class c, xc. The holding period returns for asset class c, under scenario l can either
be obtained by modelling synthetic bonds that mimic the asset class characteristics or, if
scenarios for all bonds in the universe U are available, by calculating

(9) I l
c =

∑

i∈Uc

βir
l
i, for all c = 1, . . . , C,

where βi are the weights. In a second step we may solve for bond picking by maximizing
the expected return of each asset class subject to constraint (5) on asset class index return
I l
c and subject to the holding in the asset class, which is the optimal solution of the asset
allocation model.

4.3. Integrated indexation model. The bond picking and asset allocation models can
be integrated in a common framework. The goal is to pick a subset of bonds out of the
universes with some constraints controlling the holding in each asset class. This is done
by extending the bond-picking model of the previous section by additional constraints on
the sector or asset class holdings. The target holding ht

c in each asset class can be the
class-holding of the index, or obtained from the solution of an asset allocation model, or
given by some expert knowledge. This constraint can be relaxed such that our portfolio
should be within a certain range to the target holding [ht

c− δ−c , ht
c+ δ+c ]. These additional

constraints are modelled as
∑

i∈Uc

xi ≥ ht
c − δ−c , for all c = 1, . . . , C,(10)

∑

i∈Uc

xi ≤ ht
c + δ+c , for all c = 1, . . . , C.(11)

These constraints allow portfolio managers to further diversify in case a certain sector
(such as, for example, the telecommunication sector) hits a crises.

5. Empirical results

We apply the optimisation models to the problem of tracking the Merril Lynch Euro Dollar
index and analyse the performance of the resulting portfolios. The tracking portfolios
of course perform well, by definition, if the scenarios reflect the real market behavior.
However from a practical and validation point of view we are interested in the performance
of the model in real life. Therefore, we study the ex post performance once the uncertainty
is revealed. Furthermore we study the effect of incorporating corporate bonds in the bond



TRACKING CORPORATE BOND INDICES 13

universe when tracking government bond indices, especially we focus on the US Treasury
index.

We start our experiments on January 31, 1999, and generate 3-month holding period
return scenarios for all bonds with maturities up to ten years and for each credit rating
class using the simulation framework of section 3. The required pricing and scenario
generation is done consistently with the default free and risky term structures available
on January 31, 1999, and the model is calibrated to information available up to that day
only. The tracking portfolio optimisation model is then used to select a portfolio. We
then move the clock one month forward at which point (February 1999) we know the bond
returns and index performance and can therefore calculate ex post performance statistics
for the tracking portfolio. Using now the updated information available on February 28,
1999, we repeat the simulation, optimisation, and performance analysis. This process is
repeated until July 31, 2001. The first 17 month can be characterized by rising yields and
widening spreads and was a difficult period for bond portfolio managers. Furthermore
the period had some significant events from a credit risk point of view. For example,
the Malaysian government imposed exchange controls in November 1998 and although
exchange rate risk is not explicitly present as all bonds are issued in USD, extreme price
movements followed. Eleven bonds in the index were hit by a massive price drop, however
they recovered afterwards, see the example in Figure 6.3 From a technical point of view
we delete all bonds with optional payoffs such as callable or putable bonds and focus on
standard coupon bearing bonds, only.

Figure 6. Baa rated bond prices during period Nov. 96 to Feb. 2000.

In this section we apply the model of Section 4.1 to the universe of bonds in the index and
analyse its performance ex post. Transaction costs are considered for all trades during the
backtesting period . We assume the same transaction cost for all bonds within a rating

