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Preface

This lecture note is a collection of topics for the students taking
the course 02506 Advanced Image Analysis at Technical University
of Denmark. The note provides background material for the course
together with practical guidelines and advice for carrying out tasks in
image analysis. The topics are selected to represent problems that you
typically meet as an engineer that specialize in image analysis.

Image analysis is a rapidly growing field of research with a wealth
of methods constantly being developed and published. This note is not
intended to give a complete overview of the field. Instead, we focus on
general principles for image analysis with the aim of giving students
the skill-set needed for exploring new methods. General principles
relate to identifying relevant image analysis problems, finding suitable
methods for quantification, implementing image analysis algorithms
and verifying their performance. This requires programming skills
and the ability to translate a mathematical description into an efficient
functioning program.

Image analysis methods published in scientific articles can be chal-
lenging to implement as a computer programs, since they are described
using mathematical notation, which my vary between articles. In some
cases the notation can be very different from the code you need to
write. One aim with this note is to guide the implementation of image
analysis algorithms from descriptions in articles to the functioning
programs. This is done through examples, practical tips, and advice on
designing useful tests to ensure that the obtained implementation gives
the expected output.

There are several papers and book chapters that describe the meth-
ods to be implemented during the course. These are integral parts of
the course curriculum, and should be read when working with the
examples in this note.

The structure of the note is as follows. First comes a general in-
troduction to a few central aspects relevant for image analysis along
with the first introductory exercise, which has the purpose of refreshing
basic image analysis concepts. The main text includes three compulsory
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exercises. Towards the end of the note we provide several examples for
the final exercise in form of a mini-project.

During the course you may be implementing methods and algo-
rithms that are already integrated in existing software libraries. These
commercial or public implementations might be better than what you
can achieve given the time available for the exercises. The reason to
redo what other people have already done is to gain insight and un-
derstanding of how image analysis methods work, and to give you
the skill-set needed for implementing or modifying advanced methods
where there might not be an available implementation. It can however
be a good idea to use existing implementations for evaluating your
implementation.



1 Introduction

We refer to images as regularly sampled signals in 2D or 3D space
that represent a measurement, typically a measure of light intensity. In
image analysis, we use the image to obtain some information about the
signals we have measured. Here we discuss aspects to consider when
working with images regarding what images show, how images are
represented, and how they were created.

We start with the mathematical notation of images. One way of
representing an image using mathematical notation is as a function
I(x, y) with I : Ω ⊂ R2 → R, which means that a scalar value I(x, y) is
assigned to each coordinate (x, y) in the image domain Ω. Sometimes
we consider the image as digital signal sampled at integer values,
i.e. running from 1, such that x ∈ {1, ..., X} and y ∈ {1, ..., Y}. Still,
many papers will ignore the discrete nature of the images, and treat I
as a continuous function. In general, scientific articles show substantial
variation on the notation of an image, e.g. it is often implicitly assumed
that the image lives in 2D space, and the notation would simply be a
symbol like I.

In the computer program, a gray-scale image is represented as a 2D
array of numbers. Here, the indexing of the array elements is implicitly
related to image space (x, y), however, one needs to consider program-
specific details: 0 or 1 indexing, placement of the origin, and so on. For
mathematical treatment of certain topics it is convenient to considered
images as if centered around origin. For example, when we talk about
filtering kernels. Also here it is important to be aware of the difference
between the notation, and the actual representation of the kernel.

A 3D image is typically termed a volume, and again here we can
model it as a function I : Ω ⊂ R3 → R. Similar to before, I is a function
that maps to a scalar value, but here from a 3D coordinate (x, y, z). Vol-
umetric images are often reconstructed from projection data obtained
using a scanner, e.g. a CT or an MRI scanner. In a volumetric image, the
three spatial dimensions encode intensity information similar to a 2D
image. This means that if we apply operators on a volumetric image,
we would use a 3D operator, e.g. an averaging filter in three dimensions.
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In some cases the sampling is anisotropic, which is typically seen in
e.g. medical CT images, and this can influence the applied analysis
methods.

