Solution DO.2: Free Dynamic Optimization

in

Continuous time

Static and Dynamic Optimization

Notice, together with this solution comes (on the course home page) a distribution (dist1.zip) of m-files. On a unix system the distribution can be unpacked by the command: unzip -a dist1.zip.

1 Optimization

Just follow the instructions in the exercise.

2 Dynamic Optimization

We have the state equation:

\[\dot{x} = ax + bu \quad a = \alpha \quad b = -1 \]

\[x_0 = 50000 \]

and the objective function (to be minimized).

\[J = \frac{1}{2} p x_T^2 + \int_0^T \frac{1}{2} q x_t^2 + \frac{1}{2} r u_t^2 \, dt \]

where \(r = p = q = \alpha^2 \).

Question: 1 We have quite easy:

\[T = 10 \quad x_0 = 50000 \]

\[f = ax_t + bu_t \quad \phi = \frac{1}{2} px_T^2 \quad L = \frac{1}{2} q x_T^2 + \frac{1}{2} r u_T^2 \]

\[\square \]

Question: 2 The Hamiltonian is

\[H = \frac{1}{2} q x_t^2 + \frac{1}{2} r u_t^2 + \lambda_t(ax_t + bu_t) \]

\[\square \]
Question: 3 Following the instruction in the exercise, we determine the derivates:
\[
\frac{\partial}{\partial x} H = qx_t + a\lambda_t \\
\frac{\partial}{\partial a} H = ru_t + \lambda_tb
\]

Question: 4 The solution to this question is stated in the exercise.

Question: 5 The stationarity condition (last equation) is simply:
\[
u_t = -\frac{b}{r}\lambda_t
\]

Question: 6 If we reverse the costate equation we have
\[
\dot{\lambda} = -qx_t - a\lambda_t
\]

Question: 7 The solution to this question is given in the text.

Question: 8 The following code (dlq.m) models the ODE. Notice dz is matlab for \(\dot{x} \).

```matlab
function dz=dlq(t,z,A,B,P,R,Q,n)
% Determine the derivative of x and la as function of t, x and la
% A and B are system matrices
% Q, R and P are weight matrices in the objective function
% n is number of states.
%------------------------------------------------------------------------
x=z(1:n); la=z(n+1:end);
u=-inv(R)*B'*la;
dz=[ A*x+B*u; 
     -Q*x-A'*la];
```

Question: 9 The following code (loss.m) solves the ODE (forward in time) and determine the error (err) in the terminal conditions.

```matlab
function err=loss(la0,A,B,x0,P,R,Q,T,n)
% Determine the error of the terminal condition as function of la0.
% A and B are system matrices
% Q, R and P are weight matrices in the objective function
```
% n is number of states.
% x0 is the initial state vector
%--
z0=[x0;la0']
[tz,zt]=ode45(@dlq,[0 T/2 T],z0,[],A,B,P,R,Q,n)
zT=zt(end,:);
xT=zt(1:n)
laT=zt(n+1:end)
err=laT-xT'*P; % Terminal condition

Question: 10
%--
% Program for solving the LQ problem
%--
alf=0.05;
b=-1;
A=alf;
B=b;
n=length(A);
Q=alf^2;
R=Q;
P=Q;
T=10;
x0=50000;
la0=131;
% This is a good guess
% Search for correct initial costates
opt=optimset('fsolve');
opt=optimset(opt,'Display','off');
la0=fsolve(@loss,la0,opt,A,B,x0,P,R,Q,T,n); % Here is the key line
% Simulation with correct initial costate
xp0=[x0;la0']
[tz,xpt]=ode45(@dlq,[0 T],xp0,[],A,B,P,R,Q,n)
xT=xpt(:,1:n)
laT=xpt(:,n+1:end)
ut=-inv(R)*B'*laT;
% The rest (until next function declaration) is just plotting
subplot(311);
plot(time,xT); grid;
xlabel('Time');
ylabel('State');

subplot(312);
plot(time,laT); grid;
xlabel('Time');
ylabel('Costates ');
Question: 11 Just change the values in `runex2` and study the effects.