
1Jesper Larsen & Jens Clausen

Department of Management Engineering / Operations Research

The Shortest Path Problem
Jesper Larsen & Jens Clausen

jla,jc@imm.dtu.dk

Department of Management Engineering

Technical University of Denmark

2Jesper Larsen & Jens Clausen

Department of Management Engineering / Operations Research

The Shortest Path Problem
Given a directed network G = (V,E,w) for
which the underlying undirected graph is
connected.

Furthermore, a source vertex r is given.

Objective: Find for each v ∈ V a shortest
directed path from r to v (if such one exists).

Let n denote the number of nodes and m the
number of edges in G.

3Jesper Larsen & Jens Clausen

Department of Management Engineering / Operations Research

Integer Programming Formulation
Suppose r is the source vertex. Look at the
number of paths leaving a vertex vs. the
number of paths entering a vertex.

For r n− 1 paths have to leave r.
For any other vertex, the number of paths
entering the vertex must be exactly 1 larger
than the number of paths leaving the vertex.

Let xe denote the number of paths using each
edge e ∈ E.

4Jesper Larsen & Jens Clausen

Department of Management Engineering / Operations Research

Mathematical Model
This gives the following mathematical model:

min
∑

e∈E

wexe

s.t.
∑

i∈V

xir −
∑

i∈V

xri = −(n− 1)

∑

i∈V

xij −
∑

i∈V

xji = 1 j ∈ {2, . . . , n}

xe ∈ Z+ e ∈ E

5Jesper Larsen & Jens Clausen

Department of Management Engineering / Operations Research

Feasible potentials
Consider an n-vector y = y1, . . . , yn.

If y satisfies that yr = 0 and

∀(i, j) ∈ E : yi + wij ≥ yj

then y is called a feasible potential.

6Jesper Larsen & Jens Clausen

Department of Management Engineering / Operations Research

Feasible potentials II
If P is a path from r to v ∈ V , then if y is a
feasible potential, wP ≥ yv:

wP =
∑k

i=1
wei

≥
∑k

i=1
(yvi
− yvi−1

)

= yvk
− yv0

= yv

7Jesper Larsen & Jens Clausen

Department of Management Engineering / Operations Research

Basic algorithmic idea
Start with the potential with yr = 0 and
yi =∞, i ∈ V \ {r}

Check for each edge if the potential is feasible

If YES - Stop - the potentials identify shortest
paths

If an edge (i, j) violates the feasibility condition,
update yj - this is sometimes called “correct
(i, j)” or “relax (i, j)”

8Jesper Larsen & Jens Clausen

Department of Management Engineering / Operations Research

Ford’s Shortest Path Algorithm

yr ← 0, yi ←∞ for all other i1

pr ← 0, pi ← Nil for all other i2

while an edge exists (i, j) ∈ E such that3

yj > yi + wij do
yj ← yi + wij4

pj ← i5

9Jesper Larsen & Jens Clausen

Department of Management Engineering / Operations Research

Problem with Ford’s Algorithm
Complexity ! Beware of negative length circuits
- these may lead to infinite computation.

Solution: Use the same sequence for the
edges in each iteration.

10Jesper Larsen & Jens Clausen

Department of Management Engineering / Operations Research

Bellman-Ford’s Shortest Path Algorithm

yr ← 0; yi ←∞ for all other i1

pr ← 0; pi ← Nil for all other i2

k ← 03

while k < n and ¬(y feasible) do4

k ← k + 15

for (i, j) ∈ E do /* correct (i, j) */6

if yj > yi + wij then7

yj ← yi + wij8

pj ← i9

11Jesper Larsen & Jens Clausen

Department of Management Engineering / Operations Research

Complexity of Bellman-Ford’s Algorithm
A worst-case time complexity analysis leads to the
following conclusions:

Initialization: O(n).

Outer loop: (n− 1) times.

In the loop: each edge is considered one time -
O(m).

All in all: O(nm).

12Jesper Larsen & Jens Clausen

Department of Management Engineering / Operations Research

Correctness of Bellman-Ford’s Algorithm
Proof is based on induction.

