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Outline
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Introduction
Lagrangean Relaxation is a technique which has
been known for many years:

Lagrange relaxation is invented by (surprise!)
Lagrange in 1797 !

This technique has been very usefull in
conjunction with Branch and Bound methods.

Since 1970 this has been the bounding
decomposition technique of choice ...

... until the beginning of the 90’ies
(branch-and-price)



4Thomas Stidsen

DTU-Management / Operations Research

The Beasley Note
This lecture is based on the (excellent !) Beasley
note. The note has a practical approach to the
problem:

Emphasis on examples.

Only little theory.

Good practical advices.

All in all: This note is a good place to start if you later

need to apply Lagrangean relaxation.
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Given a Linear program
Min:

cx

s.t.:

Ax ≥ b

Bx ≥ d

x ∈ {0, 1}
How can we calculate lower bounds ? We can use
heuristics to generate upper bounds, but getting
(good) lower bounds is often much harder ! The
classical approach is to create a relaxation.
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Requirements for relaxation
The program:
min{f(x)|x ∈ Γ ⊆ Rn}

is a relaxation of:
min{g(x)|x ∈ Γ′ ⊆ Rn}
if:

Γ′ ⊆ Γ

For x ∈ Γ′ : f(x) ≤ g(x)
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Relaxation Graphically

Def f(x)

Def g(x)

f(x)

g(x)

Solutions

Objective
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Example of relaxation: LP
When we perform the LP relaxation:

f(x) = g(x)

Γ′(= Z) ⊆ Γ(= R)

The classical branch-and-bound algorithm use the
LP relaxation. It has the nice feature of being
general, i.e. applicable to all MIP models.
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A very simple example I
g(x):
Min:

5x

s.t.:

x ≥ 3

−x ≥ −10

x ∈ R+
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A very simple example II
f(x): (relaxation of g(x)
Min:

5x + λ(3 − x)

s.t.:

−x ≥ −10

x ∈ R+
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Relaxation by removal of constraints
Given:
Min:

cx

s.t.:

Ax ≥ b

Bx ≥ d

x ∈ {0, 1}
What if we instead of relaxing the domain
constraints, relax another set of constraints ? (this
also goes for integer variables i.e. x ∈ Z
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Lagrangean Relaxation
Min:

cx + λ(b − Ax)

s.t.:

Bx ≥ d

x ∈ {0, 1} λ ∈ R+

This is called the Lagrangean Lower Bound
Program (LLBP) or the Lagrangean dual program.
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Lagrangean Relaxation
First: IS IT A RELAXATION ?

Well the feasible domain has been increased:
Γ′(Ax ≥ b, Bx ≥ d) ⊆ Γ(Bx ≥ d)

Regarding the objective:
Inside the original domain:
f(x) = g(x) + λ(b − Ax) and since we know
λ(b − Ax) ≤ 0 ⇒ f(x) =≤ g(x)

Outside, no guarantee, but that is not a
problem !
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Lagrangean Relaxation
What can this be used for ?

Primary usage: Bounding ! Because it is a
relaxation, the optimal value will bound the
optimal value of the real problem !

Lagrangean heuristics, i.e. generate a “good”
solution based on a solution to the relaxed
problem.

Problem reduction, i.e. reduce the original
problem based on the solution to the relaxed
problem.
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Two Problems
Facing a problem we need to decide:

Which constraints to relax (strategic choice)

How to find the lagrangean multipliers, (tactical
choice)
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Which constraints to relax
Which constraints to relax depends on two things:

Computational effort:
Number of Lagrangian multipliers
Hardness of problem to solve

Integrality of relaxed problem: If it is integral, we
can only do as good as the straightforward LP
relaxation !

The integrality point will be dealt with theoretically

next time ! And we will see an example here.
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Multiplier adjustment
In Beasley two different types are given:

Subgradient optimisation

Multiplier adjustment

Of these, subgradient optimisation is the method of
choice. This is general method which nearly always
works ! Hence, here we will only consider this
method. Since the Beasley note more efficient (but
much more complicated) adjustment methods has
been suggested.
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Lagrangean Relaxation
We had:

Min:
cx + λ(b − Ax)

s.t.:

Bx ≥ d

x ∈ {0, 1} λ ∈ R+
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Problem reformulation
Min: ∑

j

(cj · xj +
∑

i

λi(bi − aij · xij))

s.t.:

Bx ≥ d

xj ∈ {0, 1} λi ∈ R+

Remember we want to obtain the best possible

bounding, hence we want to maximize the λ bound.
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The subgradient
We define the subgradient:
Gi = bi −

∑
j aijXj

If subgradient Gi is positive, decrease λi if Gi is
negative, increase λi
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Subgradient Optimisation
The sub-gradient optimisation algorithm is now:

