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Min Cost Flow - Terminology

We consider a digraph G = (V (G), E(G)), in which each
edge e has a capacity ue ∈ R+ and a unit transportation
cost ce ∈ R. Each vertex v furthermore has a demand
bv ∈ R. If bv ≥ 0 then v is a sink, and if bv < 0 then v is a
source. We assume that b(V ) =

∑
v∈V bv = 0.
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The Min Cost Flow problem consists in supplying the sinks
from the sources by a flow in the cheapest possible way:

min
∑
e∈E

cexe

∀v ∈ V fx(v) = bv

∀(v, w) ∈ E : 0 ≤ xvw ≤ uvw
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Min Cost Flow - Primal LP.

The Min Cost Flow problem is an LP-problem:




xe1 xe2 ... xij ... xem

ce1 ce2 ... cij ... cem

1 −1 . ... ... = b1

2 . . ... . ... . = b2

. . . ... . ... . = .

i 1 . ... −1 ... . = bi

. . . ... . ... . . =

j . . ... 1 ... . = bj

. . . ... . ... . = .

n . . ... . ... . = bn

e1 −1 ≥ −u1

e2 −1 ≥ −u2

. . . . . . . ≥ .

(i, j) −1 ≥ −uij

. . . . . . . ≥ .

em −1 ≥ −u1



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Min Cost Flow - Dual LP.

The dual variables corresponding to the flow balance
equations are denoted yv, v ∈ V , and those corresponding
to the capacity constraints are denoted zvw, (v, w) ∈ E.

The dual problem is now:

max :
∑
v∈V

bvyv −
∑

(w,v)∈E

uwvzwv

∀(v, w) ∈ E : −yv + yw − zvw ≤ cvw ⇔
∀(v, w) ∈ E : −cvw − yv + yw ≤ zvw

∀(v, w) ∈ E : zvw ≥ 0

cvw = cvw + yv − yw is called the reduced cost for the edge
(v, w), and hence −cvw − yv + yw ≤ zvw is equivalent to

−cvw ≤ zvw

When is a set of feasible solutions x, y, og z optimal ?
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Min Cost Flow - Optimality conditions I.

If ue = +∞ (i.e. no capacity constraints for e) then ze must
be 0 and hence ce ≥ 0 just has to hold (primal optimality
condition for the LP).

If ue 6= +∞ then ze ≥ 0 and ze ≥ −ce must hold. z has
negative coefficient in the objective function - hence the
best choice for z is as small as possible: ze = max{0,−ce}.
Therefore, the optimal value of ze is uniquely determined
from the other variables, and ze is “unnecessary” in the
dual problem.

The complementary slackness conditions (each primal
variable times the corresponding dual slack must equal 0,
and each dual variable times the corresponding primal slack
must equal 0 in optimum) now give:

xvw > 0 ⇒ −cvw = ze = max(0,−cvw)

i.e. (xe > 0 ⇒ −ce ≥ 0) ≡ (ce > 0 ⇒ x = 0)

and

ze > 0 ⇒ xe = ue

i.e. (−ce > 0 ⇒ xe = ue) ≡ (ce < 0 ⇒ xe = ue)
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Min Cost Flow - Optimality conditions II.

Summing up: A primal feasible flow satisfying demands in
sinks from sources respecting the capacity constraints is
optimal if and only if we can find a dual solution
ye, e ∈ E such that for all e ∈ E it holds that:

ce < 0 ⇒ xe = ue ( 6= ∞)

ce > 0 ⇒ xe = 0

All pairs (x, y) of optimal solutions satisfy these conditions.

- and so what ?
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Min Cost Flow - Optimality conditions III.

For a legal flow x in G, the residual graph is (like for Max
Flow) a graph, in which the paths indicate how flow excess
can be moved in G given that the flow x already is present.
The only difference is that each edge has a cost assigned.

The residual graph G(x) for G wrt. x is defined by

V (G(x)) = V (G)

E(G(x)) = Ex =

{(v, w)|(v, w) ∈ E∧xvw < uvw}∪{(v, w)|(w, v) ∈ E∧xwv > 0}

The unit cost c′vw for an edge with xvw < uvw is cvw, while
c′vw for an edge with xwv > 0 is −cvw.

Note that a dicircuit with negative cost in G(x) corresponds
to a negative cost circuit in G, if cost are added for forward
edges and subtracted for backward edges.