3However unfortunately our database does not contain all detailed information about the events causing a
security to drop out of the index, which could be due to default, maturity or in most cases restructuring of
the debt and reissuing in form of a different bond. In this respect, we add constraints to our optimization
models ensuring that we don’t have holdings in those securities dropping out where information is lacking.
However the number of bonds in question is very small (approximately one to two bonds per timeperiod)
and defaults would not affect the index significantly due to the large number of bonds contained and the
low exposure to a single bond or issuer.
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class: 5 bp for Aaa, 10 bp for Aa, 20 bp for A and 40 bp for Baa. We are also interested
in the structure of the tracking portfolio with respect to their holdings in certain rating
classes or sectors as compared to the index portfolio. We also analyse the sensitivity of
the tracking portfolios to different risk factors. Subsection 5.4 discusses the application
of the asset allocation model, and the model of section 4.3 with imposed bounds on the
asset class holdings, with target asset class holding derived in two different ways. First we
impose bounds to mimic the underlying index, and second we impose the optimal holdings
from the asset allocation model (section 4.2) as bounds to the bond-picking model. Finally
we benchmark the tracking models against randomly chosen portfolios (subsection 5.5).

5.1. Tracking the Eurodollar Index by bond picking. We backtest the performance
of the simulation bond picking model over the 30-month period January 1999 - July 2001.
At each time step (i.e. monthly) we generate 250 interest rate and credit spread scenarios
for all rating classes k = 1, 2, . . . , K−1, and 2000 rating migration and default scenarios for
each bond. Total loss is assumed in the event of default which is consistent with the pricing
models when calibrated to credit spread term structures. We therefore obtain half million
scenarios of return scenarios for the index portfolio. Given the simulation distribution, we
apply a stratified sampling scheme to select 1500 scenarios as an input to the optimisation
problem. The optimisation models are implemented using the mathematical modelling
language MPL Optimax and solved using FortMP (Ellison et al. 1999).

Figure 7 shows the growth of 100 USD invested in the index on January 31, 1999 and
in the optimal portfolio obtained with the bond picking tracking model as well as the
annualized tracking errors for every month observed over this period.
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TE Index Tracking portfolio

Figure 7. Performance of the bond picking tracking model vs the Merril Lynch Euro
Dollar index.

Given the realized portfolio and index returns during this 30-month period we calculate
the historical Sharpe ratio for the tracking portfolio with respect to the index returns as
0.497; this is a encouraging statistic. The tracking errors are small on average and, as
expected, the model underperforms by small amounts only in five months.
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Figure 8 shows the quality rating structure of the tacking portfolio compared to the index
holding. This figure is a snapshot from January 31, 1999 and shows that we have an
overweight in Aa rating in the optimal tacking portfolio, however A and Baa holdings are
very similar. Figure 9 compares the portfolio holdings in each sector to the corresponding

Asset Allocation by Rating - Index

Baa A Aa Aaa

Asset Allocation by Rating - Portfolio

Baa A Aa Aaa

Figure 8. Structure of the optimal tracking portfolio on January 31, 1999 with re-
spect to the holdings in each rating class.

index holdings. We observe that the structure of the portfolio is quite different form the

Asset Allocation by Sector - Index

QGVT INDU FNCL OTHR UTIL PFND SEC 

Asset Allocation by Sector - Portfolio

QGVT INDU FNCL OTHR UTIL PFND SEC 

Figure 9. Structure of the optimal tracking portfolio on January 31, 1999 with re-
spect to the holdings in each sector.

index structure with respect to sector holdings. In general, we observe an overweight in
Aa financial securities.

5.2. Sensitivity to alternative risk factors. Modelling credit risk is complex due to
the diverse risk factors driving security prices and portfolio performances. There is an
interest in how these risk factors affect portfolio performance. Bucay and Rosen (1999)
study the impact of alternative transition matrices on the portfolio composition. However
they do not show any results on ex post model performance and the secenario generation
did not include interest rate and spread stochasticity. In this section, we study the
impact of recovery rates, rating and default scenarios, and economic scenarios on portfolio
performance.

5.2.1. Alternative recovery assumptions. In section 5.1 we generate 250 economic and
2000 rating scenarios, assuming zero recovery rates. In the event of default the price of
the defaulted bond drops to zero. In this section we sample the same interest rate, credit
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spread, rating and default scenarios, but in the event of default different assumptions
about recovery rates were made as zero recovery is unrealistic in practice.