Spectral images have multiple measures in each pixel. This means
that each pixel value may be represented as a 1D array of values that
encode the recorded spectral bands. A common example are the RGB
images where I : Ω ⊂ R2 → R3 encodes the red, green, and blue
band. If more spectral bands are recorded, we are typically talking
about multispectral or hyper-spectral images where I : Ω ⊂ R2 → Rn

normally with n > 3. For 2D spectral images we would often apply
operators in each of the spectral bands independently. Using the
smoothing example from before, but now in a RGB image, we would
preform 2D smoothing in the R-band, G-band, and B-band individually.

Another common image-related representation is a movie. A movie
is a set of consecutive images also called frames sampled over time.
This can be modeled as I(x, y, t) where I : Ω ⊂ R3 → R for a gray
scale movie or I : Ω ⊂ R3 → R3 for an RGB movie. You can also
have a multispectral movie (I : Ω ⊂ R3 → Rn with I(x, y, t)) or a
volumetric movie (I : Ω ⊂ R4 → R with I(x, y, z, t)). For movies we
would typically expect small changes between frames, and this can be
utilized in the analysis.

Figure 1.1: Slice of a CT image of glass
fibers viewed orthogonal to the fiber di-
rection.

Figure 1.2: Two zoomed in images from
image shown in Figure 1.1.

1.1 Introductory exercise

This exercise is aimed at refreshing or introducing concepts from ba-
sic image analysis curriculum and other related subjects. It contains
some topics that will be useful at a later stage in the course. You are
expected to carry out the first exercises, whereas the last exercises are
not mandatory, but you are welcome to read or solve those exercises
also.

1.1.1 Image convolution

Image convolution is a central tool in image analysis, and in this
exercise you will investigate some properties of image convolution
with a Gaussian kernel and its derivatives. You can read more about
fundamentals of convolution and filtering in 1, Chapter 5.

1 Wilhelm Burger, Mark James Burge,
Mark James Burge, and Mark James
Burge. Principles of digital image processing,
volume 54. Springer, 2009

For two continuous functions, convolution is defined as

( f ∗ g)(x) =
∫ ∞

−∞
f (x− τ)g(τ)dτ . (1.1)

Convolution is commutative, but we usually distinguish between the
signal and the kernel, and we say that the signal f is convolved with
the kernel g.
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For a discrete sampled signal we get

( f ∗ g)(x) =
l

∑
i=−l

f (x− i)g(i) . (1.2)

A convolution with a square kernel in 2D is given by

( f ∗ g)(x, y) =
l

∑
i=−l

l

∑
j=−l

f (x− i, y− j)g(i, j) . (1.3)

In image analysis, a Gaussian kernel is often used used for image
smoothing by filtering. The 1D Gaussian is defined by

g(x; t) =
1√
2tπ

e−x2/(2t) , (1.4)

where t = σ2 is the variance of the Gaussian normal distribution. The
2D isotropic Gaussian is given by

g(x, y; t) =
1

2tπ
e−(x2+y2)/(2t) . (1.5)

The Gaussian is separable (2 Section 5.3.1), which means that we can 2 Wilhelm Burger, Mark James Burge,
Mark James Burge, and Mark James
Burge. Principles of digital image processing,
volume 54. Springer, 2009

convolve the image using two orthogonal 1D Gaussians, and obtain
the same result as when convolving with 2D Gaussian of the same
variance. This can speed up convolutions significantly, especially for
large convolution kernels.

Another property of the Gaussian convolution is the so-called semi-
group structure, which means that we get the same convolution using a
single large Gaussian as we get using several small ones

g(x, y; t1 + t2) ∗ I(x, y) = g(x, y; t1) ∗ g(x, y; t2) ∗ I(x, y) , (1.6)

where I is an image. On the right part of equation, the order of
convolution does not matter, as convolution is associative.

When computing various features for image I(x, y), we often need
to know a local change in intensity values for all positions (x, y). This
can be achieved by taking the spatial derivative of the image. Since
the image is a discretely sampled signal, we can only compute an ap-
proximation of the derivative. For example, we can take the difference
between neighboring pixels.

It can, however, often be desirable to smooth the image in connection
with taking the derivative, e.g. to remove nosie. It turns out that if
we want to convolve the image with a Gaussian and then take the
derivative, we can instead convolve the image with the derivative of
the Gaussian

∂

∂x
(I ∗ g) =

∂I
∂x
∗ g = I ∗ ∂g

∂x
. (1.7)
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Since we can compute the derivative of the Gaussian analytically, we
get an efficient and elegant approach to computing a smoothed image
derivative.