The induction hypothesis is: After iteration k of
the main loop, yi contains the length of any
shortest path with at most k edges from 1 to i
for any i ∈ V .

For the base case k = 0 the induction
hypothesis is trivially fulfilled. (yr = 0 = shortest
path from r to r).

13Jesper Larsen & Jens Clausen

Department of Management Engineering / Operations Research

Correctness of Bellman-Ford’s Algorithm II
For the inductive step, we assume that yvi−1

=
shortest path from r to vi−1 after the (i− 1)’st
pass. Then (vi−1, vi) is relaxed in the i’th
iteration. So yvi

= shortest path from r to vi.

If all distances are non-negative, a shortest
path containing at most (n− 1) edges exists for
each v ∈ V . If negative edge lengths are
present, the algorithm still works. If a negative
length circuit exists, this can be discovered by
an extra iteration in the main loop. If at least on
yi changes, there is a negative length circuit.

14Jesper Larsen & Jens Clausen

Department of Management Engineering / Operations Research

Introduction to Dijkstra’s Algorithm
If we assume all edge weights are non-negative
we can derive a more efficient algorithm.

A new algorithm for a general graph could
therefore be: Find the most negative edge
weight we and add |we| to all edge weights. Now
all wf ≥ 0 for all f ∈ E. Use the Dijkstra
algorithm. Does that work????

15Jesper Larsen & Jens Clausen

Department of Management Engineering / Operations Research

Dijkstra’s Algorithm for Shortest Path

S ← {r}, T ← ∅1

pr ← 0, yr ← 02

pi ← Nil, yi ←∞ for all other i3

while S 6= ∅ do4

select a i ∈ S minimizing yi5

for {j ∈ V : j 6∈ T ∧ (i, j) ∈ E} do6

if yj > yi + wij then7

yj ← yi + wij, pj ← i8

S ← S ∪ {j}9

S ← S \ {i}, T ← T ∪ {i}10

16Jesper Larsen & Jens Clausen

Department of Management Engineering / Operations Research

Example
3

4

7

6

2

5

3

1
5

1

1

3

1

4

1
3

1

7

1

1

17Jesper Larsen & Jens Clausen

Department of Management Engineering / Operations Research

Complexity of Dijkstras Algorithm
The only difference to Prim’s algorithm for
Minimum Spanning Trees is the update step in
the inner loop, and this step takes - like in the
MST algorithm - O(1).

Hence the complexity of the algorithm is O(n2)
if a list representation of the y vector is used,
and a complexity of O(mlogn) can be obtained
if the heap data structure is used for the
representation of y vector.

18Jesper Larsen & Jens Clausen

Department of Management Engineering / Operations Research

Correctness of Dijkstras Algorithm
This proof is made by induction:

Suppose that before an iteration of the while
loop it holds that
1. for each vertex u ∈ T , the shortest path from

r to u has been found and is of length yu, and
2. for each vertex u 6∈ T , yu is the shortest path

from from r to u with all vertices except u
belonging to T .

This is obviously true initially.

19Jesper Larsen & Jens Clausen

Department of Management Engineering / Operations Research

Correctness of Dijkstras Algorithm II
Let v be the element with least y value picked
initially in the inner loop of iteration k.

yv is the length of a path Q from r to v passing
only through vertices in T .

Suppose that this is not the shortest path from r
to v - then another path R from r to v is shorter.

20Jesper Larsen & Jens Clausen

Department of Management Engineering / Operations Research

Correctness of Dijkstras Algorithm III

R

Q
v

wu

r

yw >= yv(= length(Q))⇒ length(R) ≥ length(Q)

21Jesper Larsen & Jens Clausen

Department of Management Engineering / Operations Research

Correctness of Dijkstras Algorithm IV
Look at R: R starts in r, which is in T . Since v
is not in T , R has an edge from a vertex in P to
a vertex not in T .

Let (u,w) be the first edge of this type. w is a
candidate for vertex choice in the current
iteration, where v was picked. Hence yw ≥ yv.

If all edge lengths are non-negative, the length
of the part of R from w to v is non-negative, and
hence the total length of R is at least the length
of the path Q.

