Department of Management Engineering / Operations Research	
The Shortest Path Problem	
Jesper Larsen \& Jens Clausen jla, jce imm.dtu.dk Department of Management Engineering Technical University of Denmark	

The Shortest Path Problem

- Given a directed network $\mathcal{G}=(V, E, w)$ for which the underlying undirected graph is connected.
- Furthermore, a source vertex r is given.
- Objective: Find for each $v \in V$ a shortest directed path from r to v (if such one exists).
- Let n denote the number of nodes and m the number of edges in \mathcal{G}.

Mathematical Model

This gives the following mathematical model:
Suppose r is the source vertex. Look at the number of paths leaving a vertex vs. the number of paths entering a vertex.

- For $r n-1$ paths have to leave r.
- For any other vertex, the number of paths entering the vertex must be exactly 1 larger than the number of paths leaving the vertex.
- Let x_{e} denote the number of paths using each edge $e \in E$.

$$
\begin{array}{lll}
\min & \sum_{e \in E} w_{e} x_{e} & \\
\text { s.t. } & \sum_{i \in V} x_{i r}-\sum_{i \in V} x_{r i}=-(n-1) & \\
& \sum_{i \in V} x_{i j}-\sum_{i \in V} x_{j i}=1 & j \in\{2, \ldots, n\} \\
& x_{e} \in \mathcal{Z}_{+} & e \in E
\end{array}
$$

Feasible potentials

- Consider an n-vector $y=y_{1}, \ldots, y_{n}$.
- If y satisfies that $y_{r}=0$ and

$$
\forall(i, j) \in E: y_{i}+w_{i j} \geq y_{j}
$$

then y is called a feasible potential.

Feasible potentials II

- If P is a path from r to $v \in V$, then if y is a feasible potential, $w_{P} \geq y_{v}$:

$$
\begin{aligned}
w_{P} & =\sum_{i=1}^{k} w_{e_{i}} \\
& \geq \sum_{i=1}^{k}\left(y_{v_{i}}-y_{v_{i-1}}\right) \\
& =y_{v_{k}}-y_{v_{0}} \\
& =y_{v}
\end{aligned}
$$

Ford's Shortest Path Algorithm

$1 y_{r} \leftarrow 0, y_{i} \leftarrow \infty$ for all other i
$2 p_{r} \leftarrow 0, p_{i} \leftarrow$ NiL for all other i
3 while an edge exists $(i, j) \in E$ such that
$y_{j}>y_{i}+w_{i j}$ do
$4 \quad y_{j} \leftarrow y_{i}+w_{i j}$
$5 \quad p_{j} \leftarrow i$
If an edge (i, j) violates the feasibility condition, update y_{j} - this is sometimes called "correct (i, j) " or "relax (i, j) "

Problem with Ford's Algorithm

- Complexity ! Beware of negative length circuits - these may lead to infinite computation.
- Solution: Use the same sequence for the edges in each iteration.

Bellman-Ford's Shortest Path Algorithm

$y_{r} \leftarrow 0 ; y_{i} \leftarrow \infty$ for all other i
$p_{r} \leftarrow 0 ; p_{i} \leftarrow$ NiL for all other i
$k \leftarrow 0$
while $k<n$ and \neg (y feasible) do
$k \leftarrow k+1$
for $(i, j) \in E$ do $\quad / * \operatorname{correct}(i, j) * /$
if $y_{j}>y_{i}+w_{i j}$ then
$y_{j} \leftarrow y_{i}+w_{i j}$
$p_{j} \leftarrow i$

Jesper Larsen \& Jens Clausen
10

Correctness of Bellman-Ford's Algorithm

- Proof is based on induction.
- The induction hypothesis is: After iteration k of the main loop, y_{i} contains the length of any shortest path with at most k edges from 1 to i for any $i \in V$.
- For the base case $k=0$ the induction hypothesis is trivially fulfilled. ($y_{r}=0=$ shortest path from r to r).
- All in all: $O(n m)$.

