Lecture 8: Free dynamic optimization (D+C)
Outline of lecture

- Recap L7
- Analytical solutions and Numerical methods
- Continuous time system
- Exercise DO.2
- Reading guidance (DO: 11-14, 27-34)
Dynamic Optimization (D)

Minimize J (ie. determine the sequence $u_i \in \mathbb{R}^m$, $i = 0, \ldots, N - 1$) where:

$$J = \phi(x_N) + \sum_{i=0}^{N-1} L_i(x_i, u_i)$$

subject to (for $i = 0, 1, \ldots N - 1$):

$$x_{i+1} = f_i(x_i, u_i) \quad x_0 = x_0$$

Given:

- N horizon (number of intervals)
- $x_0 \in \mathbb{R}^n$ initial state is known
- f_i dynamics ($\mathbb{R}^{n+m+1} \to \mathbb{R}^n$)
- $L_i(x_i, u_i)$ stage cost
- $\phi(x_N)$ terminal cost
Euler-Lagrange equations

Defining the Hamiltonian function

\[H_i = L_i(x_i, u_i) + \lambda_{i+1}^T f_i(x_i, u_i) \]

The KKT conditions on this problem (with equality constraints) results in:

\[\begin{align*}
 x_{i+1} &= f_i = \left(\frac{\partial}{\partial \lambda_i} H_i \right)^T \\
 \lambda_i^T &= \frac{\partial}{\partial x_i} H_i = \frac{\partial}{\partial x_i} L_i + \lambda_{i+1}^T \frac{\partial}{\partial x_i} f_i \\
 0^T &= \frac{\partial}{\partial u_i} H_i = \frac{\partial}{\partial u_i} L_i + \lambda_{i+1}^T \frac{\partial}{\partial u_i} f_i
\end{align*} \]

with boundary conditions:

\[x_0 = x_0 \quad \lambda_N^T = \frac{\partial}{\partial x_N} \phi_N \]

where for short:

\[f_i = f_i(x_i, u_i) \quad L_i = L_i(x_i, u_i) \quad H_i = H_i(x_i, u_i, \lambda_{i+1}) \]
This is a two-point boundary value problem (TPBVP) with $N(2n + m)$ unknowns and equations.

The quantity

$$\frac{\partial}{\partial u_i} H_i$$

is the gradient of J wrt. u_i. Equal to zero on optimal trajectories.

λ_0 is the gradient of J wrt. x_0.

Type of solutions:

- Analytical solutions (for very simple problems)
- Semi analytical solutions (eg. the LQ problem)
- Numerical solutions
Let us now focus on the problem of bringing the linear, first order system given by:

\[x_{i+1} = ax_i + bu_i \quad x_0 = x_0 \]

along a trajectory from the initial state, such the cost function (for chosen \(p \geq 0, q \geq 0 \) and \(r > 0 \)):

\[
J = \frac{1}{2} px_N^2 + \sum_{i=0}^{N-1} \left(\frac{1}{2} qx_i^2 + \frac{1}{2} ru_i^2 \right)
\]

is minimized. The Hamiltonian for this problem is

\[
H_i = \frac{1}{2} qx_i^2 + \frac{1}{2} ru_i^2 + \lambda_{i+1}[ax_i + bu_i]
\]

and the Euler-Lagrange equations are:

\[
\begin{align*}
 x_{i+1} &= ax_i + bu_i \\
 \lambda_i &= qx_i + a\lambda_{i+1} \\
 0 &= ru_i + b\lambda_{i+1}
\end{align*}
\]

which has the two boundary conditions

\[
 x_0 = x_0 \quad \lambda_N = px_N
\]
The stationarity conditions (3),

\[0 = ru_i + b\lambda_{i+1} \]

give us a sequence of decisions

\[u_i = -\frac{b}{r}\lambda_{i+1} \] \hspace{1cm} (4)

if the costate is known.
Inspired from the boundary condition we will postulate a relationship

\[\lambda_i = s_i x_i \] \hspace{1cm} (5)

