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The Shortest Path Problem
Given a directed network G = (V,E,w) for
which the underlying undirected graph is
connected.

Furthermore, a source vertex r is given.

Objective: Find for each v ∈ V a shortest
directed path from r to v (if such one exists).

Let n denote the number of nodes and m the
number of edges in G.
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Integer Programming Formulation
Suppose r is the source vertex. Look at the
number of paths leaving a vertex vs. the
number of paths entering a vertex.

For r n− 1 paths have to leave r.
For any other vertex, the number of paths
entering the vertex must be exactly 1 larger
than the number of paths leaving the vertex.

Let xe denote the number of paths using each
edge e ∈ E.
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Mathematical Model
This gives the following mathematical model:

min
∑

e∈E

wexe

s.t.
∑

i∈V

xir −
∑

i∈V

xri = −(n− 1)

∑

i∈V

xij −
∑

i∈V

xji = 1 j ∈ {2, . . . , n}

xe ∈ Z+ e ∈ E
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Feasible potentials
Consider an n-vector y = y1, . . . , yn.

If y satisfies that yr = 0 and

∀(i, j) ∈ E : yi + wij ≥ yj

then y is called a feasible potential.
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Feasible potentials II
If P is a path from r to v ∈ V , then if y is a
feasible potential, wP ≥ yv:

wP =
∑k

i=1
wei

≥
∑k

i=1
(yvi
− yvi−1

)

= yvk
− yv0

= yv
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Basic algorithmic idea
Start with the potential with yr = 0 and
yi =∞, i ∈ V \ {r}

Check for each edge if the potential is feasible

If YES - Stop - the potentials identify shortest
paths

If an edge (i, j) violates the feasibility condition,
update yj - this is sometimes called “correct
(i, j)” or “relax (i, j)”
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Ford’s Shortest Path Algorithm

yr ← 0, yi ←∞ for all other i1

pr ← 0, pi ← Nil for all other i2

while an edge exists (i, j) ∈ E such that3

yj > yi + wij do
yj ← yi + wij4

pj ← i5
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Problem with Ford’s Algorithm
Complexity ! Beware of negative length circuits
- these may lead to infinite computation.

Solution: Use the same sequence for the
edges in each iteration.
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Bellman-Ford’s Shortest Path Algorithm

yr ← 0; yi ←∞ for all other i1

pr ← 0; pi ← Nil for all other i2

k ← 03

while k < n and ¬(y feasible) do4

k ← k + 15

for (i, j) ∈ E do /* correct (i, j) */6

if yj > yi + wij then7

yj ← yi + wij8

pj ← i9
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Complexity of Bellman-Ford’s Algorithm
A worst-case time complexity analysis leads to the
following conclusions:

Initialization: O(n).

Outer loop: (n− 1) times.

In the loop: each edge is considered one time -
O(m).

All in all: O(nm).
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Correctness of Bellman-Ford’s Algorithm
Proof is based on induction.

The induction hypothesis is: After iteration k of
the main loop, yi contains the length of any
shortest path with at most k edges from 1 to i
for any i ∈ V .

For the base case k = 0 the induction
hypothesis is trivially fulfilled. (yr = 0 = shortest
path from r to r).
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Correctness of Bellman-Ford’s Algorithm II
For the inductive step, we assume that yvi−1

=
shortest path from r to vi−1 after the (i− 1)’st
pass. Then (vi−1, vi) is relaxed in the i’th
iteration. So yvi

= shortest path from r to vi.

If all distances are non-negative, a shortest
path containing at most (n− 1) edges exists for
each v ∈ V . If negative edge lengths are
present, the algorithm still works. If a negative
length circuit exists, this can be discovered by
an extra iteration in the main loop. If at least on
yi changes, there is a negative length circuit.

14Jesper Larsen & Jens Clausen

Department of Management Engineering / Operations Research

Introduction to Dijkstra’s Algorithm
If we assume all edge weights are non-negative
we can derive a more efficient algorithm.