Note also that if a set of vertex potentials yv, v ∈ V are
given, and the cost of a circuit wrt. the reduced costs for
the edges (cvw = cvw + yv − yw) are calculated, the cost
remains the same as the original costs - the vertex
potentials are “telescoped” to 0.
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Min Cost Flow - Negative cost circuits.

A primal feasible flow satisfying sink demands from sources
and respecting the capacity constraints is optimal if and
only if an x-augmenting circuit with negative c-cost (or
negative c-cost - there is no difference) does not exist.

This is the idea behind the identification of optimal
solutions in the Network Simplex Algorithm.
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Transshipment - Network Simplex I.

We consider first the Transshipment-problemet (Min Cost
Flow without capacity constraints).

Reminder: A tree in a digraph is a set T ⊆ E, such that this
is a tree in the underlying undirected graph.

A tree solution for the transshipment-problem give by
G = (V, E), the demands bv, v ∈ V and the costs
cvw, (v, w) ∈ E, is a flow x ∈ RE satisfying:

∀v ∈ V : fx(v) = bv

∀e /∈ T : xe = 0

In words: No flow in edges not in T, and all demands
satisfied. Note that tree solutions are normally not feasible,
since edges with negative flow may exist (cf. basic solution
and feasible basic solution in LP).
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Transshipment - Network Simplex II.

Does a tree solution exist for any tree T ? YES !!!

Select a vertex r called the root of T . Consider an edge h in
T . h “splits” V into two: a part containing r denoted
R(T, h) and a remainder - V \ R(T, h).
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Tree edge
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If h starts in R(T, h) and ends in V \ R(T, h) then set

xh = b(V \ R(T, h)) = −b(R(T, h))

and if h starts in V \ R(T, h) and ends in R(T, h) then set

xh = b(R(T, h))
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Transshipment - Network Simplex III.

• The tree solution for T is unique.

• If (G, c, b) has a feasible solution, it also has a feasible
tree solution.

• If (G, c, b) hars an optimal solution, it also has an
optimal tree solution.

The Network Simplex Method moves from tree solution to
tree solution using negative cost circuits C(T, e) consisting
of tree edges and exactly one non-tree edge e (think of the
tree edges as basic variables and the non-tree edge as the
non-basic variable of a Simplex iteration):

• C(T, e) ⊆ T ∪ {e}
• e is forward in C(T, e)
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Transshipment - Network Simplex IIII.
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Set the vertex potential yv, v ∈ V to the cost of the path in
T from r to v (counted with sign: plus for a forward edge,
minus for a backward edge). It now holds:

For all v, w ∈ V , the cost of the path from v to w in T

equals yw − yv (why ?). But then the reduced costs cvw

(defined by cvw + yv − yw) satisfy:

∀e ∈ T : ce = 0

∀e /∈ T : ce = c(C(T, e))
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Transshipment - Network Simplex V.

If T determines a feasible tree solution x and C(T, e) has
non-negative cost ∀e /∈ T (i.e. ce ≥ 0), then x is optimal.

Network Simplex algorithm

1. Find a tree T with a corresponding feasible tree
solution x. Select an r ∈ V as root for T .

2. Compute yv as the length of the r − v–path in T , costs
counted with sign ( plus for forward edges, minus for
backward edges).

3. while ∃e = (v, w) s.t cvw = cvw + yv − yw < 0 do

- Select one of these;

- If alle edges in C(T, e) are forward - STOP - the
problem is “unbounded”;

- Find θ = min{xj | j backward in C(T, e)} and an
edge h with xh = θ;

- Increase x with θ along C(T, e) - increase flow in
forward edges and decrease flow in backward edges;

- T := (T ∪ {e}) \ {h};
- update y as in (2) above;

endwhile
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What if edge capacities are present ? I

We consider the Min Cost flow - problem given by the
network G = (V, E) with demands bv, v ∈ V , capacities
uvw, (v, w) ∈ E and costs cvw, (v, w) ∈ E.
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Remember the optimality conditions for a feasible flow
x ∈ RE :

ce < 0 ⇒ xe = ue ( 6= ∞)

ce > 0 ⇒ xe = 0
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What if edge capacities are present ? II

The concept of a tree solution is extended to capacity
constrained problems - a non-tree edge e may have flow
either 0 or ue. E \ T is hence split into two edge sets, L and
U . Edges in L must have flow 0 - edges in U must be filled
to their capacity. The tree solution x must satisfy:

∀v ∈ V : fx(v) = bv

∀e ∈ L : xe = 0

∀e ∈ U : xe = ue

As before, the tree solution for T is unique:

Select a vertex r called the root of T . Consider an edge h in
T . h “splits” V into two: a part containing r denoted
R(T, h) and a remainder - V \ R(T, h).