Actually separation of the variables \((i\) and \(x)\). If we insert the control law, (4), and the costate candidate, (5), in the state equation, (1), we find

\[x_{i+1} = ax_i - b \frac{b}{r} s_{i+1} x_{i+1} \]

or

\[x_{i+1} = \left[1 + \frac{b^2}{r} s_{i+1} \right]^{-1} ax_i \]
From the costate equation, (2), we have

\[s_i x_i = qx_i + as_{i+1} x_{i+1} = [q + as_{i+1} (1 + \frac{b^2}{r} s_{i+1})^{-1} a] x_i \]

which has to be fulfilled for any \(x_i \). This is the case if \(s_i \) is given by the backwards recursion

\[s_i = a s_{i+1} (1 + \frac{b^2}{r} s_{i+1})^{-1} a + q \]

\[\frac{1}{1+x} = 1 - \frac{x}{1+x} \]

or

\[
\begin{align*}
 s_i &= q + s_{i+1} a^2 - \frac{(abs_{i+1})^2}{r + b^2 s_{i+1}} \\
 s_N &= p
\end{align*}
\]

(6)

This can be solved (recursively and backwards).
With this solution (the sequence of s_i) we can determine the (sequence of) control actions
\[u_i = -\frac{b}{r} \lambda_{i+1} = -\frac{b}{r} s_{i+1} x_{i+1} = -\frac{b}{r} s_{i+1} (ax_i + bu_i) \]
or
\[u_i = -\frac{abs_{i+1}}{r + b^2 s_{i+1}} x_i = -K_i x_i \]
where
\[K_i = \frac{s_{i+1} ab}{r + s_{i+1} b^2} \]

For the costate we have:
\[\lambda_i = s_i x_i \]
which can be compared with (which can be proven)
\[J^* = \frac{1}{2} s_0 x_0^2 \]
LQ problem - II

Linear Dynamics:

\[x_{i+1} = Ax + Bu \quad x_0 = x_0 \quad x_i \in \mathbb{R}^n \quad u_i \in \mathbb{R}^m \]

and a Quadratic objective function:

\[J = \frac{1}{2} x_N^T P x_N + \frac{1}{2} \sum_{i=0}^{N-1} \left(x_i^T Q x_i + u_i^T R u_i \right) \quad R > 0 \]

The matrices, \(Q \), \(R \) and \(P \), are symmetric and positive semidefinite.

The problem has the Hamiltonian:

\[H_i = \frac{1}{2} \left(x_i^T Q x_i + u_i^T R u_i \right) + \lambda_{i+1}^T (Ax_i + Bu_i) \]

and the Euler-Lagrange equations are (necessary conditions):

\[
\left(\frac{\partial}{\partial \lambda} H_i \right)^T = x_{i+1} = Ax + Bu \quad x_0 = x_0
\]

\[
\frac{\partial}{\partial x} H_i = \lambda_i^T = x_i^T Q + \lambda_{i+1}^T A \quad \lambda_N^T = x_N^T P
\]

\[
\frac{\partial}{\partial u} H_i = 0^T = u_i^T R + \lambda_{i+1}^T B
\]
The **solution** to the LQ problem is:

\[u_i = -K_i \, x_i \]

where the gain is given by

\[K_i = (B^T S_{i+1} B + R)^{-1} B^T S_{i+1} A \]

and \(S_i \) is a solution to the Riccati equation

\[S_i = Q + A^T S_{i+1} A - A^T S_{i+1} B [B^T S_{i+1} B + R]^{-1} B^T S_{i+1} A \quad S_N = P \]

The matrix, \(S_i \) is a symmetric, positive semidefinite matrix.

Notice the Costate

\[\lambda_i = S_i x_i \quad S_i \geq 0 \]

which might be compared to:

\[J^* = \frac{1}{2} x_0^T S_0 x_0 \]
Count Jacopo Francesco Riccati
Born: 28 May 1676, Venice
Dead: 15 April 1754, Treviso
University of Padua
Pause
Numerical methods

- Shooting methods (forward or backward)
- Gradient methods
- Brute force
(LQ problem in the simple version). Let us now focus on the problem of bringing the linear, first order system given by:

\[x_{i+1} = ax_i + bu_i \quad x_0 = x_0 \]

along a trajectory from the initial state, such that the cost function:

\[J = \frac{1}{2} px_N^2 + \sum_{i=0}^{N-1} \frac{1}{2} qx_i^2 + \frac{1}{2} ru_i^2 \]

is minimized. The Euler-Lagrange equations are:

\[
\begin{align*}
 x_{i+1} &= ax_i + bu_i \\
 \lambda_i &= qx_i + a\lambda_{i+1} \\
 0 &= ru_i + b\lambda_{i+1}
\end{align*}
\]

which has the two boundary conditions

\[x_0 = x_0 \quad \lambda_N = px_N \]
Forward shooting

The stationarity condition (9)

\[0 = ru_i + b\lambda_{i+1} \]

gives us simply:

\[u_i = -\frac{b}{r}\lambda_{i+1} \]