Figure 10 shows the backtesting performance when we assume the average historical
price (see Table 3) after default by original bond rating as reported in Altmann (1999).
Similarly, Figure 11 shows the backtesting results when a random recovery rate is
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Figure 10. Performance of the tracking portfolios built with different recovery mod-
els vs the index. At default, a historical recovery rate is assumed in the scenario gener-
ation. Bars denote tracking errors.

Original rating Average price Original rating Average price
Aaa 68.34 Ba 39.25
Aa 59.09 B 37.89
A 60.63 Caa-C 38.23
Baa 49.05

Table 3. Average price after default for different (initial) bond rating,
1971-1998.

assumed, we sampled uniformly from the interval [0, 1] for simplicity.4 Both figures show
a similar performance with respect to the number, the timeperiods and the magnitude of
underperformance in comparison to the the zero recovery model of section 5.1. However
we observe some differences which are indicated by the Sharpe ratios of 0.530 for the
historical recovery rates as opposed to 0.538 for the random recovery rates.

Also the performance of the models is very similar, it seems intuitive that a model with
positive recovery chooses a more aggressive portfolio due to the smaller losses in the default
event. This is reflected in the overall value of the portfolio at the end of the period.
The higher Sharpe ratios indicated that taking the risk works in our favour. However
as defaults or downgrade would lead to high losses, credit risk portfolio management is
also concerned about diversification with respect to the number of bonds and exposure

4In practice, a beta distribution is used frequently.
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Figure 11. Performance of the tracking model vs the index and corresponding track-
ing errors. At default, a random recovery rate is assumed in the underlying scenario
generation.

to a single issuer, in the portfolios (name concentration). In this respect, we analyse the
different strategies and find no significant differences, the portfolios contain approximately
40 to 100 bonds in the portfolio throughout the backtesting period.

5.2.2. Impact of economic scenarios. We now turn to the effects of the sampling of eco-
nomic scenarios. In this example we generate the 2000 rating and default scenarios under a
single economic scenarios. Choosing one economic scenario can be interpreted as assuming
zero (or a very low) volatility in interest rates and credit spreads. Assuming zero volatility
is nonsensical for fixed income portfolio management problems, however, as pointed out
in the introduction, the separation of market and credit risk is still practiced and many
models focus on the rating and default forecasts, only. Figure 12 shows the growth of
our initial investment in a portfolio that is chosen ignoring uncertainty in interest rates
and credit spreads. The figure shows that uncertainty in interest rates and spreads has
a significant impact on the performance of the tracking portfolio, and the Sharpe ratio
drops to −0.23. This result provides strong support to the proponents of enterprise wide
risk management and the integration of market and credit risk. Furthermore it comple-
ments the results in Kiesel et al. 2001 that spread risk is crucially important, not only
for Value-at-Risk analysis but also for risk and portfolio management, when dealing with
high quality portfolios.

5.2.3. Impact of rating and default scenarios. Finally we switch off rating and default
scenarios in our generation and focus entirely on economic scenarios. We can expect,
that our optimization chooses a high risky strategy investing heavily in low quality bonds
and those bonds that appear cheap (with respect to their OAS). This expectation stems
from the fact that low quality bonds offer on average higher yield (or spread) and hence
by not taking the potential downside risk into consideration, this strategy can be seen
as introducing arbitrage opportunities to the models. Figure 13 shows the backtesting
performance if we switch off the rating and default simulations, thus assuming that all
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Figure 12. Performance of the tracking model vs the index and corresponding track-
ing errors when the scenario generation does not include uncertainty in interest rates and
credit spreads.

bonds stay in their current rating class. However there is still uncertainty reflected in the
short interest rate and credit spread scenarios. We sample exactly the same 250 economic
scenarios, price all bonds according to their current rating, and calculate the holding
period returns. The figure shows a very good performance, both with respect to the final
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Figure 13. Performance of the tracking model vs the index and corresponding track-
ing errors. The scenario generation does not include rating and default simulations.