Consider now the modified demand B(V \ R(T, h)) in
V \ R(T, h) given that a tree solution is sought:

B(V \ R(T, h)) = b(V \ R(T, h))

−∑
{(v,w)∈U |v∈R(T,h), w∈V \R(T,h)} uvw

+
∑

{(v,w)∈U |v∈V \R(T,h), w∈R(T,h)} uvw
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If h starts in R(T, h) and ends in V \ R(T, h) the set

xh = B(V \ R(T, h))

and if h starts in V \ R(T, h) and ends in R(T, h) then set

xh = −B(V \ R(T, h))
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Network Simplex for Min Cost Flow I

Idea: Start with a feasible tree solution - find it e.g using a
Max Flow algorithm.

We now search for either a non-tree edge e with xe = 0 and
negative reduced cost or a non-tree edges e with xe = ue

and positive reduced cost. Given e and (T, L, U), the
corresponding circuit is denoted C(T, L, U, e).

In this, the flow must be increased in forward edges
respecting capacity constraints and decreased in backward
edges respect the non-negativity constraints.
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Network Simplex for Min Cost Flow II.

1. Find a tree T with a corresponding feasible tree
solution x. Select an r ∈ V as root for T .

2. Compute yv as the length of the r − v–path in T , costs
counted with sign ( plus for forward edges, minus for
backward edges).

3. while (∃e = (v, w) ∈ L s.t cvw = cvw + yv − yw <

0) ∨ (∃e = (v, w) ∈ U s.t cvw = cvw + yv − yw > 0) do

- Select one of these;

- If no edge in C(T, L, Ue) is backward and no forward
edge has limited capacity STOP - the problem is
unbounded;

- Find θ1 = min{xj | j backward in C(T, L, U, e)},
θ2 = min{uj − xj | j forward in C(T, L, U, e)}, and
an edge h giving rise to θ = min{θ1, θ2};

- Increase x by θ along C(T, L, U, e);

- T := (T ∪ {e}) \ {h};
- Update L, U by removing e and inserting h in the

relevant one of L and U ;

- Update y as in (2) above;

endwhile
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Transshipment - the LP-version I

We consider a digraph G = (V (G), E(G)), in which each
edge e has a capacity ue ∈ R+ and a transportation cost
per unit ce ∈ R. Each vertex v furthermore has a demand
bv ∈ R. If bv ≥ 0 then v is a sink, and if bv < 0 then v is a
source. We assume that b(V ) =

∑
v∈V bv = 0.

A basis is a set of edges constituting a spanning tree in the
undirected graph underlying the network, i.e. connected,
circuit-free and with |V | − 1 edges. A basis is also called a
basis tree, and the edges basis-edges.

A feasible basic solution is a feasible way of sending flow
from sources to sinks satisfying the demands and with no
loops, such that at most |V | − 1 edges carry flow. If less
than |V | − 1 have positive flow, a sufficient number of other
edges is added to form a basis (these will have 0 flow).
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Transshipment - the LP-version II

Iterative step: Suppose a feasible basis is given. For each
edge, a reduced cost dij is defined by dij = cij + yi − yj .

1: Select a vertex r and assign it vertex potential 0: yr := 0.

2: calculate yv for each other vertex using the basis edges
and the fact that for these, dij = 0.

3: Now all yv, v ∈ V are known. Compute dij based on on
the definition for each non-basis edge.

4: If all dij are non-negative STOP - optimum has been
identified.

5: Select an edge (v, w) with dij < 0 ( and this must be a
non-basis edge).

6: Update the flow in that circuit, which is the result of the
addition of (v, w) to the basis tree, such that at least
one basis edge (i, j) gets a resulting flow of 0.

7: The new basis results from the exchange of (v, w and
(i, j) in the basis tree. Go to step 1.
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