22Jesper Larsen & Jens Clausen

Department of Management Engineering / Operations Research

Correctness of Dijkstras Algorithm V
This is a contradiction – hence Q is a shortest
path from r to v.

Furthermore, the update step in the inner loop
ensures that after the current iteration it again
holds for u not in P (which is now the “old” P
augmented with v) that yu is the shortest path
from from r to u with all vertices except u
belonging to P .

23Jesper Larsen & Jens Clausen

Department of Management Engineering / Operations Research

Floyd-Warshall’s all-to-all Algorithm

yij ← wij, pij ← i for all (i, j) with wij 6=∞,1

pij ← 0 otherwise.
for k ← 1 to n do2

for i← 1 to n do3

for j ← 1 to n do4

if i 6= k ∧ j 6= k ∧ yij > yik + ykj then5

yij ← yik + ykj6

pij ← pkj7

24Jesper Larsen & Jens Clausen

Department of Management Engineering / Operations Research

Complexity of Floyd-Warshall’s Algorithm
In addition to the initialisation, which takes
O(n2), the algorithm has three nested loops
each of which is performed n times.

The overall complexity is hence O(n3).

25Jesper Larsen & Jens Clausen

Department of Management Engineering / Operations Research

Correctness of Floyd-Warshall’s Algorithm
This proof is made by induction:

Suppose that prior to iteration k it holds that for
i, j ∈ v yij contains length of the shortest path
Q from i to j in G containing only vertices in the
vertex set {1, ..., k − 1}, and that pij contains the
immediate predecesor of j on Q.

This is obviously true after the initialisation.

26Jesper Larsen & Jens Clausen

Department of Management Engineering / Operations Research

Correctness of Floyd-Warshall’s Algorithm II
In iteration k, the length of Q is compared to the
length of a path R composed of two subpaths,
R1 and R2.

R1 is a path from i to k path with “intermediate
vertices” only in {1, ..., k − 1}, and R2 is a path
from k to j path with “intermediate vertices”
only in {1, ..., k − 1}. The shorter of these two is
chosen.

27Jesper Larsen & Jens Clausen

Department of Management Engineering / Operations Research

Correctness of Floyd-Warshall’s Algorithm III

contains only vertices from {1,..., k−1}

Q

R2

R1

p[i,j]

j

p[k,j]

k

i

28Jesper Larsen & Jens Clausen

Department of Management Engineering / Operations Research

Correctness of Floyd-Warshall’s Algorithm III
The shortest path from i to j in G containing
only vertices in the vertex set {1, ..., k} either
1. does not contain k - and hence is the one

found in iteration k − 1, or
2. contains k - and then can be decomposed

into a path from i to k followed by a path
from k to j, each of which has been found in
iteration k − 1.

Hence the update ensures the correctness of
the induction hypothesis after iteration k.

29Jesper Larsen & Jens Clausen

Department of Management Engineering / Operations Research

3
4

7

6

2

5

3

1
5

1

1

3

1

4

1
3

1

7

1

1

	The Shortest Path Problem
	Integer Programming Formulation
	Mathematical Model
	Feasible potentials
	Feasible potentials II
	Basic algorithmic idea
	Ford's Shortest Path Algorithm
	Problem with Ford's Algorithm
	Bellman-Ford's Shortest Path Algorithm
	Complexity of Bellman-Ford's Algorithm
	Correctness of Bellman-Ford's Algorithm
	Correctness of Bellman-Ford's Algorithm II
	Introduction to Dijkstra's Algorithm
	Dijkstra's Algorithm for Shortest Path
	Example
	Complexity of Dijkstras Algorithm
	Correctness of Dijkstras Algorithm
	Correctness of Dijkstras Algorithm II
	Correctness of Dijkstras Algorithm III
	Correctness of Dijkstras Algorithm IV
	Correctness of Dijkstras Algorithm V
	Floyd-Warshall's all-to-all Algorithm
	Complexity of Floyd-Warshall's Algorithm
	Correctness of Floyd-Warshall's Algorithm
	Correctness of Floyd-Warshall's Algorithm II
	Correctness of Floyd-Warshall's Algorithm III
	Correctness of Floyd-Warshall's Algorithm III
	