A new algorithm for a general graph could
therefore be: Find the most negative edge
weight we and add |we| to all edge weights. Now
all wf ≥ 0 for all f ∈ E. Use the Dijkstra
algorithm. Does that work????
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Dijkstra’s Algorithm for Shortest Path

S ← {r}, T ← ∅1

pr ← 0, yr ← 02

pi ← Nil, yi ←∞ for all other i3

while S 6= ∅ do4

select a i ∈ S minimizing yi5

for {j ∈ V : j 6∈ T ∧ (i, j) ∈ E} do6

if yj > yi + wij then7

yj ← yi + wij, pj ← i8

S ← S ∪ {j}9

S ← S \ {i}, T ← T ∪ {i}10
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Complexity of Dijkstras Algorithm
The only difference to Prim’s algorithm for
Minimum Spanning Trees is the update step in
the inner loop, and this step takes - like in the
MST algorithm - O(1).

Hence the complexity of the algorithm is O(n2)
if a list representation of the y vector is used,
and a complexity of O(mlogn) can be obtained
if the heap data structure is used for the
representation of y vector.
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Correctness of Dijkstras Algorithm
This proof is made by induction:

Suppose that before an iteration of the while
loop it holds that
1. for each vertex u ∈ T , the shortest path from

r to u has been found and is of length yu, and
2. for each vertex u 6∈ T , yu is the shortest path

from from r to u with all vertices except u
belonging to T .

This is obviously true initially.
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Correctness of Dijkstras Algorithm II
Let v be the element with least y value picked
initially in the inner loop of iteration k.

yv is the length of a path Q from r to v passing
only through vertices in T .

Suppose that this is not the shortest path from r
to v - then another path R from r to v is shorter.
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Correctness of Dijkstras Algorithm III

R

Q
v

wu

r

yw >= yv(= length(Q))⇒ length(R) ≥ length(Q)
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Correctness of Dijkstras Algorithm IV
Look at R: R starts in r, which is in T . Since v
is not in T , R has an edge from a vertex in P to
a vertex not in T .

Let (u,w) be the first edge of this type. w is a
candidate for vertex choice in the current
iteration, where v was picked. Hence yw ≥ yv.

If all edge lengths are non-negative, the length
of the part of R from w to v is non-negative, and
hence the total length of R is at least the length
of the path Q.
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Correctness of Dijkstras Algorithm V
This is a contradiction – hence Q is a shortest
path from r to v.

Furthermore, the update step in the inner loop
ensures that after the current iteration it again
holds for u not in P (which is now the “old” P
augmented with v) that yu is the shortest path
from from r to u with all vertices except u
belonging to P .
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Floyd-Warshall’s all-to-all Algorithm

yij ← wij, pij ← i for all (i, j) with wij 6=∞,1

pij ← 0 otherwise.
for k ← 1 to n do2

for i← 1 to n do3

for j ← 1 to n do4

if i 6= k ∧ j 6= k ∧ yij > yik + ykj then5

yij ← yik + ykj6

pij ← pkj7
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Complexity of Floyd-Warshall’s Algorithm
In addition to the initialisation, which takes
O(n2), the algorithm has three nested loops
each of which is performed n times.

The overall complexity is hence O(n3).
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Correctness of Floyd-Warshall’s Algorithm
This proof is made by induction:

Suppose that prior to iteration k it holds that for
i, j ∈ v yij contains length of the shortest path
Q from i to j in G containing only vertices in the
vertex set {1, ..., k − 1}, and that pij contains the
immediate predecesor of j on Q.

This is obviously true after the initialisation.
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Correctness of Floyd-Warshall’s Algorithm II
In iteration k, the length of Q is compared to the
length of a path R composed of two subpaths,
R1 and R2.

R1 is a path from i to k path with “intermediate
vertices” only in {1, ..., k − 1}, and R2 is a path
from k to j path with “intermediate vertices”
only in {1, ..., k − 1}. The shorter of these two is
chosen.
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Correctness of Floyd-Warshall’s Algorithm III

contains only vertices from {1,..., k−1}

Q

R2

R1

p[i,j]

j

p[k,j]

k

i
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Correctness of Floyd-Warshall’s Algorithm III
The shortest path from i to j in G containing
only vertices in the vertex set {1, ..., k} either
1. does not contain k - and hence is the one

found in iteration k − 1, or
2. contains k - and then can be decomposed

into a path from i to k followed by a path
from k to j, each of which has been found in
iteration k − 1.

Hence the update ensures the correctness of
the induction hypothesis after iteration k.
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