The analytic 1D Gaussian derivative is given by

d
dx

g(x) =
−x

σ3
√

2π
e−x2/(2σ2) . (1.8)

The semi-group structure also holds for image derivatives, such that
we get

∂

∂x
g(x, y; t1 + t2) ∗ I(x, y) =

∂

∂x
g(x, y; t1) ∗ (g(x, y; t2) ∗ I(x, y)) , (1.9)

which implies that we can convolve with a large Gaussian derivative
kernel or we can convolve with a smaller Gaussian and a smaller
Gaussian derivative and get the same result.

Data For this exercise you will use an X-ray CT image of fibres
fibres_xcth.png, shown in Figure 1.1 and Figure 1.2.

Tasks You should create your own kernel for convolving the image,
but use an already implemented convolution function. You can use the
following steps to create the kernel.

20 10 0 10 20
0.00

0.02

0.04

0.06

0.08

Gaussian

Figure 1.3: Plot of Gaussian with σ = 4.5.

1. Create a variable σ for the standard deviation.

2. Compute an integer variable s that is 3-5 times σ.

3. Create an array containing the values for which the kernel should
be computed. This is an array with the values x = [−s,−s +
1, ..., 0, 1, ..., s]T .

4. Compute a new array g with the value of the Gaussian function for
each of the elements in x. g = 1/(σ

√
2π) exp (−x2/(2σ2)).

Once you have computed the kernel, you can verify that you got it
right by plotting x against g as shown in Figure 1.3. A kernel with the
derivative of the first order the Gaussian can be created in the same
way, and you can see the plot in Figure 1.4.

20 10 0 10 20

0.010

0.005

0.000

0.005

0.010

Gaussian derivative

Figure 1.4: Plot of Gaussian derivative
with σ = 4.5.

Having a kernel, you are now ready to use it to try convolving the
image, and experimentally verify the properties of convolution with
Gaussians.

1. First, you should experimentally verify the separability of the Gaus-
sian convolution kernel. You do this by convolving the test image
with a 2D kernel, and convolving the same image with two orthogo-
nal 1D kernels. The you can subtract the resulting two images and
verify that the difference is very small. Note that you can get a 2D
Gaussian kernel g2 as the outer product of two 1D kernels: g2 = ggT

(g is a column vector).
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2. Investigate the difference between the derivative of the image con-
volved by a Gaussian and the image convolved with the derivative
of the Gaussian as described in Eq. 1.7. When you convolve with
the derivative of the Gaussian, you should be aware that you take
the derivative in one direction (e.g. the x-direction), and you should
smooth in the other direction with a Gaussian (not the derivative).
You can compute the derivative of the image by convolving with the
kernel k = [0.5, 0, -0.5] and then smooth with the Gaussian to
get the same as above. Again, you can subtract the two images and
show the difference to test if you get the same.

3. Test if a single large convolution with a Gaussian of t = 20 is equal
to ten convolutions with a Gaussian of t = 2. Remember that σ =

√
t.

Again you compare the two images by subtracting them and showing
the difference.

4. Test if convolution with a large Gaussian derivative

I ∗ ∂g(x, y; 20)
∂x

,

is equal to convolving with a Gaussian with t = 10 and a Gaussian
derivative with t = 10

I ∗ g(x, y; 10) ∗ ∂g(x, y; 10)
∂x

.

Again you compare the two images by subtracting them and showing
the difference.

1.1.2 Computing length of segmentation boundary

Figure 1.5: Image of a segmented fuel
cell with three phases. Black represents
air, grey is cathode, and white is anode.

Segmentation is one of the basic image analysis tasks, and we will also
cover a few segmentation methods in the course. For an outcome of a
segmentation, as for example shown in Figure 1.5, it may be important
to measure some quality of the result. One relevant measurement is a
length of the segmentation boundary.