value and tracking errors with a Sharpe ratio of 0.560. This result indicates that our
model is doing well in terms of picking the right bonds in a stochastic interest rate spread
environment, when there is no downside risk. However if we take a close look at the
portfolio holdings, we notice that there is a high concentration in individual exposures.
All portfolios throughout the backtesting period hold only between 4 and 10 bonds, only.
Hence the portfolios are badly diversified and heavily hit if a rating downgrade or a more
catastrophic default happens (also if they are very low probability events).
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On the other hand, the model might be useful in practice when the actual investment
decision is very often taken in jointly with credit analysts who focus on different sectors
and companies (balance sheet, economic perspective etc.). In this situation, the model,
due to its good bond picking performance, can be used as a tool suggesting a number of
bonds from the index or from a subsector of the index. In general, however, the model
introduces bias in the decisions as the potential downside risk is ignored, leading to bad
diverisification with respect to the exposures to a single bond.

5.3. Tracking the Eurodollar index by asset allocation. We focus now on the track-
ing problem from an asset allocation viewpoint. Instead of choosing individual securities,
we seek the optimal asset allocation among asset classes. This asset class can be a credit
rating, an industrial sector, a maturity range or a combination of these. Scenarios for
asset class holding period returns rlc are generated as outlined in section 4.2. We calculate
the holding period returns of the asset classes based on the average return of all securities
in a given rating class c for every scenario l, i.e.

(12) rlc =
∑

i∈Uc

βir
l
i, for all c = 1, . . . , C,

where βi is the weight if bond i in the asset class. In the first example, asset classes are the
different credit rating categories, whereby the set U c is given as U c = {Aaa,Aa,A,Baa}.
In the ex post analysis we calculate the realized holding period returns for our asset classes
based on the corresponding returns of the underlying bonds. Figure 14 shows the tracking
errors of the asset allocation model. In addition we show the tracking errors when an asset
class is a combination of industrial ratings and maturity ranges, where we consider 1-3, 3-
5, 5-7 and 7-10 years as the ranges. The portfolio tracks the index very closely, however we
do not seem to accumulate any extra value. The reason is that the optimal portfolios are
almost identical to the index structure, and hence the portfolio growth is almost identical
to the index growth. This exercise was repeated for different asset class definitions such
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Figure 14. Performance of the asset allocation model compared to the bond picking
model of the previous section.

asset industrial sectors, ratings and sectors, rating and maturity, and sector and maturity
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combinations. In all cases, the ex post analysis does not give significantly different results
from those shown in Figure 14, that is, the tracking performance is close but no extra
value is obtained. The resulting asset allocation is very similar to the holdings in the
index.

5.4. Bond picking under asset or risk class constraints.

5.4.1. Imposing bounds based on the index composition. We now impose constraints on
the asset class holdings to the bond picking model such that the portfolio mimics the index
with respect to the holding in each asset class in every month throughout the backtesting
period. First we match the holdings in each rating category and in a second exercise we
ensure that the tracking portfolios mimic the index maturity structure. Maturities are
divided in 1-3, 3-5, 5-7 and 7-10 year ranges. The random recovery model was chosen in
the event of default in any of the simulations.

Figures 15 and 16 show the ex post performance of portfolios constructed with this model.
Constraining the overall holding in certain rating categories leads a very similar perfor-
mance to the unconstraint model, indicating that the overall portfolio structure is similar
to the index and the deviations do not impact the performance significantly, resulting in
a historical Sharpe ratio of 0.541. Constraining the portfolio composition with respect to
index rating and maturities impacts the performance more significantly. The correspond-
ing tracking errors are smaller and less volatile resulting in a increased Sharpe ratio of
0.644. This experiment demonstrates that constraining the asset class holdings controls
the portfolio structure and hence imposes control on the tracking performance, too. The
ex post results show that volatility is decreased while the models still has some flexibility
to pick certain assets and is able to cumulate extra value from this decision. In sum-
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Figure 15. Performance of the integrated model when the bond picking model is
constrained to index rating category holdings.