We can (for \(a \neq 0 \)) reverse the costate equation

\[\lambda_i = qx_i + a\lambda_{i+1} \]

into

\[\lambda_{i+1} = \frac{\lambda_i - qx_i}{a} \]
Starting with x_0 and λ_0 (guessed value) we can for $i = 0, 1, \ldots N-1$ iterate:

$$\lambda_{i+1} = \frac{\lambda_i - qx_i}{a}$$

$$u_i = -\frac{b}{r} \lambda_{i+1}$$

$$x_{i+1} = ax_i + bu_i$$

We end up with x_N and λ_N which (for correct λ_0) should fulfill

$$\lambda_N = px_N$$

$$\varepsilon_N = \lambda_N - px_N = 0$$

Notice: a problem if $a << 1$ or $a >> 1$.
Contents of a file (parms.m) setting the parameters.

% Constants etc.

alf=0.05;
a=1+alf; b=-1;
x0=50000;
N=10;
q=alf^2; r=q; p=q;
The following code (fejlf.m) solves these recursions.

```matlab
function err=fejlf(la0)

parms % set parameters a,b,p,q,r,x0

la=la0; x=x0;
for i=0:N-1,
    la=(la-q*x)/a;
    u=-b*la/r;
    x=a*x+b*u;
end
err=la-p*x;
```

\[
\lambda_{i+1} = \frac{\lambda_i - qx_i}{a}
\]

\[
u_i = -\frac{b}{r}\lambda_{i+1}
\]

\[
x_{i+1} = ax_i + bu_i
\]
Extented version of fejlf.m (for plotting).

function [err,xt,ut,lat]=fejlf(la0)

parms % set parameters a,b,p,q,r,x0

la=la0; x=x0;
ut=[]; lat=la; xt=x;
for i=0:N-1,
 la=(la-q*x)/a;
 u=-b*la/r;
 x=a*x+b*u;
 xt=[xt;x]; lat=[lat;la]; ut=[ut;u];
end
err=la-p*x;
Master program (script).

% The search for la0
la0g=10; % a wild guess%
la0=fsolve(’fejlf’,la0g)

% The simulation with the correct la0
[err,xt,ut,lat]=fejlf(la0);

subplot(211); bar(ut); grid; title(’Input sequence’);
subplot(212); bar(xt); grid; title(’Saldo’);
If separation possible: reverse the costate equation and find u_i from the stationarity condition.

The Euler-Lagrange equations

\begin{align*}
x_{i+1} &= f_i(x_i, u_i) \\
\lambda_i^T &= \frac{\partial}{\partial x_i} L_i(x_i, u_i) + \lambda_{i+1}^T \frac{\partial}{\partial x_i} f_i(x_i, u_i) \quad \rightarrow \quad \lambda_{i+1} = h_i(x_i, \lambda_i) \\
0^T &= \frac{\partial}{\partial u_i} L_i(x_i, u_i) + \lambda_{i+1}^T \frac{\partial}{\partial u_i} f_i(x_i, u_i) \quad \rightarrow \quad u_i = g_i(x_i, \lambda_{i+1})
\end{align*}

Guess λ_0 (or another parameterization) and use x_0.

Iterate for $i = 0, 1 \ldots N - 1$:

1. Knowing x_i and λ_i, determine u_i and λ_{i+1} from the stationarity and the costate equation.
2. Update the state equation i.e. find x_{i+1} from x_i and u_i.

At the end ($i = N$) check if

\[\lambda_N^T = \frac{\partial}{\partial x_N} \phi(x_N) \quad \rightarrow \quad \varepsilon = \lambda_N^T - \frac{\partial}{\partial x_N} \phi(x_N) = 0^T \]
The Euler-Lagrange equations

\[
\begin{align*}
x_{i+1} &= f_i(x_i, u_i) \\
\lambda_i^T &= \frac{\partial}{\partial x_i} L_i(x_i, u_i) + \lambda_{i+1}^T \frac{\partial}{\partial x_i} f_i(x_i, u_i) \\
0^T &= \frac{\partial}{\partial u_i} L_i(x_i, u_i) + \lambda_{i+1}^T \frac{\partial}{\partial u_i} f_i(x_i, u_i)
\end{align*}
\]

Guess λ_0 (or another parameterization) and use x_0.