Assume that segmentation is represented by an image S(x, y) which
takes n discrete values, i.e. S : Ω→ {1, 2, . . . n}, where n is the number
of segments. We define the length of the segmentation boundary as

L(S) = ∑
(x,y)∼(x′ ,y′)

d
(
S(x, y), S(x′, y′)

)
,

where (x, y) ∼ (x′, y′) indicates two neighboring pixel locations, and d
is a discrete metric

d(a, b) =

{
0 if a = b
1 otherwise

which in this case operates on pixel intensities. In other words, L(S)
counts all occurrences of two neighboring pixels having different labels.
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Tasks

1. Compute the length of the segmentation boundary for provided
segmentation images of a fuel cell, where one is shown in Figure 1.5.
You can consider avoiding loops and instead using vectorization
provided by Matlab or numpy, which will ensure an efficient and
compact implementation.

2. Collect your code in a function which takes segmentation as an input,
and returns the length of the segmentation boundary as an output.
Your function will be useful when we will be working with Markov
random fields later in the course.

Data In this exercise you should use the volume slice fuel_cell_1.tif,
fuel_cell_2.tif, and fuel_cell_3.tif that you can find on Campus-
net.

1.1.3 Curve smoothing

A segmentation boundary may be explicitly represented using a se-
quence of points connected by line segments, which typically delineates
an object in the image. Assume that an N-times-2 matrix X contains x
and y coordinates of N points which define a closed curve, a so-called
snake 3. 3 Michael Kass, Andrew Witkin, and

Demetri Terzopoulos. Snakes: Active con-
tour models. International Journal of Com-
puter Vision, 1(4):321–331, 1988

To impose smoothness to this representation, we will need to smooth
the curve. This can be achieved in a simple way by displacing every
curve point towards the average of its two neighbors, possibly itera-
tively. Point displacement can be seen as a result of filtering the curve

with a kernel λ
[

1 −2 1
]
, where λ is a parameter controlling the

magnitude of the displacement. For efficiency, we want to implement
the curve-smoothing step as

Xnew = (I + λL)X (1.10)

where L is a N-times-N matrix with elements 1, -2, and 1 in every
row such that -2 is on the main diagonal, and 1 on its left and right
(also circularly in the first and the last row), and zeros elsewhere. See
Figure 1.6 for an example.

L =



−2 1 0 0 0 1
1 −2 1 0 0 0
0 1 −2 1 0 0
0 0 1 −2 1 0
0 0 0 1 −2 1
1 0 0 0 1 −2


Figure 1.6: Matrix L for N=6. Notice
value 1 in the upper right and lower left.

Using this step iteratively, where we use t for iteration number (i.e.
not transpose or potential), gives

X(t+1) = (I + λL)X(t) . (1.11)

Confirm that one step with λ = 0.5 displaces every curve point
exactly to the average of its neighbors. Try smoothing one of the
provided contours, also shown in Figure 1.7. We have included both
original and noisy curves.
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Maybe you noticed two important limitations of our simple approach.
First, for larger values of λ the curve will start oscillating, but using a
small λ requires many iterations of the smoothing step for a noticeable
result. Second, smoothing leads to the shrinkage of the curve.

Figure 1.7: Top image shows the dinosaur
curve in green, while red shows the curve
with added noise. Bottom image shows
two smoothing results with different α
and β weights.

Stability issues can be avoided by evaluating the displacement on
the new curve Xnew. In other words, we can use an implicit (backwards
Euler) approach. Instead of Equation 1.10 where Xnew = X + λLX we
use Xnew = X + λLXnew leading to

Xnew = (I− λL)−1X . (1.12)

We can now choose an arbitrary large λ and obtain the desired smooth-
ing in just one step. The price to pay is matrix inversion, but for many
applications, this needs to be computed only once. While outside
the scope of this course, an interested student may read on implicit
smoothing of triangle meshes in an influential paper by Desbrun et
al. 4.

4 Mathieu Desbrun, Mark Meyer, Peter
Schröder, and Alan H Barr. Implicit fair-
ing of irregular meshes using diffusion
and curvature flow. In Proceedings of the
26th annual conference on Computer graphics
and interactive techniques, pages 317–324,
1999

Shrinkage is caused by the kernel which minimizes curve length.
Instead, we can use a kernel which minimizes the curvature, or even
better, we can weight the elasticity (length minimizing) and rigidity
(curvature minimizing) term. The kernel with the two contributions is

α
[

0 1 −2 1 0
]
+ β

[
−1 4 −6 4 −1

]
with α and β weighting the two terms. See Hanbook of medical imag-
ing 5, section 3.2.4, for the derivation of the kernels.

