October 1, 2002. Page 1 of 2

M.Sc. Course No. 02647, Fall 2002 Applied Mathematics for Physicists

TEST 1:

Aids: All aids allowed
Time allocated: 1 hour
Character scale: 13-scale

• The test is evaluated as a whole

LINEARITY:

1) Consider the differential form

$$Lu = u'' + cu^{p-1},\tag{1}$$

where $u = u(t) \in C^2$, t > 0, $c \in \Re$, and p is an integer. Here and in all other questions "prime" denotes differentiation with respect to the argument, i.e. u'(t) = du/dt.

1.1) For which values of the constants c and p is Lu a linear form? (just give the values - do not show calculations).

LAPLACE TRANSFORMATION:

2) Consider the linear differential equation

$$u'''' + 2u'' + u = f(t), (2)$$

where $u=u(t) \in C^4$, t>0, with the initial condition u(0)=u''(0)=0, u'(0)=1, u'''(0)=-4. 2.1) Calculate the impulse response function $u_p(t)$ using Laplace transformation. M.Sc. Course No. 02647, Fall 2002

Applied Mathematics for Physicists

FOURIER TRANSFORMATION:

3) Consider the linear differential equation

$$u - \sigma^2 u'' = f(x), \tag{3}$$

where $\sigma > 0$ is a real constant and $u = u(x) \in C^2$ is a localized function $[u(\pm \infty) = u'(\pm \infty) = 0]$. The given function f(x) is also localized, i.e., both u(x) and f(x) have a Fourier transform. In the following you must use the definition of the Fourier Transform $\tilde{u}(k)$ and its inverse

$$\tilde{u}(k) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} u(x) e^{ikx} dx, \quad u(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} \tilde{u}(k) e^{-ikx} dk. \tag{4}$$

3.1) The solution to Eq. (3) can be written in the form

$$u(x) = \int_{-\infty}^{\infty} R(x - x_1) f(x_1) dx_1, \tag{5}$$

where the response function R(x) is real. Use Fourier transformation and the convolution theorem to solve Eq. (3) and show that $R(x) = \frac{1}{2\sigma} \exp(-|x|/\sigma)$. Hint: $\int_0^\infty \frac{\cos(mx)}{x^2+a^2} dx = \frac{\pi}{2a} \exp(-|ma|)$.

Hint:
$$\int_0^\infty \frac{\cos(mx)}{x^2 + a^2} dx = \frac{\pi}{2a} \exp(-|ma|)$$

STURM-LIOUVILLE THEORY:

4) Consider the eigenvalue problem

$$(\sqrt{x}\,u')' + \frac{\lambda}{\sqrt{x}}\,u = 0, \quad u(1) = u(4) = 0,\tag{6}$$

where $u = u(x) \in C^2$ and $x \in [1, 4]$.

- **4.1)** Is $\lambda = 0$ an eigenvalue?
- **4.2)** Equation (6) has the complete solution $u(x) = A\sin(2\sqrt{\lambda x}) + B\cos(2\sqrt{\lambda x})$ for $\lambda \neq 0$. Find all eigenvalues and eigenfunctions.