Iterate for $i = 0, 1 \ldots N - 1$:

1. Knowing x_i and λ_i, determine u_i and λ_{i+1} from the stationarity and the costate equation.
2. Update the state equation i.e. find x_{i+1} from x_i and u_i.

At the end ($i = N$) check if

\[
\lambda_N^T = \frac{\partial}{\partial x_N} \phi(x_N) \quad \rightarrow \quad \varepsilon = \lambda_N^T - \frac{\partial}{\partial x_N} \phi(x_N) = 0^T
\]
Gradient methods

The Euler-Lagrange equations are:

\[
\begin{align*}
 x_{i+1} &= f_i(x_i, u_i) \\
 \lambda^T_i &= \frac{\partial}{\partial x_i} L_i(x_i, u_i) + \lambda^T_{i+1} \frac{\partial}{\partial x_i} f_i(x_i, u_i) = \frac{\partial}{\partial x_i} H_i \\
 0^T &= \frac{\partial}{\partial u_i} L_i(x_i, u_i) + \lambda^T_{i+1} \frac{\partial}{\partial u_i} f_i(x_i, u_i) = \frac{\partial}{\partial u_i} H_i
\end{align*}
\]

which has the two boundary conditions

\[
 x_0 = x_0 \quad \lambda^T_N = \frac{\partial}{\partial x_N} \phi(x_N)
\]

Guess a sequence of decisions, \(u_i\ i = 0, 1, \ldots N - 1\).

Search for an optimal sequence of decisions, \(u_i\ i = 0, 1, \ldots N - 1\) using e.g. a Newton Raphson iteration:

\[
u_{i+1}^j = u_i^j - \left[\frac{\partial^2}{\partial u_i^2} H_i \right]^{-1} \frac{\partial}{\partial u_i} H_i
\]
Brute force

Guess a sequence of decisions, $u_i \ i = 0, 1, \ldots N - 1$.

1. Start in x_0 and iterate the state equation forwards i.e. determine the state sequence, x_i.
2. Determine the performance index.

Search (e.g. using an amoeba method) for an optimal sequence of decisions, $u_i \ i = 0, 1, \ldots N - 1$.

Pause
The **Schaefer model** (Fish in the Baltics)

\[x_{i+1} = x_i + rh x_i (1 - \alpha x_i) \quad x_0 = u_0 \]

\(h \) is the length of the intervals. The model can in continuous time be given as:

\[\dot{x}_t = \frac{dx_t}{dt} = rx_t (1 - \alpha x_t) \quad x_0 = x_0 \]
The fox(F) and rabbit(r) example.

\[
\begin{bmatrix}
\dot{r} \\
\dot{F}
\end{bmatrix} = \begin{bmatrix}
\alpha_1 r - \beta_1 rF \\
-\alpha_2 F + \beta_2 rF
\end{bmatrix}
\]

\[
\begin{bmatrix}
r \\
F
\end{bmatrix}_0 = \begin{bmatrix}
r_0 \\
F_0
\end{bmatrix}
\]

In general Dynamic (continuous time) state space model:

\[
\begin{bmatrix}
\dot{x}_1 \\
\dot{x}_2 \\
\vdots \\
\dot{x}_n
\end{bmatrix} = f_t \left(\begin{bmatrix}
x_1 \\
x_2 \\
\vdots \\
x_n
\end{bmatrix}_t, \begin{bmatrix}
u_1 \\
u_2 \\
\vdots \\
u_m
\end{bmatrix}_t \right)
\]

\[
\begin{bmatrix}
x_1 \\
x_2 \\
\vdots \\
x_n
\end{bmatrix}_0 = \begin{bmatrix}
x_1 \\
x_2 \\
\vdots \\
x_n
\end{bmatrix}_0
\]

or in short:

\[
\dot{x}_t = f_t(x_t, u_t) \quad x_0 = x_0 \quad f : \mathbb{R}^{n+m+1} \to \mathbb{R}^n
\]

The function, f, should be sufficiently smooth (existence and uniqueness).
Solution to ODE

- Analytical methods
- Numerical methods

\[\dot{x} = f_t(x_t) \quad x_0 = x_0 \]

Euler integration (the most simple method)

\[x_{t+h} = x_t + hf_t(x_t) \]

is the most simple method. Others and more efficient numerical methods do exists.
The fox(F) and rabbit(r) example.