5 Chenyang Xu, Dzung L Pham, and
Jerry L Prince. Image segmentation using
deformable models. Handbook of medical
imaging, 2:129–174, 2000a

Smoothing is now obtained as

Xnew = (I− αA− βB)−1X , (1.13)

where A is identical to L we used before, and B is a very similar matrix,
but having other values on the diagonals, e.g. -6 on the main diagonal.
Note that αA + βB is also a (sparse) circulant matrix.

Tasks

1. Implement curve smoothing as in Equation 1.10 and test it for various
values of λ. Try using smoothing iteratively to achieve a visible result
for small λ.

2. Implement curve smoothing as in Equation 1.12 (implicit smoothing)
and test it for various values of λ. Do you need an iterative approach
of this smoothing?

3. Implement implicit curve smoothing but with the extended kernel.
This means that your implementation instead of λL uses a matrix that
combines elasticity and rigidity, as in Equation 1.13. Test smoothing
with various values of α and β. What do you achieve when choosing
a large β and small α?
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4. Implement a function which returns a smoothing matrix needed for
implicit smoothing with the extended kernel. You will be using this
when working with deformable models later in the course.

Data In this exercise you should use the curves given as text files
containing point coordinates dino.txt, dino_noisy.txt, hand.txt, and
hand_noisy.txt.

1.1.4 Optional: Total variation

In many image analysis applications, such as image denoising and
image segmentation, we are interested in producing a result which has
a quality that we loosely call smoothness. A common way of estimating
smoothness is by considering a total variation defined for an image I as

V(I) = ∑
x∼x′
|I(x)− I(x′)| ,

where x ∼ x′ indicates two neighboring pixel locations. We expect
smooth images to have a low total variation.

Implement a function which computes the total variation of a 2D
grayscale image and test it on the image shown in Figure 1.1 and
Figure 1.2. Use Gaussian smoothing to remove some of the noise from
the image, and confirm that the smoothed image has a smaller total
variation.

Data In this exercise you should use the volume slice fibres_xcth.png
that you can find on Campusnet.

1.1.5 Optional: Unwrapping image

Figure 1.8: Image of a dental implant that
should be unwrapped.

Figure 1.9: Unwrapped image of a dental
implant.

A solution to image analysis problem may involve geometric transfor-
mations. When working with spherical or tubular objects, we some-
times want to represent an image in polar coordinate system. Imple-
ment a function which performs such image unwrapping using a desired
angular and radial resolution. Use your function to unwrap one of
the slices from the dental data set, an example is shown in Figure 1.8
and 1.9. Unwrapping will be useful when we will be working with
deformable models later in the course.

Data In this exercise you should use one of the central slices from the
dental folder that you can find on Campusnet.

1.1.6 Optional: Working with volumetric image

To give you a taste of working with 3D images, we have prepared a
small data set containing slices from an X-ray CT scan. By convention
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in X-ray imaging, dense structures (having a height X-ray attenuation)
are shown bright compared to less dense structures. Furthermore, the
direction given by image slices is most often denoted z. The volume
you are given contains a metal (very bright) object. Show orthogonal
cross sections of the object, see Figure 1.10. Can you determine an
optimal threshold for segmenting the object from the background?

Optionally, show a volumetric 3D rendering of the thresholded object
using any available software. An example is shown in Figure 1.11. If
you are using MATLAB, check a function isosurface.

Data In this exercise you should use the volumetric image stored
as individual slices in the folder called dental that you can find on
Campusnet.

Figure 1.10: A longitudinal slice (an xz-
plane) of the volumetric image of a dental
implant.

Figure 1.11: 3D rendering of the thresh-
olded volumetric image of a dental im-
plant.

1.1.7 Optional: PCA of multispectral image

Principal component analysis (PCA) is a linear transform of multivari-
ate data that maps data points to an orthogonal basis according to
maximum variance. A basic introduction in PCA is given in 6, and here

6 Lindsay I Smith. A tutorial on principal
components analysis. Technical report,
2002

we will apply it on a multispectral image.
We provided an image acquired with the VideometerLab, which is a

multispectral imaging device, that uses coloured LED’s to illuminate
a material, in this case samples in a petri dish. This gives an 18
channel image I : Ω ⊂ R2 → R18 where each channel corresponds to a
wavelength, and channels cover the range from 410 nm to 955 nm, i.e.
the visible and near-infrared spectrum. The image depicts vegetables
on a dish and is shown in false colours in Figure 1.12.