Initialise π ∈]0, 2]
Initialise λ values
repeat

Solve LLBP given λ values get ZLB, Xj

Calc. the subgradients Gi = bi −
∑

j aijXj

Calc. step size T = π(ZUB−ZLB)∑
i G2

i

Update λi = max(0, λi + TGi)
until we get bored ...
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Example: Setcover
Min:

2x1 + 3x2 + 4x3 + 5x4

s.t.:

x1 + x3 ≥ 1

x1 + x4 ≥ 1

x2 + x3 + x4 ≥ 1

x1, x2, x3, x4 ∈ {0, 1}
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Relaxed Setcover
Min:

2x1 + 3x2 + 4x3 + 5x4

+ λ1(1 − x1 − x3)

+ λ2(1 − x1 − x4)

+ λ3(1 − x2 − x3 − x4)

s.t.:

x1, x2, x3, x4 ∈ {0, 1}
λ ≥ 0

How can we solve this problem to optimality ???
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Optimization Algorithm
The answer is so simple that we are reluctant
calling it an optimization algorithm: Choose all x’es
with negative coefficients !

What does this tell us about the strength of the
relaxation ?
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Rewritten: Relaxed Setcover
Min:

C1x1 + C2x2 + C3x3 + C4x4 + λ1 + λ2 + λ3

s.t.:

x1, x2, x3, x4 ∈ {0, 1}
λ ≥ 0

C1 = (2 − λ1 − λ2)

C2 = (3 − λ3)

C3 = (4 − λ1 − λ3)

C4 = (5 − λ2 − λ3)
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GAMS for Lagrange Rel. for Setcover
WHILE( counter < max_it,

CC(j)= C(j)-SUM(i, A(i,j) * lambda(i));
x.L(j)=0 + 1\$(CC(j)<0);
Z_LB = SUM(j, CC(j) * x.L(j)) + SUM(i, lamb d
G(i)=1 - SUM(j,A(i,j) * x.L(j));
T = pi * (Z_UB-Z_LB)/SUM(i,G(i) * G(i));
lambda(i)=max(0,lambda(i)+T * G(i));
counter=counter+1;
lambda_sum = SUM(i,ABS(lambda(i)));
put counter, Z_LB, G(’1’), lambda(’1’), l a

);
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Lower bound
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Comments
Comments to the algorithm:

This is actually quite interesting: The algorithm
is very simple, but a good lower bound is found
quickly !

This relied a lot on the very simple LLBP
optimization algorithm.

Usually the LLBP requires much more work ....

... but according to Beasley, the subgradient
algorithm very often works ...
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So whats the use ?
This is all wery nice, but how can we solve our
problem ?

We may be lucky that the lowerbound is also a
feasible and optimal solution (like integer
solutions to LP formulations).

We may reduce the problem, performing
Lagrangean problem reduction, next week.

We may generate heuristic solutions based on
the LLBP, next week.

We may use LLBP in lower bound calculations
for a Branch and Bound algorithm.
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In a Branch and Bound Method
Why has Lagrangean relaxation become so
important ? Because it is usefull in Branch and
Bound methods.
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Branching Influence on Lagrangian Bounding
Each branch corresponds to a simple choice:
Branch up or branch down. This correspond to
choose the value for one of our variables xi. Hence:
If we want to include Lagrangian bounding in a
branch and bound algorithm, we need to be able to
solve subproblems with these fixings ...
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Branching Influence on Lagrangian Bounding II
Given this lower bound on some sub-tree in the

branch-and-bound tree, we can (perhaps) perform

bounding. Important: Any solution to the Lagrangian

problem is a bound, so we can stop at any time (not

the case in Branch-and-Price).
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Dual Ascent
Another technique considered in the Beasley note
is Dual Ascent. The idea is very simple: Given a
(hard) MIP:

Optimal (min) solution to MIP
≥

Optimal solution to LP
=

Optimal solution to DUAL LP
≥

Any solution to DUAL LP
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Example in Beasley: Setcover
LP Relaxation:

objective: minimise
∑

j

cj · xj

s.t.
∑

j

aij · xj ≥ 1 ∀i

xj ≥ 0
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Graphical

Optimal solution to MIP

feasible solutions
Upper bounds

Optimal solution to LP

GAP

solutions
lower bounds

Dual feasible
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Dual Setcover
objective: maximize ∑

i

ui

s.t.
∑

i

ui · aij ≤ cj ∀j

ui ≥ 0
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Comments to Dual Ascent
Dual ascent is a simple neat idea ...

Beasley is not too impressed ...

Dual ascent critically depends on the efficiency
of the heuristic and the size of the GAP
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