

Textbook

LMW

Love, R.F., J.G. Morris, and G.O. Wesolowsky: Facilities Location: Models & Methods North-Holland 1988

(out of print!)

Facilities Location - p.2/12

1. Nature of facility location

Where should we locate something?

- Warehouse
- Levels of warehouses
- Fire station
- Missile detection system
- Mine shaft

- Machines in factory
- Nuclear waste dump (obnoxious)

Economics, Geography, Planning

Operations Research: Facility Location

Facilities Location - p.3/12

Model typology

Location models

- Continuous Location is possible everywhere
- Network Location is possible anywhere on a network
- Discrete Location is possible only at a finite number of sites

Continuous models

LMW chapters

- 2. Single-facility location
- 3. Variations Sphere, Linear, Probabilistic, etc.
- 4. Multi-facility location
- 6. Minimax location
- 7. Continuous location-allocation
- 8. Discrete location-allocation Plant location

10. Models of travel distances

Distance measures: distance between points, $\mathbf{x} = (x_1, x_2)$ and $\mathbf{a} = (a_1, a_2)$ length of vector, $\mathbf{x} - \mathbf{a}$ $d(\mathbf{x}, \mathbf{a}) = \ell(\mathbf{x} - \mathbf{a})$ Euclidean distance: $\sqrt{(x_1 - a_1)^2 + (x_2 - a_2)^2}$ Rectangular distance: $|x_1 - a_1| + |x_2 - a_2|$ ℓ_p distance: $(|x_1 - a_1|^p + |x_2 - a_2|^p)^{1/p}$, for $p \ge 1$ ℓ_p norm: $\ell_p(\mathbf{y}) = (|y_1|^p + |y_2|^p)^{1/p}$ p = 1: Rectangular, p = 2: Euclidean

Facilities Location - p.6/12

Norm $N(\mathbf{x})$

- 1. $N(\mathbf{0}) = 0$
- 2. $N(\mathbf{x}) > 0$ if $\mathbf{x} \neq \mathbf{0}$
- 3. $N(\mathbf{x} + \mathbf{y}) \leq N(\mathbf{x}) + N(\mathbf{y})$ triangle inequality
- 4. $N(\alpha \mathbf{x}) = |\alpha| N(\mathbf{x})$ positive homogeneity

 $\ell_p(\mathbf{x})$ is a norm for $p \ge 1$

Scalar product: $\mathbf{xy} = x_1y_1 + x_2y_2$

Schwarz inequality: $|\mathbf{x}\mathbf{y}| \leq \ell_2(\mathbf{x})\ell_2(\mathbf{y})$

Hölder ineq.: $|\mathbf{xy}| \le \ell_p(\mathbf{x})\ell_q(\mathbf{y})$ where $\frac{1}{p} + \frac{1}{q} = 1$

Norm exercises

Facilities Location - p 5/12

Facilities Location - p.7/12

- 1. Investigate the ℓ_{∞} norm $\ell_{\infty}(\mathbf{y}) = \lim_{p \to \infty} \ell_p(\mathbf{y})$
- 2. Is $\alpha_1 \ell_1(\mathbf{x}) + \alpha_2 \ell_\infty(\mathbf{x})$ a norm? For what values of the scalars α_1, α_2 ?
- 3. Is squared Euclidean a norm? $f(\mathbf{y}) = \ell_2^2(\mathbf{y}) = \mathbf{y}\mathbf{y}$

If norm property 4 is relaxed to $G(\alpha \mathbf{x}) = \alpha G(\mathbf{x})$ for $\alpha \ge 0$, the measure is called a Gauge

Convexity

 $\begin{array}{l} \alpha_1 \geq 0, \ \alpha_2 \geq 0, \ \alpha_1 + \alpha_2 = 1\\ \text{Convex combinations: } \alpha_1 \mathbf{x}_1 + \alpha_2 \mathbf{x}_2\\ \text{Convex set } S:\\ \mathbf{x}_1, \mathbf{x}_2 \in S \Rightarrow \alpha_1 \mathbf{x}_1 + \alpha_2 \mathbf{x}_2 \in S\\ \text{Convex function } f(\mathbf{x}):\\ f(\alpha_1 \mathbf{x}_1 + \alpha_2 \mathbf{x}_2) \leq \alpha_1 f(\mathbf{x}_1) + \alpha_2 f(\mathbf{x}_2)\\ \text{A local minimum of a convex function is also global}\\ \ell_p(\mathbf{x}) \text{ is a convex function, for } p \geq 1 \end{array}$

Differentiability

Derivative: $f'(\mathbf{x}) = (\partial f(\mathbf{x}) / \partial x_1, \partial f(\mathbf{x}) / \partial x_2)$ $f(\mathbf{y}) \ge f(\mathbf{x}) + f'(\mathbf{x})(\mathbf{y} - \mathbf{x}) \quad \forall \mathbf{y}$

Subdifferential at x: the set of vectors z such that $f(\mathbf{y}) \geq f(\mathbf{x}) + \mathbf{z}(\mathbf{y} - \mathbf{x}) \quad \forall \mathbf{y}$ Each such vector is a subgradient

Directional derivative at x in direction d:

$$f'_{\mathbf{d}}(\mathbf{x}) = \lim_{\alpha \to 0+} \frac{f(\mathbf{x} + \alpha \mathbf{d}) - f(\mathbf{x})}{\alpha}$$

 $f'_{\mathbf{d}}(\mathbf{x}) = f'(\mathbf{x})\mathbf{d}$ if f is differentiable at \mathbf{x}

Convexity exercises

Facilities Location - p 9/12

Facilities Location - p.11/12

Consider a convex function f and define the level sets: $L(\beta) = \{ \mathbf{x} : f(\mathbf{x}) \le \beta \}$

- 1. Show that the level sets are convex sets
- 2. If all level sets are convex, is the function convex?
- 3. Show that the minimizers of f form a convex set
- 4. Show that $f(\mathbf{x} \mathbf{a})$ is a convex function
- 5. Show that $f_1(\mathbf{x}) + f_2(\mathbf{x})$ is convex, when f_1 and f_2 are convex functions
- 6. Is a convex function of a convex function convex?
- 7. Is the unit disk of a norm a convex set?

Facilities Location - p.10/12

Differentiability and exercises

Almost equivalent statements: \mathbf{x}^* minimizes f $f'(\mathbf{x}^*) = \mathbf{0}$ $\mathbf{0}$ is in the subdifferential at \mathbf{x}^* $f'_{\mathbf{d}}(\mathbf{x}^*)$ is nonnegative in all directions Consider $f(\mathbf{x}) = \sum_{j=1}^n w_j \ell_2(\mathbf{x} - \mathbf{a}_j)$ with $w_j > 0 \forall j$ 1. Show that f is convex 2. Find the derivative of f3. Where is f nondifferentiable? 4. Find the directional derivative at these points

Facilities Location - p.12/12