The aim of this exercise is to carry out PCA and visualise the prin-
cipal components as images. PCA can be done by eigenvalue decom-
position of a data covariance matrix. In our analysis we view each
pixel as an observation, so we rearrange I into a N-by-18 data matrix X.
Each row of X represents one pixel (observation), with the successive
columns corresponding to wavelengths (variables).

Figure 1.12: False color image obtained
from an 18 band VideometerLab image.

Data covariance matrix C is defined as

Cij =
1

N − 1

N

∑
n=1

(Xni − µi)(Xnj − µj), (1.14)

where i, j ∈ {1, ..., 18}, and µ is a 18 dimensional empirical mean vector
computed for each variable.

Covariance matrix C can be computed as a matrix product

C =
1

N − 1
XTX , (1.15)

where X = X− 1n×1µT is a zero-mean matrix obtained by indepen-
dently centering each row of X around its mean value. Convince
yourself that is correct.
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Principal components are given by the eigenvectors of C, e.i. vec-
tors such that Cvi = λivi. Eigenvector corresponding to the largest
eigenvalue gives the direction of the largest variance in data, the eigen-
vector corresponding to the second largest eigenvalue is the direction
of the largest variance orthogonal to the first principal direction, etc.
The projections of the data points onto principal directions X̂vi can be
rearranged back into image grid, and viewed as images.

If V is a matrix containing eigenvectors in it columns, all principal
components can be computed as

Q = XV. (1.16)

Data In this exercise you should use the images in the folder called
mixed_green which contains png-images. You find the file on Campus-
net.

Suggested approach The following steps takes you through computing
the principal components.

1. Write a script to read in the images and display them. Convince
yourself that there is a difference between the spectral bands. Make
sure to change the data type to float or double.

2. Rearrange the image into a matrix X as described above with one
pixel in each row. Compute the column-wise mean µ and subtract
this from X to get the zero mean X.

3. Compute the covariance matrix C.

4. Compute the eigenvectors V and eigenvalues λ.

5. Compute the principal component loadings Q.

6. Rearrange Q into images and display the result.

You can compare your implementation to an already implemented PCA
function in e.g. MATLAB or Python.

1.1.8 Optional: Bacterial growth from movie frames

Figure 1.13: Example of microscopic im-
age of listeria bacteria in a petri dish.

Image data with a temporal component can be stored in the form of a
movie. The purpose of this exercise is to read in image frames from a
movie and analyze them. The movie contains microscopic images of
listeria bacteria growing in a petri-dish acquired at equal time steps.
An example frame is shown in Figure 1.13. Your task is to make a small
program that visualize bacterial growth by counting the cells.

The image quality is however not very good due to the low resolution
and compression artifacts, making it difficult to separate the individual
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bacteria. So, we make a rough assumption that the number of pixels
covered by bacteria is proportional to the number of bacteria. The task
is therefore to make a plot of the number of pixels covered by bacteria
as a function of time.

Data In this exercise you should use the movie listeria_movie.mp4

that you can find on Campusnet.

Suggested approach You can for example first read in one representative
frame from the movie and build an cell segmentation method. A simple
threshold is not sufficient, but with a few processing steps the cells
become distinguishable from the background. You can try the following
steps:

1. Convert the image I to a grey scale image G.

2. Compute the gradient magnitude M =
√
(∂G/∂x)2 + (∂G/∂y)2 us-

ing an appropriate filter.

3. Smooth M using a Gaussian filter.

4. If the parameters have been chosen appropriately, the pixels covering
bacteria can now be segmented by thresholding.

When you have made a functioning segmentation model, you can
apply this to all images in the movie using the following steps for each
image in the movie:

1. Apply the segmentation and sum the bacteria pixels.

2. Store this number in an array.

3. Plot the number of pixels as a function of time.

The obtained curve has a characteristic shape. Can you recognize the
function that could describe this shape?



Part I

Feature-based image
analysis
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Analyzing images using feature-based representations is central to
many applications. We have chosen three topics that we will cover. First
we will work with scale-space for detecting image features indepen-
dently of scale. Specifically, we will focus on scale-space blob detection.
Then we will investigate features as a basis for pixel classification used
for image segmentation. Finally, we will work with feature-based image
registration.