mary imposing bounds on the exposure of the tracking portfolios to certain asset classes
affects the optimal decision and, hence, the performance of the model. If we are able to
choose the bounds with foresight, i.e. knowing the spread movements over the next tree



TRACKING CORPORATE BOND INDICES 21

-0.05

0

0.05

0.1

0.15

0.2

Jan-99 Mar-99 May-99 Jul-99 Sep-99 Nov-99 Jan-00 Mar-00 May-00 Jul-00 Sep-00 Nov-00 Jan-01 Mar-01 May-01 Jul-01

Tra
cki

ng
 Er

ror
 (an

nu
aliz

ed)


90

95

100

105

110

115

120

125

130

Va
lue



TE Index Rating and Maturity constr. - Index

Figure 16. Performance of the integrated model when the bond picking model is
constrained to index rating category and maturity holdings.

month for example, or to guess them correctly, this bounds may even improve the model
performance ex post. In our experiments, choosing the bound according to the exposure
of the index to the corresponding risk classes, we observe a good tracking performance in
each case. However, with respect to the final portfolio value, no extra value was generated
compared to the pure bond picking model.

5.4.2. Imposing bounds derived from the optimal asset allocation decision. We repeat the
exercise of the previous section, but impose bounds according to the optimal solution
of the asset allocation models of section 5.3. As expected the performance of the rating
class constrained model is very similar, due to the similarity of the optimal strategy to the
index structure (and hence the figure is not shown). The Sharpe ratio increases slightly
to 0.572.

The ex post performance of the bond picking model constraint to the optimal rating and
maturity holdings5 is shown in Figure 17. Again, the performance is similar to the index
constraint model and the Sharpe ratio increases slightly to 0.677.

5.5. Summary. All models that incorporate disparate sources of risk perform well as
indicated by their Sharpe ratios and the reported growth and tracking error results. Table
4 summarizes the Sharpe ratios. The most important source of risk appears to be the
interest rate and spread volatility which is consitent with the findings in Kiesel et al. 2001.
However not taking into consideration the actual downgrading risk and default risk has a
huge impact on the porfolio composition and hence riskiness in a credit risky environment.
Choosing only a few number of securities for investment, and hence, having huge bets on
single names is clearly a very risky strategy as if for example default happens, the actual
portfolio is hit very hard and leads to large investment losses. The integrated models
lead to less volatile tracking errors and are usefull as they allow us to incorporate expert
knowledge about market movements in certain sectors or rating categories without too

5With “optimal” we mean the optimal solution of the corresponding bond picking model.
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Figure 17. Performance of the integrated model when the bond picking model is
constraint to rating category and maturity holdings obtained from the optimal solution
of the corresponding asset allocation model.

Model Sharpe ratio Models with bounds Sharpe ratio
zero recovery 0.497 by index rating 0.541
random recovery 0.538 by index rating and maturity 0.644
historical recovery 0.530 by optimal rating 0.572
no rating migration 0.560 by optimal rating and maturity 0.677
no economic scenarios -0.230

Table 4. Overview of Sharpe Ratios

high exposures to single names. In addition, improved forecasting methods for asset class
returns or better asset allocation approaches may lead to optimal solutions that can be
imposed to the model and generate superior performance.

