Applied Mathematics for Physicists

SOLUTIONS TO TEST 3

1. TENSOR CALCULUS AND GROUP THEORY (estimated time \sim 15 min):

1.1) Calculate

$$\sigma^2 = \sigma_1^2 + \sigma_2^2 + \sigma_3^2, \tag{1}$$

where σ_1 , σ_2 , and σ_3 are the Pauli spin matrices, and show that

$$[\sigma^2, \sigma_i] = 0, \tag{2}$$

for j=1,2,3.

1.2) Let Φ be a traceless Dirac matrix. Calculate $\tan \Phi$ and $\operatorname{Arctan}\Phi$.

SOLUTION:

1.1) From the known relation $\sigma_i^2 = I$ (unit matrix) we find that $\sigma^2 = \sigma_1^2 + \sigma_2^2 + \sigma_3^2 = 3I$. This gives us

$$[\sigma^2, \sigma_j] = [3I, \sigma_j] = 3(I\sigma_j - \sigma_j I).$$

Since I is the unit matrix we know that $I\sigma_j = \sigma_j I$ and thus

$$[\sigma^2, \sigma_i] = 3(I\sigma_i - \sigma_i I) = 3(\sigma_i I - \sigma_i I) = 0.$$

1.2) Since Φ is a traceless Dirac matrix we know (see Homework 67) that

$$\Phi = \phi_1 \sigma_1 + \phi_2 \sigma_2 + \phi_3 \sigma_3, \qquad \phi_n \in R$$

and the expansion for $\tan \Phi$ is given by

$$\tan \Phi = \sum_{n=1}^{\infty} \frac{2^{2n} (2^{2n} - 1) B_n \Phi^{2n-1}}{(2n)!}$$

From Homework 67 we know that $\Phi^{2n-1} = |\Phi|^{2n-2}\Phi$, which gives

$$\tan \Phi = \Phi \sum_{n=1}^{\infty} \frac{2^{2n} (2^{2n} - 1) B_n |\Phi|^{2n-2}}{(2n)!} = \frac{\Phi}{|\Phi|} \sum_{n=1}^{\infty} \frac{2^{2n} (2^{2n} - 1) B_n |\Phi|^{2n-1}}{(2n)!} = \frac{\Phi}{|\Phi|} \tan |\Phi|$$

Likewise the expansion for $Arctan\Phi$ is given by

$$\operatorname{Arctan}\Phi = \sum_{n=1}^{\infty} \frac{(-1)^{n+1} \Phi^{2n-1}}{(2n-1)!} = \frac{\Phi}{|\Phi|} \sum_{n=1}^{\infty} \frac{(-1)^{n+1} |\Phi|^{2n-1}}{(2n-1)!} = \frac{\Phi}{|\Phi|} \operatorname{Arctan}|\Phi|$$

SOLUTIONS TO TEST 3

2. CALCULUS OF VARIATIONS (estimated time ~ 15 min.):

Consider the Lagrangian density $\mathcal{L}=\mathcal{L}(u, u^*, u_t, u_t^*, u_{xx}, u_{xx}^*)$, given by

$$\mathcal{L} = |u_t|^2 + |u_{xx}|^2 - \left(\frac{1}{\sigma + 1}\right)|u|^{2\sigma + 2},\tag{3}$$

where $\sigma > 0$ is a real parameter and u^* is the complex conjugate of the function u=u(x,t).

2.1) Use Hamilton's principle to derive the dynamical equation for u(x,t) (remember that u and u^* are treated as independent functions).

SOLUTION:

2.1) According to Hamilton's principle u(x,t) must satisfy the Euler-Lagrange equations

$$\frac{\partial \mathcal{L}}{\partial u^*} - \frac{\partial}{\partial t} \left(\frac{\partial \mathcal{L}}{\partial u_t^*} \right) + \frac{\partial^2}{\partial x^2} \left(\frac{\partial \mathcal{L}}{\partial u_{xx}^*} \right) = 0.$$

We first write the Lagrangian density (3) in the form

$$\mathcal{L} = u_t u_t^* + u_{xx} u_{xx}^* - \left(\frac{1}{\sigma + 1}\right) (uu^*)^{\sigma + 1}.$$

The Euler-Lagrange equations then become

$$-\left(\frac{1}{\sigma+1}\right)u^{\sigma+1}(\sigma+1)(u^*)^{\sigma}-\frac{\partial}{\partial t}(u_t)+\frac{\partial^2}{\partial x^2}(u_{xx})=0,$$

which we can reduce to

$$u_{tt} - u_{xxxx} + |u|^{2\sigma} u = 0.$$

Applied Mathematics for Physicists

December 3, 2002. Page 3 of 4 M.Sc. Course No. 02647, Fall 2002

SOLUTIONS TO TEST 3

3. CALCULUS OF VARIATIONS (estimated time $\sim 10+5+15$ min.):

Consider the eigenvalue problem

$$\frac{d}{dx}(\sqrt{x}u_x) + \frac{\lambda}{\sqrt{x}}u = 0, \qquad x \in [1, 4], \quad u(1) = u(4) = 0,$$
 (4)

where u=u(x) and $u_x=du/dx$. For this problem the exact minimum eigenvalue is $\lambda_{\min}=\pi^2/4$.