\[
\begin{bmatrix}
\dot{r} \\
\dot{F}
\end{bmatrix} =
\begin{bmatrix}
\alpha_1 r - \beta_1 rF \\
-\alpha_2 F + \beta_2 rF
\end{bmatrix}
- \begin{bmatrix}
u_r \\
u_f
\end{bmatrix}
\begin{bmatrix}
r \\
F
\end{bmatrix}_0 =
\begin{bmatrix}
r_0 \\
F_0
\end{bmatrix}
\]
% Dynamic function for the continuous Lotka-Volterra system.
% It determine the state derivative as function of the time, state vector
% and system parameters.

% # of Rabbits is the first state
r=x(1);
% # of Foxes is the second state
F=x(2);

dx=[a1*r-b1*r*F; % dx: derivative of x
 -a2*F+b2*r*F]-u;
function foxc
% This program simulates the trajectories for the Lotka-Volterra system.
%

a1=0.03; a2=0.03; % System parameters (enters in dfoxc function)
b1=0.03/100; b2=b1;

r=100; % Initial # of rabbits
f=50; % Initial # of foxes
x0=[r;f]; % Initial state value

Tstp=500; % Stop time
dT=0.1; % Step size in output data
Tspan=0:dT:Tstp; % Time span of which the solution is to be found
%Tspan=[0 Tstp]; % Alternative time span

u=[0.0;0.0]; % Shootings of rabbits and foxes

[time,xt]=ode45(@dfoxc,Tspan,x0,[],u,a1,a2,b1,b2); % ODE solver
% See dfox for dynamic function
% The rest of this program (until next function declaration) is just
% plot and plot related commands

plot(time,xt); grid;
title('Lotka-Volterra');
ylabel('# fox, rabbit');
xlabel('period');
text(50,80,'fox');
text(220,140,'rabbit');

% print foxc.pps % Just a printing command

% % end of main program

%---
Analytical solutions

Discrete time

\[
\begin{align*}
 x_{i+1} &= x_i \quad x_i = C \\
 x_{i+1} &= x_i + \alpha \quad x_i = C + \alpha i \\
 x_{i+1} &= ax_i \quad x_i = Ca^i \\
 x_{i+1} &= Ax_i + Bu_i \quad x_0 = x_0 \\
 x_i &= A^i x_0 + \sum_{j=0}^{i} A^{n-j-1} Bu_j
\end{align*}
\]

Continuous time

\[
\begin{align*}
 \dot{x} &= 0 \quad x = C \\
 \dot{x} &= \alpha \quad x_t = C + \alpha t \\
 \dot{x} &= ax \quad x_t = C\exp(at) \\
 \dot{x} &= Ax + Bu \quad x_0 = x_0 \\
 x_t &= e^{At} x_0 + \int_{0}^{t} e^{A(t-s)} Bu_s ds
\end{align*}
\]

Constant as \(C \) can be determined from boundary conditions. Examples are

\[
 x_0 = x_0 \quad \text{or} \quad x_N = x_N
\]
The Performance Index

In **discrete time** we search for a sequence of decisions \((u_i \quad i = 0, 1, \ldots N - 1)\) such that the performance index

\[
J = \phi(x_N) + \sum_{i=0}^{N-1} L_i(x_i, u_i) h
\]

is optimized s.t. the dynamics (and other possible constraints).

In **continuous time** we search for a decision function \((u_t \quad 0 \leq t \leq T)\) such that the performance index

\[
J = \phi_T(x_T) + \int_0^T L_t(x_t, u_t) \, dt
\]

is optimized s.t. the dynamics (and other possible constraints).
Free dynamic optimization: Minimize J (ie. determine the function u_t, $0 \leq t \leq T$) where:

$$J = \phi_T(x_T) + \int_0^T L_t(x_t, u_t) \, dt$$

Objective

subject to

$$\dot{x} = f_t(x_t, u_t) \quad x_0 = x_0$$

Dynamics

- T is given
- x_0 is given
- $f_t(x_t, u_t)$ dynamics
- $L_t(x_t, u_t)$ kernel or running cost
- $\phi_T(x_T)$ terminal loss and x_T is free.
Euler-Lagrange Equations

\[\dot{x}_t = f_t(x_t, u_t) \]
\[-\dot{\lambda}_T^T = \frac{\partial}{\partial x_t} L_t(x_t, u_t) + \lambda_T^T \frac{\partial}{\partial x_t} f_t(x_t, u_t) \]
\[0^T = \frac{\partial}{\partial u_t} L_t(x_t, u_t) + \lambda_T^T \frac{\partial}{\partial u_t} f_t(x_t, u_t) \]

with boundary conditions:

\[x_0 = x_0 \quad \lambda_T^T = \frac{\partial}{\partial x} \phi_T(x_T) \]
Define the Hamilton function as:

\[H(x, u, \lambda, t) = L_t(x_t, u_t) + \lambda^T_t f_t(x_t, u_t) \]

