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SOLUTIONS TO TEST 2

SEPARATION OF VARIABLES (estimated time ~ 20 min):

1) Consider the two-dimensional Schrédinger equation

2 2
(e

52 8y2) = Ev, xz €[0,a], ye€][0,b)], (1)

where ¢ = 1(z,y) is a wavefunction, E' is the energy, and a and b are the dimensions of
the rectangle spanned by x and y. The wavefunction must satisfy the boundary conditions

0y(0,y) _ 0¢(a,y)
or  Ox
which imposes constraints on the separation constant and the energy E, for a non-trivial
wavefunction to exist, i.e., a wavefunction which is not identically zero. Write ¢ (z,y) =
F(z)G(y) and use separation of variables to determine the smallest energy Ey,, for which
a non-trivial wavefunction can exist.

=0, 1/J(33a O) = @b(ﬂfa b) =0, (2)

SOLUTION:
1.1) We insert the assumption ¥ (z,y) = F(x)G(y) into Eq. (1) and obtain the equation

F. G
—FuG = FGyy = EFG = ——F = # + E,

where subscript denotes differentiation. In the last equation the left hand side depends
only on x, while the right hand side depends only on y. This can only be satisfied if
both sides are equal to the same constant A. Because we have homogeneous boundary
conditions we can then separate into the following two equations

F,p = —\F, F,(0) = Fy(a) = 0,
Gp=O—E)G,  G(0)=G(b) = 0.

Let us look at the equation for F(x) first: For A=0 we obtain the solution
Fo.=0 = F(x)=c+dix = F,(0)=F,(a)=dp=0 = F(x)=co.
Thus A=01is an eigenvalue with eigenfunction cy. For A = —k? < 0 we obtain the solution
F(z) = 1™ + dye .

The left boundary condition is F,,(0)=k(c; —d;)=0. Thus F(x)=2¢; cosh(kx) and the right
boundary condition Fy(a) = 2¢1ksinh(ka)=0 cannot be fulfilled unless a=0 (unphysical
boz) or ¢y =dy=0 (trivial zero-solution). Therefore A < 0 is also not an eigenvalue.
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For X\ = k? > 0 we obtain the solution
F(z) = cycos(kzx) + dysin(kz).
The left boundary condition gives
F,(0)=kdy=0 = dy=0 = F(z)=cycos(kx).

To obtain a nontrivial solution we must therefore require that co # 0 and again a > 0 to
have a physical box size. The right boundary condition then gives us the eigenvalues

nm

2
Fy(a) = —kessin(ka) =0 = A:An=k§:< ) n=1,2,3.

a

Now we remember that A=0 was an eigenvalue with the eigenfunction being a constant.
This case is contained in the above expression, and thus we may combine them and write
the final solution

2
F=F,(z) = A cos(\/\nx), A= (%) , n=0,1,2,3...

We can now write the equation for G(y) in the form
Gyy = —G, G(0)=G(b) =0 y=E—-\,.

For v=0 the solution is G(y)=cs + dsy and the boundary conditions G(0)=c3=0 and
G(b)=d3b=0 can only be fulfilled by the trivial zero-solution c3=d3=0 or an unphysical
boz size b=0. Thus y=0 is not an eigenvalue.

For y=—k?<0 the solution is G(y)=csexp(ky) + dsexp(—ky). The boundary condition
G(0)=c4 + ds=0 gives G(y) =2c4 sinh(ky) and therefore G(b) = 2¢c4sinh(kb) = 0 can only
be fulfilled by the trivial zero-solution cy=d4s=0 or an unphysical box size b=0. Thus vy < 0
s also not an eigenvalue.

Finally, for v = k* > 0 we obtain the solution G(y) = cscos(ky) + dssin(ky). The left
boundary condition gives G(0)=c5=0 and thus G(y)=dssin(ky). To obtain a nontrivial
solution we must therefore require that ds # 0 and b > 0 to have a physical box size. The
right boundary condition then gives us the eigenvalues

mm

2
G(b) = dssin(kb) =0 = ’)/Z’Ym:lﬁzn:(T), m=1,2,3..

We can now determine the minimum enerqgy from the relation E=y,, + A\, as follows
mm 2 nm\ 2 T\ 2
st = () + () (5) =B
b a b

because n > 0 and m > 1. Note how it was not necessary to write up the full solution to
find the minimum energy.
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GREEN’S FUNCTION (estimated time ~ 15 min.):
2) Consider the following equation

% —fz), w01, u0)=ul)=0, (3)

for the function u=u(z). Find Green’s function G(z, z') for the problem (3).

SOLUTION:

2.1) First we note that the boundary conditions are homogeneous and thus we may apply
Grreen’s function approach directly with the same homogeneous boundary conditions. We
define Green’s function G(x,z') to be a solution to the problem

2
%:5@—@, G(0,2") =G(1,2')=0, ze€l0,1], 2 €0,1[ (4)

For 0 < x < z' Green’s function satisfies the homogeneous equation d*G/dz*=0 and we
obtain the solution

G=G(z,2)=Az+B = Gi0,2)=B=0 = Gi(z,2)=Ax.

For o' < x <1 Green’s function satisfies also the homogeneous equation d*G/dz?=0 and
we obtain the solution

G=Gqy(z,2)=C(z—1)+D = G)(,2)=D=0 = Gqz,2')=C(z—1).
Integrating Eq. (4) from 2’ — € to ' + € and letting ¢ — 0 we obtain the condition

dGy

—= =C-A=1 = (C=A+1.
dzx

z=x'

From Eq. (4) we see that d*G/dz?* has a §-function in x' and that dG/dzx has a disconti-
nuity in x'. This means that Green’s function itself is continuous in z', which gives the
requirement

Gy(z',2") =Gi(2,2)) = Ad'=C(@'-1)=(A+1)(a"-1) = A=2"-1.
The expression for Green’s function is therefore

n_J (@—=1)z for 0<z<a
G(x’x)_{(x—l)m' for '’ <z<1

As a check we note that Green’s function G(z,z') is symmetric in_its arguments, as it
should be. We know that this should be the case because the operator L = d?/dz? appearing
in Eq. (8) is a Sturm-Liouville operator and Green’s function is reel.