3.1) Show that requiring J, given by

$$J = \int_1^4 \sqrt{x} \, u_x^2 \, dx,\tag{5}$$

to have a stationary value, subject to the constraint or normalizing condition

$$\int_{1}^{4} \frac{u^2}{\sqrt{x}} \, dx = 5,\tag{6}$$

leads to the Sturm-Liouville equation in Eq. (4) (remember you are free to choose either $+\lambda$ or $-\lambda$ as the constant Lagrangian multiplier).

3.2) Find the constant α that makes the function

$$u(x) = x^2 - 5x + \alpha \tag{7}$$

suitable as a trial eigenfunction for the Rayleigh-Ritz variational technique.

3.3) Use the Rayleigh-Ritz variational technique with the trial eigenfunction (7) to find an approximate value for the ground-state (or minimum) eigenvalue.

SOLUTION:

3.1) The normalization (6) requires that the variation is zero:

$$\delta \int_{1}^{4} \phi(u, x) dx = 0, \qquad \phi(u, x) = u^{2} / \sqrt{x}.$$

Combining with the variation $\delta J = \delta J(u_x, x) = 0$ we obtain

$$\delta \int_{1}^{4} g(u, u_x, x) dx = 0, \qquad g = g(u, u_x, x) \equiv \sqrt{x} u_x^2 - \lambda u^2 / \sqrt{x},$$

where λ is constant Lagrange multiplier. The new composite function g must satisfy the usual Euler-Lagrange equations

$$\frac{\partial g}{\partial u} - \frac{d}{dx} \left(\frac{\partial g}{\partial u_x} \right) = -2\lambda \frac{u}{\sqrt{x}} - \frac{d}{dx} \left(2\sqrt{x}u_x \right) = 0, \quad \Rightarrow \quad \frac{d}{dx} \left(\sqrt{x}u_x \right) + \frac{\lambda}{\sqrt{x}}u = 0,$$

which we identify as the Sturm-Liouville problem (4).

M.Sc. Course No. 02647, Fall 2002 Applied Mathematics for Physicists

SOLUTIONS TO TEST 3

3.2) To apply the Rayleigh-Ritz variational technique on the eigenvalue problem (4) requires that the trial function must satisfy the corresponding boundary conditions u(1)=u(4)=0:

$$\begin{array}{rcl} u(1) & = & 1 - 5 + \alpha & = & \alpha - 4 = 0 \\ u(4) & = & 16 - 20 + \alpha & = & \alpha - 4 = 0 \end{array} \right\} \quad \Rightarrow \quad \alpha = 4.$$

3.3) The eigenvalue problem (4) is a Sturm-Liouville problem with $p(x) = \sqrt{x}$ and $w(x) = 1/\sqrt{x}$, for which the boundary contribution $[pu_x u]_1^4 = 0$ is zero. Thus one may use either expression for the functional $F(u, u_x, x)$ to obtain the a variational approximation λ_t to the minimum eigenvalue,

$$F = \frac{\int_{1}^{4} (x^{1/2}u_{x}^{2})dx}{\int_{1}^{4} (x^{-1/2}u^{2})dx} = \frac{\int_{1}^{4} [x^{1/2}(2x-5)^{2}]dx}{\int_{1}^{4} [x^{-1/2}(x^{2}-5x+4)^{2}]dx}$$

$$= \frac{\int_{1}^{4} (4x^{5/2}-20x^{3/2}+25x^{1/2})dx}{\int_{1}^{4} (x^{7/2}-10x^{5/2}+23x^{3/2}-40x^{1/2}+16x^{-1/2})dx}$$

$$= \frac{\left[\frac{8}{7}x^{7/2}-8x^{5/2}+\frac{50}{3}x^{3/2}\right]_{1}^{4}}{\left[\frac{2}{9}x^{9/2}-\frac{20}{7}x^{7/2}+\frac{46}{5}x^{5/2}-\frac{80}{3}x^{3/2}+32x^{1/2}\right]_{1}^{4}} = \frac{2175}{824} = 2.64$$

$$= \lambda_{t} \approx \lambda_{\min}$$

The relative deviation is

$$\Delta \lambda = \frac{\lambda_{\rm t} - \lambda_{\rm min}}{\lambda_{\rm min}} = 6.98\%,$$

which is reasonable. As a check we see that $\lambda_t > \lambda_{\min}$ as we know it should be.