5.6. Benchmarking against Random Portfolios. Using the machinery described above
produces good tracking results. However it is interesting to compare the results to more
simple approaches. In the spirit of earlier studies we compare our portfolios to randomly
selected portfolios. We select a portfolio randomly at the beginning of the backtesting
period and assume to hold this portfolio until July 2001. All intermediate cash-flows are
assumed to get reinvested at the riskless rate. The same assumption is applied in case
a bond matures before the end of the test period. Figure 18 shows the results of the
experiment for two different exercises. We plot the average monthly return and the stan-
dard deviation of these returns for the index, our tracking portfolios, and 100 randomly
selected portfolios. In the first case (left) the portfolios contain between 7 and 15 bonds
and in the second example (right), the random selection leads to portfolios between 23
and 44 securities. We can observe in all instances, that the portfolios obtained with the
various optimisation models perform well compared to the randomly selected portfolios
and to the to Merril Lynch Eurodollar index.
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Random Portfolios (7-15 bonds) vs Index and Optimised Portfolios
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Figure 18. Random Portfolios

5.7. Tracking Government Bond Indices and corporate holdings. In this section
we focus on the problem of tracking a government bond index when the available instru-
ments are government bonds as well as corporate bonds. We focus in particular on the
Merril Lynch US Treasury index. Figure ?? show the evolution of the US Treasury index
during our backtesting horizon.
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Figure 19. US Treasury index evolution

In a first step we try to track this index by using US Treasury securities of maturities of
1 to 30 years, only. From the database, we delete all bonds with optional payoffs such as
callable or putable bonds. Scenarios are generated wihtin the same framework, the bonds
are priced according to the term structure of the trading date (end of month) and scenarios
are sampled accordingly. A bid-ask spread of 5bp is assumed to capture transaction costs.
Figure 20 shows the performance of the Tracking experiment throughout the period.
Tracking errors are very small and the historical Sharpe ratio is 0.04, however the model
does not seem to pick up some extra value from the bond picking.
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Figure 20. Tracking performance of the bond picking model when applied to track
a government bond index with treasury securities, only.

As a next experiment, we expand the underlying universe of bonds to include all bonds
from the Eurodollar index. We do not expect to increase the overall performance in terms
of the final value lots, due to the increased downside risk of corporate bonds and the strict
risk measure regarding an infinite penalty in case of underperformance. However the
increased bond universe may offer new diversification opportunities which may lead to a
different performance. Figure ?? shows the ex post performance when we assume random
recovery in the underlying corporate bond scenario generation. We can see lower and
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Figure 21. Tracking performance of the bond picking model when applied to track
a government bond index with treasury securities and corporate bonds.

less volatile tracking errors and hence, including corporate bonds improves the tracking
performance. The historical Sharpe ratio increases from 0.04 to 0.31 which is a result of
the lower volatility and higher expected return. Taking a look at the portfolio structure
reveals that the optimal portfolio composition is as expected. Only a small fraction
(approximately 5%) is invested in a number of different corporate bonds (approximately
10). Hence the increased downside risk of corporate bonds is taken into consideration by
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only investing a small fraction of the value in the risky asset class and within this class,
the model invests in a range of corporate bonds in order to minimize the exposure to a
single security. In summary, the model works well and does not blindly invest in risky
bonds due to the higher expected value these securities offer.

6. Conclusion and future develpments

We developed a framework for simultaneously simulating default-free and defaultable
bonds consistent with observed term structures of interest rates and credit spreads. The
simulations include disparate sources of risks such as interest rates, credit spreads, credit
quality migrations, defaults and the corresponding recovery risk. We use these simulations
as an input to a single period stochastic optimisation problem. The combined simulation
and optimisation models are applied to track corporate bond indices.

Numerical results show that the models, when applied at a tactical, bond picking level
perform very well. At a strategic level, when the main decision is the amount of wealth
to invest among asset classes, the tracking performance is good, however no extra value
is created. A single model for integrating both approaches is presented and numerical
results are discussed. We notice that the main source of risk to capture is interest rate
and spread risk, however the inclusion of credit events in the scenario sets is crucial to
obtain well diversified portfolios without risky positions in only a few bonds.

The current simulations do not capture correlation between the migration and default
events. Capturing this non-independence of extreme events is a current topic of research in
both the portfolio simulation and the credit derivatives pricing context. This correlation
is more important in the credit framework than in, for example, the equity context.
However, the lack of quality historical data poses challenges on the modelling task. In
this respect incorporating models that try to predict the credit events (e.g. form equity
returns) into the reduced for framework may be promising and required, especially when
focusing on high risky (low quality) risk management problems.