Then the Euler-Lagrange equations (KKT conditions) for this problem can be written as:

\[
\begin{align*}
\dot{x}^T &= \frac{\partial}{\partial \lambda} H_t \\
-\dot{\lambda}^T &= \frac{\partial}{\partial x} H_t \\
0^T &= \frac{\partial}{\partial u} H_t
\end{align*}
\]

\(\frac{\partial}{\partial u} H \) is the gradient of \(J \) wrt. \(u \).

\(\lambda^T_0 \) is the gradient of \(J \) wrt. \(x_0 \).

The first equation is just the state equation

\[\dot{x} = f_t(x_t, u_t) \]
Properties of the Hamiltonian

\[H_t(x_t, u_t) = L_t(x_t, u_t) + \lambda_t^T f_t(x_t, u_t) \]

\[\dot{H} = \frac{\partial}{\partial t} H + \frac{\partial}{\partial u} H \dot{u} + \frac{\partial}{\partial x} H \dot{x} + \frac{\partial}{\partial \lambda} H \dot{\lambda} \]

\[= \frac{\partial}{\partial t} H + \frac{\partial}{\partial u} H \dot{u} + \frac{\partial}{\partial x} H f + f^T \dot{\lambda} \]

\[= \frac{\partial}{\partial t} H + \frac{\partial}{\partial u} H \dot{u} + \left[\frac{\partial}{\partial x} H + \dot{\lambda}^T \right] f \]

\[= \frac{\partial}{\partial t} H = 0 \quad \text{for time invariant problems} \]

along the optimal trajectories for \(x, u \) and \(\lambda \).
Proof The Lagrange function for the problem is:

\[
J_L = \phi_T(x_T) + \int_0^T L_t(x_t, u_t) \, dt \\
 + \int_0^T \lambda_t^T [f_t(x_t, u_t) - \dot{x}_t] \, dt
\]

If partial integration

\[
\int_0^T \lambda^T \dot{x} \, dt + \int_0^T \dot{\lambda}^T x \, dt = \lambda_T^T x_T - \lambda_0^T x_0
\]

is introduced the Lagrange function can be written as:

\[
J_L = \phi_T(x_T) + \lambda_0^T x_0 - \lambda_T^T x_T \\
 + \int_0^T \left(L_t(x_t, u_t) + \lambda_t^T f_t(x_t, u_t) + \dot{\lambda}_t^T x_t \right) \, dt
\]

and the Euler-Lagrange equations emerge from the stationarity of the Lagrange function.

\[
dJ_L = \left(\frac{\partial}{\partial x_T} \phi_T - \lambda_t^T \right) \, dx_T \\
 + \int_0^T \left(\frac{\partial}{\partial x} L + \lambda^T \frac{\partial}{\partial x} f + \dot{\lambda}^T \right) \delta x \, dt \\
 + \int_0^T \left(\frac{\partial}{\partial u} L + \lambda^T \frac{\partial}{\partial u} f \right) \delta u \, dt
\]
The Fundamental Lemma: Let f_t be a continuous real-values function defined on $a \leq t \leq b$ and suppose that:

$$\int_a^b f_t \delta_t \, dt = 0$$

for any $\delta_t \in C^2[a, b]$ satisfying $\delta_a = \delta_b = 0$. Then

$$f_t \equiv 0 \quad t \in [a, b]$$
Optimal stepping (in continuous time) but in one dimension. Consider the problem of bringing the system
\[\dot{x} = u \quad x_0 = x_0 \]
from the initial state along a trajectory such that the cost
\[J = \frac{1}{2} px_T^2 + \int_0^T \frac{1}{2} u_t^2 \]
is minimized. The Hamiltonian function is
\[H_t = \frac{1}{2} u_t^2 + \lambda_t u_t \]
and the Euler-Lagrange equations are:
\[\begin{align*}
\dot{x} &= u \\
-\dot{\lambda} &= 0 \\
0 &= u_t + \lambda_t
\end{align*} \]
with boundary conditions:
\[\begin{align*}
x_0 &= x_0 \\
\lambda_T &= px_T
\end{align*} \]
The last two are easily solved:

\[\lambda_t = px_T \]
\[u_t = -\lambda_t = -px_T \]