Correctness of Bellman-Ford's Algorithm II

- For the inductive step, we assume that $y_{v_{i-1}}=$ shortest path from r to v_{i-1} after the ($i-1$)'st pass. Then $\left(v_{i-1}, v_{i}\right)$ is relaxed in the i^{\prime} th iteration. So $y_{v_{i}}=$ shortest path from r to v_{i}.
- If all distances are non-negative, a shortest path containing at most $(n-1)$ edges exists for each $v \in V$. If negative edge lengths are present, the algorithm still works. If a negative length circuit exists, this can be discovered by an extra iteration in the main loop. If at least on y_{i} changes, there is a negative length circuit.

Example

Department of Management Engineering / Operations Research
Complexity of Dijkstras Algorithm
The only difference to Prim's algorithm for
Minimum Spanning Trees is the update step in
the inner loop, and this step takes - like in the
MST algorithm - $O(1)$.
- Hence the complexity of the algorithm is $O\left(n^{2}\right)$
if a list representation of the y vector is used,
and a complexity of $O(m l o g n)$ can be obtained
if the heap data structure is used for the
representation of y vector.

Jesper Larsen \& Jens clausen

Complexity of Dijkstras Algorithm

- The only difference to Prim's algorithm for Minimum Spanning Trees is the update step in the inner loop, and this step takes - like in the MST algorithm - $O(1)$.
Hence the complexity of the algorithm is $O\left(n^{2}\right)$ if a list representation of the y vector is used, and a complexity of $O(m \operatorname{logn})$ can be obtained if the heap data structure is used for the representation of y vector.

Correctness of Dijkstras Algorithm

- This proof is made by induction:
- Suppose that before an iteration of the while loop it holds that

1. for each vertex $u \in T$, the shortest path from r to u has been found and is of length y_{u}, and
2. for each vertex $u \notin T, y_{u}$ is the shortest path from from r to u with all vertices except u belonging to T.

- This is obviously true initially.

Department of Management Engineesing / Operations Research
Correctness of Dijkstras Algorithm II - Let v be the element with least y value picked initially in the inner loop of iteration k. - y_{v} is the length of a path Q from r to v passing only through vertices in T. - Suppose that this is not the shortest path from r to v - then another path R from r to v is shorter.

Correctness of Dijkstras Algorithm IV

- Look at $R: R$ starts in r, which is in T. Since v is not in T, R has an edge from a vertex in P to a vertex not in T.
- Let (u, w) be the first edge of this type. w is a candidate for vertex choice in the current iteration, where v was picked. Hence $y_{w} \geq y_{v}$.
- If all edge lengths are non-negative, the length of the part of R from w to v is non-negative, and hence the total length of R is at least the length of the path Q.

Correctness of Dijkstras Algorithm V

- This is a contradiction - hence Q is a shortest path from r to v.
- Furthermore, the update step in the inner loop ensures that after the current iteration it again holds for u not in P (which is now the "old" P augmented with v) that y_{u} is the shortest path from from r to u with all vertices except u belonging to P.

Department of Management Engineering / Operations Research
Complexity of Floyd-Warshall's Algorithm
- In addition to the initialisation, which takes
$O\left(n^{2}\right)$, the algorithm has three nested loops
each of which is performed n times.
- The overall complexity is hence $O\left(n^{3}\right)$.

Correctness of Floyd-Warshall's Algorithm

- This proof is made by induction:
- Suppose that prior to iteration k it holds that for $i, j \in v y_{i j}$ contains length of the shortest path Q from i to j in G containing only vertices in the vertex set $\{1, \ldots, k-1\}$, and that $p_{i j}$ contains the immediate predecesor of j on Q.
- This is obviously true after the initialisation.
\square (2)

Correctness of Floyd-Warshall's Algorithm I

- In iteration k, the length of Q is compared to the length of a path R composed of two subpaths, $R 1$ and $R 2$.
- $R 1$ is a path from i to k path with "intermediate vertices" only in $\{1, \ldots, k-1\}$, and $R 2$ is a path from k to j path with "intermediate vertices" only in $\{1, \ldots, k-1\}$. The shorter of these two is chosen.

Correctness of Floyd-Warshall's Algorithm III

- The shortest path from i to j in G containing only vertices in the vertex set $\{1, \ldots, k\}$ either

1. does not contain k-and hence is the one found in iteration $k-1$, or
2. contains k - and then can be decomposed into a path from i to k followed by a path from k to j, each of which has been found in iteration $k-1$.

- Hence the update ensures the correctness of the induction hypothesis after iteration k.