2 Scale-space

Methods from scale-space allow scale invariant detection of image
structures. This means that we can find features like blobs (binary
large objects), corners, ridges, edges, and other structures at different
scale. When we talk about image features like corners and edges, it is
not corners or edges of the physical depicted objects, but corners and
edges in the image intensities. To visualize this, you can think of a 2D
image as a landscape, with pixel intensities corresponding to height
measurements at regularly placed positions. In this landscape, an edge
is a line where high abruptly changes. A corner will be a height-change
point where two (more or less) orthogonal edges meet, and other types
of features can be described in the same way.

Using a feature-based image representation is convenient, because
we break the image up into manageable parts that are more descriptive
than the individual pixels. Scale invariance, which means that we char-
acterize (make a mathematical description) the same feature shown at
different scale in two images, is also very convenient. In e.g. computer
vision where images of the same object are often captured from differ-
ence distance, it is typically a desired property to be able to measure
the features independent of its scale. But it also allows us to measure
image structures that are different in size for example from microscope
images, as we will be working with here.

Here we will base our work on the article of Lindeberg1 that gives an 1 Tony Lindeberg. Scale-space: A frame-
work for handling image structures at
multiple scales. 1996

introduction to scale-space theory. Scale-space representation has made
the basis for a range of image analysis methods and is extensively used
in computer vision. In the exercise you will implement scale-space blob
detection and use it for detecting and measuring the size of fibres that
are imaged using X-ray CT.

The computation of scale-space is done by representing image fea-
tures at all scales at once and detect features based on criteria that is
independent of the scale. We will work with the Gaussian scale-space,
and the analysis is in practice done by smoothing the image using a
Gaussian filter. In Lindeberg2 the scale-space representation is defined 2 Tony Lindeberg. Scale-space: A frame-

work for handling image structures at
multiple scales. 1996

for a general N-dimensional signal f : RN → R, but we will use it
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for a 2D image I : R2 → R. For a 2D image, its Gaussian scale-space
representation is L : R2 ×R+ → R, which in practice becomes a 3D
object, with the two spatial image dimensions (x, y) and the scale in the
third dimension. Since scale is obtained by smoothing with a Gaussian,
the variable determining the degree of smoothing is the variance t. Also
the standard deviation σ =

√
t is used in the article, but here we have

simplified the notation and use only the variance t.
The Gaussian scale-space L is defined for N-dimensional signals by

L(x; t) =
∫

ξ∈RN
f (x− ξ)g(ξ; t)dξ (2.1)

with g : RN ×R+ → R being the N-dimensional Gaussian kernel

g(x; t) =
1

(2πt)N/2 e−(x2
1+···+x2

N)/(2t). (2.2)

In practice we will work with the Gaussian scale-space for 2D images
on a discrete set of pixels. Therefore, we can write the Gaussian scale-
space (ignoring boundary issues) as

L(x, y; t) =
γ

∑
−γ

δ

∑
−δ

I(x− γ, y− δ)g(δ, γ; t) (2.3)

where g : R2 ×R+ → R is the 2D Gaussian kernel

g(x, y; t) =
1

2πt
e−(x2+y2)/(2t). (2.4)

Computing the scale-space is done at a discrete set of steps, and we
have the start condition with t = 0 defined as L(x, y; 0) = I(x, y).

For feature detection, we need to compute the derivatives of a scale-
space representation. Note that this is conveniently achieved by con-
volving an image with a kernel that is a derivative of a Gaussian. Blob
detection uses second order derivatives, more precisely the Laplacian
of a Gaussian ∇2L = Lxx + Lyy which gives a high response where
there is a blob in the image. To detect blobs, we need to find local
maxima and minima of the Laplacian. Some local maxima and minima
will, however, be very weak and they should not be detected as a blob.
Therefore, low responses of the Laplacian of the Gaussian should not
be included. These low-response blobs are excluded by not including
blobs that have an absolute Laplacian response lower than a certain
threshold.