The state equation (with the solution to \(u_t \)) gives us

\[x_t = x_0 - px_T \, t \]
\[x_T = x_0 - px_T \, T \]

from which we can find

\[x_T = \frac{1}{1 + pT} x_0 \]
\[\rightarrow 0 \quad \text{for} \quad p \rightarrow \infty \]

and then

\[x_t = \left(1 - \frac{p}{1 + pT} \, t \right) x_0 \]

\[\lambda_t = \frac{p}{1 + pT} x_0 \]
\[u_t = -\frac{p}{1 + pT} x_0 \]

and the Hamilton function is constant:

\[H = -\frac{1}{2} \left[\frac{p}{1 + pT} x_0 \right] \]
Consider the linear dynamic system
\[\dot{x} = Ax_t + Bu_t \quad x_0 = x_0 \]
and the cost function
\[J = \frac{1}{2} x_T^T P x_T + \frac{1}{2} \int_0^T x_t^T Q x_t + u_t^T R u_t \, dt \]

The problem has the Hamiltonian:
\[H = \frac{1}{2} x_t^T Q x_t + \frac{1}{2} u_t^T R u_t + \lambda^T (Ax_t + Bu_t) \]
and the Euler-Lagrange equations:
\[\begin{align*}
\dot{x} &= Ax_t + Bu_t \quad x_0 = x_0 \\
-\dot{\lambda}_t &= x_t^T Q + \lambda_t^T A \\
0 &= u_t^T R + \lambda_t^T B
\end{align*} \]
or
\[\begin{align*}
\dot{x} &= Ax_t + Bu_t \quad x_0 = x_0 \\
-\dot{\lambda}_t &= Q x_t + A^T \lambda_t \\
u_t &= -R^{-1} B^T \lambda_t \end{align*} \]
We will try the candidate function:
\[\lambda_t = S_t x_t \]

Then
\[\dot{\lambda}_t = \dot{S}_t x_t + S_t \dot{x}_t = \dot{S}_t x_t + S_t \left(A x_t - B R^{-1} B^T S_t x_t \right) \]

If inserted in the costate equation
\[-\dot{\lambda}_t = Q x_t + A^T \lambda_t \]
\[-\dot{S}_t x_t - S_t \left(A x_t - B R^{-1} B^T S_t x_t \right) = Q x_t + A^T S_t x_t \]

then for every \(x_t \):

\[-\dot{S}_t x_t = S_t A x_t + A^T S_t x_t + Q x_t - S_t B R^{-1} B^T S_t x_t \]

which fulfilled if (the Riccati equation):

\[-\dot{S}_t = S_t A + A^T S_t + Q - S_t B R^{-1} B^T S_t \quad S_T = P \]

\[u_t = -R^{-1} B^T S_t x_t \]
Minimum drag nose shape (Newton 1686)

Find the shape i.e. \(r(x) \) of a axial symmetric nose, such that the drag is minimized.

The decision \(u(x) \) is the slope of the profile:

\[
\frac{\partial r}{\partial x} = -u = -\tan(\theta) \quad r(0) = a
\]
Find the shape i.e. $r(x)$ of a axial symmetric nose, such that the drag is minimized.

$$D = q \int_0^a C_p(\theta)2\pi r dr$$

$$q = \frac{1}{2} \rho V^2 \quad \text{(Dynamic pressure)}$$

$$C_p(\theta) = 2\sin^2(\theta) \quad \text{for} \quad \theta \geq 0$$
Minimum drag nose shape (Newton)

Dynamic:
\[
\frac{\partial r}{\partial x} = -u \quad r_0 = a \quad \tan(\theta) = u
\]

Cost function (drag coefficient, including a blunt nose):
\[
C_d = \frac{D}{q\pi a^2} = 2r_1^2 + 4 \int_0^l \frac{ru^3}{1 + u^2} dx \leq 1
\]
Minimum drag nose shape (Newton)
DO: 11-14, 27-34