Linear Programming & Duality

Richard M. Lusby

DTU Management Engineering
Today’s Agenda

- Linear Programming
- Revised Simplex
- Duality
Linear Programming
Solution Method
Linear Programming

Simplex Method

- Convert \leq inequalities by adding slack variables
- Put data into simplex tableau
- Perform simplex iterations by pivoting
- **Entering Variable** (*pivot column*)
 - Most negative coefficient in top row
- **Leaving Variable** (*pivot row*)
 - Minimum ratio: right hand sides and positive pivot column entries
- We disregard complications here
 - Phase 1, no feasible solution, unbounded solutions
Linear Programming

First and Final Tableau

<table>
<thead>
<tr>
<th></th>
<th>x_1</th>
<th>x_2</th>
<th>s_1</th>
<th>s_2</th>
<th>s_3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-3</td>
<td>-5</td>
<td></td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>0</td>
<td>2</td>
<td>1</td>
<td></td>
<td></td>
<td>12</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>1</td>
<td></td>
<td></td>
<td>18</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>x_1</th>
<th>x_2</th>
<th>s_1</th>
<th>s_2</th>
<th>s_3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3/2</td>
<td>1</td>
<td>1</td>
<td>36</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1/3</td>
<td>$-1/3$</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1/2</td>
<td>0</td>
<td></td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>$-1/3$</td>
<td>$1/3$</td>
<td></td>
<td>2</td>
<td></td>
</tr>
</tbody>
</table>
Revised Simplex Matrix formulation

• General LP

\[
\begin{align*}
\text{maximize} & \quad c^T x \\
\text{subject to:} & \quad Ax & \leq b \\
& \quad x & \geq 0
\end{align*}
\]

• becomes ..

\[
\begin{align*}
\text{maximize} & \quad c^T x + 0s \\
\text{subject to:} & \quad Ax + Is & = b \\
& \quad x & \geq 0 \\
& \quad s & \geq 0
\end{align*}
\]
• In each tableau each variable in x, s is designated as a basic variable or a nonbasic variable

• The tableau represents the equation system solved with respect to the basic variables.

• The basis matrix B is formed by the columns in the first tableau of the current basic variables

• The inverse basis matrix appears under the slack variables in each tableau
Revised Simplex

Matrix formulation

maximize \quad c^T_B x_B + c^T_N x_N

subject to: \quad B x_B + N x_N = b
\quad x_B \quad \geq 0
\quad x_N \quad \geq 0
Revised Simplex

First and Later Tableau

First tableau ...

\[
\begin{array}{ccc|c|c}
 Z & x & s & & \\
 1 & -c & 0 & 0 & \\
 A & I & b & & \\
\end{array}
\]

Later tableau ...

\[
\begin{array}{ccc|c|c}
 Z & x & s & & \\
 1 & c_B B^{-1} A - c & c_B B^{-1} & c_B B^{-1} b & \\
 B^{-1} A & B^{-1} & B^{-1} b & & \\
\end{array}
\]

- The current solution is \(x_B = B^{-1} b, \ x_N = 0, \ Z = c_B B^{-1} b \)
- At Optimality we have \(c_B B^{-1} \geq 0, \ c_B B^{-1} A \geq c \)
- The shadow prices are \(c_B B^{-1} \)
• The *primal* problem

\[
\begin{align*}
\text{maximize} & \quad Z_P = 3x_1 + 5x_2 \\
\text{subject to:} & \quad x_1 \leq 4 \\
& \quad +2x_2 \leq 12 \\
& \quad 3x_1 + 2x_2 \leq 18 \\
& \quad x_1 \geq 0 \\
& \quad x_2 \geq 0
\end{align*}
\]
The corresponding *dual* problem

\[
\begin{align*}
\text{minimize} & \quad Z_D = 4y_1 + 12y_2 + 18y_3 \\
\text{subject to:} & \quad Z_D = y_1 + 3y_3 \geq 3 \\
& \quad + 2y_2 + 2y_3 \geq 5 \\
& \quad y_1 \geq 0 \\
& \quad y_2 \geq 0 \\
& \quad y_3 \geq 0
\end{align*}
\]
The problem
Each unit of product 1 requires 1 hour in department A and 1 hour in department B, and yields a profit of 1. The corresponding numbers for product 2 are 1 and 3, and 2. There are 3 and 7 hours available in departments A and B, respectively.

- Formulate an LP model and set up the first tableau
- Write the dual problem
Duality

Weak duality theorem

Primal: maximize $c^T x$

subject to: $Ax \leq b$

$x \geq 0$

Dual: minimize $b^T y$

subject to: $A^T y \geq c$

$y \geq 0$

Weak Duality Theorem

If x is primal feasible and y is dual feasible, then $c^T x \leq y^T Ax \leq b^T y$

Proof?
Strong duality theorem

Strong Duality Theorem

If one of the problems has an optimal solution the other one also has an optimal solution and the optimal objective function values are equal

- The optimal dual solution appears in the optimal primal tableau, under the slack variables (Proof?)
- The two other possibilities are
 - One problem is infeasible, the other is unbounded
 - Both problems are infeasible
Duality

Complementary Slackness

Primal: maximize \(c^T x \)

subject to: \(A x + s = b \)
\(x \geq 0 \)
\(s \geq 0 \)

Dual: minimize \(b^T y \)

subject to: \(A^T y - e = c \)
\(y \geq 0 \)
\(e \geq 0 \)

Definition

A primal solution and a dual solution exhibit complementary slackness if \(e^T x = 0 \) and \(y^T s = 0 \), i.e., corresponding \(x \)- and \(y \)-values are not both positive.
Complementary Slackness

Complementary Slackness Theorem
Theorem: A primal solution and a dual solution are optimal iff they are feasible and complementary (proof?)

Example
Correspondences: \(x_1\) and \(e_1\), \(x_2\) and \(e_2\), \(y_1\) and \(s_1\), \(y_2\) and \(s_2\), \(y_3\) and \(s_3\)
The final tableau for the exercise 1 problem is

\[
\begin{array}{c|cccc|c}
Z & x_1 & x_2 & s_1 & s_2 \\
1 & 1 & 3/2 & 1/2 & 2/2 & 5/2 \\
1 & 3/2 & -1/2 & 1/2 & 2/2 & 1/2 \\
1 & -1/2 & 1/2 & 2/2 & 1/2 & 2/2 \\
\end{array}
\]

- Read off the optimal solution and the dual solution.
- Read off \(B^{-1} \) and verify that \(B^{-1}B = I \).
- Given the primal solution, find the dual solution using complementary slackness.
- Use complementary slackness to show that \(x_1 = 0, \ x_2 = \frac{7}{3} \) is not optimal.