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SOLUTIONS TO TEST 1

LINEARITY:

1) Consider the differential form
Lu =" + cuP™, (1)
where u = u(t) € C?, t > 0, c € R, and p is an integer. Here and in all other questions
"prime” denotes differentiation with respect to the argument, i.e. u'(t)=du/dt.

1.1) For which values of the constants ¢ and p is Lu a linear form? (just give the values
- do not show calculations).

SOLUTION:

1.1) Lu is a linear form if L(aju; 4+ agus) = ay Luqy +agLugy for arbitrary values of the constants
a1 and ay. Thus Lu is a linear form for the following values of ¢ and p:

c=0 = pe”2
p=2 = ceR

Note that even though the form (1) might seem linear for (p = 1,¢ # 0), the fact that
it is inhomogeneous in this case means that it does not satisfy the general criterion for
linearity.
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LAPLACE TRANSFORMATION:
2) Consider the linear differential equation
u™ o oy = f(t), (2)

where u=u(t) € C*, t > 0, with the initial condition u(0) = u"(0)=0, «'(0)=1, u"(0)=—4.
2.1) Calculate the impulse response function u,(t) using Laplace transformation.

SOLUTION:

2.1) To use the impulse function technique requires homogeneous initial conditions. To solve
Eq. (2) we therefore define two new functions

u(t) = up(t) + 6(t), up’ +2up +up =0,
where the homogeneous solution uy(t) satisfies the same initial conditions as u(t),
un(0) =u(0), u,(0) ='(0), uy(0)=1u"(0), wuy(0)=u"(0).
By construction ¢(t) satisfies the same Eq. (2), but with homogeneous initial conditions,
" +2¢" + ¢ =[(t), 6(0)=¢'(0) =¢"(0) =¢"(0) =0. (3)
The impulse response ¢,(t) is found by letting f(t) be a §-function in Eq.(8). Thus ¢p(t)
15 the solution to the following equation
by + 20+ & =6(t),  p(0) = ,(0) = ¢,(0) = ¢;(0) =0, (4)
also with homogeneous initial conditions. Laplace transformation of this equation gives
[s* +2s* +1]L{¢,} = 1,
where we have used that all contributions from the initial conditions are zero. This gives
2
Lw”zGﬁiﬁ:%§i1_é+$2
The first simple expression can be found in Schaum’s, the second in Table 15.2 in the
course book. We then find the impulse response

%m:%mmw—m%my

Note that ¢,(0) = ¢,(0) = ¢,(0)=0 as they should, but ¢;'(0)=1. This is in fact natural
from looking at Eq. (4). Integrating once just around t=0 (with ¢} and ¢, continuous in
t=0) one obtains exactly ¢,'(0)=1. This is no contradiction. To understand one should
look more careful at how the limit t — 0 is taken, i.e., consider that the d-function is
"turned on” at t = 07. A good way to do this would be to first consider 6(t — to) and
then let to — 0 from the positive side. In other words, the impulse 6(t) at t=0 changes
instantaneously ¢, from 0 to 1 (see also example 15.9.3 in the course book).
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FOURIER TRANSFORMATION:

3) Consider the linear differential equation

u—o*u" = f(x), (5)

where 0>0 is a real constant and u=u(z)€C? is a localized function [u(d00)=u'(+00)=0].
The given function f(z) is also localized, i.e., both u(z) and f(z) have a Fourier transform.
In the following you must use the definition of the Fourier Transform (k) and its inverse

= /o / \/%_ﬁ /_ Zu k)e " dk. (6)

3.1) The solution to Eq. (5) can be written in the form

u(k r)e*dzr, u(z) =

= /_OO R(z — z1) f(z1)dz1, (7)

where the response function R(z) is real. Use Fourier transformation and the con-
volution theorem to solve Eq. (5) and show that R(z) = 5 exp(—|z|/o).

Hint: [~ %5 m?) dgy = 7= exp(—|mal).

z24a?

SOLUTION:

3.1) Fourier transformation of Eq. (5) gives
U+ o0 = F, = i) = (1
where we have defined a new function Q(z), given by

Q) = /exp —ikx) [/ cos(zk) _\/27reX _m
Vor 1+ o2k2 _02 R+o2 @ 20 P o]

With the definition (6) of the Fourier transform pair the convolution theorem states that

ak) =0 Fk) = ule)= %Z_W / " Qe - 21) flar)d.

Comparing with the form (7) we identify R(x) = Q(x)/v/2m, which gives the following
correct expression for R(x)
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STURM-LIOUVILLE THEORY:

4) Consider the eigenvalue problem
(Vru') + % u=0, u(l)=u(4)=0, (8)
where u = u(z) € C? and z € [1,4].
4.1) Is A=0 an eigenvalue?
4.2) Equation (8) has the complete solution u(z) = Asin(2v/Az)+ B cos(2v/\z) for A # 0.
Find all eigenvalues and eigenfunctions.
SOLUTION:
4.1) The eigenvalue problem (8) is a Sturm-Liouville problem, which we write in standard form
Lu = — (2% = e Y%, u(1) =u(4) =0.
For A\=0 Eq. (8) reduces to
(x1/2u')' =0 = u=cz'? = u(z) = 2c01? + ¢,
where cp1 are constants of integration. Checking the boundary conditions we find that
u(l)=2¢g+c¢; =0 and u(4)=4¢cx+c1=0 = c¢p=c¢=0.
Since the only solution for A=0 is the trivial zero-solution, A=0 is not an eigenvalue.
4.2) For X\ # 0 the boundary conditions for the given solution become

u(1) = Asin(2v/A) + Bcos(2V/\) = 0,
u(4) = Asin(4v/A) + Bcos(4v/\) = 0.
We can write this in matriz form
sin(2v/A)  cos(2v/)) ] [A ] B [0 ]
sin(4v/A) cos(4v/)) B| 0]
For nontrivial solutions to exist the determinant must be zero, which requires
sin(2v/X) cos(4V/A) — cos(2V/A) sin(4V/A) = sin(2VA — 4V/A) = —sin(2V/A) = 0.

For \ < 0 the requirement is sinh(2v/\) =0, which cannot be fulfilled. Thus A < 0 is not
an eigenvalue. For A > 0 the requirement is sin(2\/X):0, which gives the eigenvalues

WA=nr = A= (nm/2)%, n=1,2,3,..

The eigenfunctions then become u,(x) = Asin(nwz) + Bcos(nnzx). From the boundary
conditions we find B=0, and thus the eigenfunctions are given by

un (1) = Asin(nmy/x),

where the constant A is arbitrary.