From an applications viewpoint, the framework of combined simulation and optimisation
strategies can be extended to other securities subject to market and credit risk. As
such, the incorporation of interest rate swaps to corporate bond portfolios in the spirit
of the asset swap economics is a prime candidate. This would allow investors to limit
their exposure to interest rate changes and take a pure view on the credit side of the
investment. In an advanced development, portfolios of default swaps, for example, could
be optimised and seen as a new investment class, assuming that standardized markets
exist.

Finally the extension of the models to multiperiod optimisation begs for study, given the
long maturities of corporate bonds and more empirical work is needed regarding different
risk measures for portfolio management in a credit risk environment.
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Appendix A. The operational models

In this Appendix we present a detailed formulation of the model. Variables and parameters
are expressed in terms of face value instead of percentage value of portfolio wealth. This
allows us to incorporate realistic features of the portfolio management problems such as
portfolio rebalancing, transaction costs for buying and selling, cash infusion or withdrawal
and further operational constraints on liquidity and diversification.

In this setup the initial portfolio value V0 is given as

(13) V0 = c0 +
∑

i∈U

z0i P
0
i ,

where c0 denotes the initial cash holding, z0i denotes the initial face value holding in

security i and P 0
i the initial price of bond i. P 0

i is the short notation for P
κi
0

i (0, Ti) used
throughout section 3. Similarly, the portfolio value at the end of the holding period under
scenario l is given by

(14) V l = v rl0 +
∑

i∈U

ziP
0
i r

l
i, for all l ∈ Ω,

where rl0 denotes the riskless rate of return under scenario l and v and zi are decision
variables, introduced next. We also have: v: amount invested in cash in the tracking
portfolio
zi: face value holding of security i in the tracking portfolio
xi: face value purchased of security i

yi: face value sold of security i

Given these variables and parameters, the face value holding in security i is given as

(15) zi = z0i + xi − yi, for all i ∈ U,

and the return of the tracking portfolio under scenario l is given by

(16) Rl
P =

V l

V0

, for all l ∈ Ω.
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The operational downside mean absolute deviation model can be written as

Maximizeh,b,s,c
∑

l∈Ω

plRl
P(17)

s.t.

zi = z0i + xi − yi, for all i ∈ U,(18)

c0 +
∑

i∈U

yiP
0
i (1− ζi) =

∑

i∈U

xiP
0
i (1 + ξi) + v,(19)

Rl
P ≥ I l − ε, for all l ∈ Ω,(20)

∑

i∈Uc

ziP
0
i ≥ (ht

c − δ−c )

(

∑

i∈U

ziP
0
i + v

)

, for all c = 1, . . . , C,(21)

∑

i∈Uc

ziP
0
i ≤ (ht

c + δ+c )

(

∑

i∈U

ziP
0
i + v

)

, for all c = 1, . . . , C,(22)

zi, xi, yi, v ≥ 0, for all i ∈ U.(23)

Parameters ξi and ζi denote the transaction costs for buying and selling of asset i, respec-
tively. Constraint (18) are the inventory balance constraints for each security i, constraint
(19) is the cashflow balance constraint and constraints (20) are the penalty functions for
all scenarios. All variables are restricted to be non-negative so that short positions are
prohibited (23). Constraints (21) and (22) ensure that the holding in each credit risk
or asset class c is within a range [ht

c − δ−c , ht
c + δ+c ] of the total portfolio value. If, for

example U c := U rating, δ−c := δ+c := 0 and the target holding ht
c is chosen to be equivalent

to the holding of the index in the corresponding asset class, we limit the exposure of our
portfolio to hold exactly the same fraction of investment in the different rating categories
Aaa to Baa as the index does. Of course, similar constraints can be added to limit the
holdings of each security in the portfolio, however from a practical credit risk portfolio
management point of view, constraints (21) and (22) may prove particularly useful.
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