What we still need to do is to ensure that we can detect blobs across
different scales. The image in scale-space representation is increasingly
smoothed, and with increasing scale t, pixels will change their intensity
value towards the average value of the image. Therefore, the absolute
values of derivatives will become smaller when increasing t. For blob
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detection, this means that the magnitude of the local maxima and
minima in the scale-space of the Laplacian ∇2L will decrease and
this smoothing must be compensated. The compensation factors for
different features are given in Lindeberg3 and for the blob feature it is t 3 Tony Lindeberg. Scale-space: A frame-

work for handling image structures at
multiple scales. 1996

such that the scale normalized Laplacian of Gaussian is t∇2L.

2.1 Exercise 2 – part I, Scale-space blob detection

In this part of the exercise you will implement scale-space blob detection
with the purpose of detecting and measuring glass fibres from images
of a glass fibre composite. An image example is given in Figure 2.1,
that shows a polished surface of a glass fibre composite sample, where
individual fibres can be seen. Since these fibres are relatively circular we
will model them as circles. This means that we must find their position
(center coordinate) and diameter, and for this we will use the scale-
space blob detection. After having computed the fibres parameters, we
will carry a statistical analysis of the results.

Figure 2.1: Example of fibre image ac-
quired using an optical microscope.

2.1.1 Computing Gaussian and its second order derivative

We will approach this analysis in steps that lead to the final algorithm.
First we will use synthetic data to develop and test our algorithm, and
after that we will carry out the analysis on the real images.

Since we focus on blob detection, we must have a Gaussian kernel
and its second order derivative. Some convolution libraries have already
implemented the second order derivative of a Gaussian that you are
welcome to use for the exercise. But we will anyhow start investigating
the second order derivative of a Gaussian, which you will be using for
blob detection.

The Gaussian is separable and we can employ 1D filters for our
analysis, which you will compute now. The 1D Gaussian is given by

g(x) =
1√
2πt

e
−x2

2t . (2.5)

Suggested procedure

1. Derive (analytically) the second order derivative of the Gaussian

d2g
dx2 .

2. Implement a function that takes the variance t as input and outputs
a filter kernel of g and d2g/dx2. You should use a filter kernel with
a size of at least ±3

√
t. Why? (Hint: Set a variable ν = d3

√
te,

make an array with the integer values [−ν,−ν + 1, ..., ν− 1, ν], and
compute the Gaussian on these values.)
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3. Try the filter kernel on the synthetic test image test_blob_uniform.png
and inspect the result.

2.1.2 Detecting blobs at one scale

Here you going to implement a function to detect blobs at a single scale.
Blobs can be found as spatial maxima (dark blobs) or minima (bright
blobs) of the scale-space Laplacian

∇2L = Lxx + Lyy . (2.6)

Suggested procedure

1. Compute the Laplacian at one scale using the synthetic test image
test_blob_uniform.png.

2. Create a function that detects the coordinates of maxima and minima
in the Laplacian image (detect blobs), and that has an absolute value
of the Laplacian larger than some threshold.

3. Plot the center coordinates and circles outlining the detected blobs.
The radius of the circles should be

√
2t.

4. Try varying t such that the blobs in test_blob_uniform.png are
exactly outlined.

Figure 2.2: Visualization the 3D fibers
scanned with the high resolution X-ray
CT-scanner.

2.1.3 Detecting blobs on multiple scales

Now you should extend the blob detection at a single scale to multiple
scales. To find blobs at multiple scales, we must use the scale-space
representation. This can conveniently be done by representing ∇2L as
a 3D array (volumetric image).

Suggested procedure

1. Decide on scales at which the Laplacian must be computed. A good
idea is to make it equal steps in t. Remember that the radius of the
blobs are

√
2t, so you can look at the size of the structures that you

want to detect to decide a good range of scales.

2. Compute the scale normalized scale-space Laplacian t∇2L for the
test image test_blob_uniform.png. It is very important that you
remember to scale normalize, i.e. that you multiply the Laplacian
∇2L by t to be sure to detect the correct scales.

3. Find coordinates and scales of maxima and minima in this scale-
space and plot the detected blobs on top of the image. What are the
detected scales and what is the diameter of the blobs?
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4. Detect blobs in the test image test_blob_varying.png.

5. Verify that you detected the blobs at the correct scale by showing an
image where you plot circles with a diameter of

√
2t on top of the

detected blobs.

2.1.4 Detecting blobs in real data

We will now continue with the real images of fibers. The fibre data is ob-
tained using different scanning methods including scanning electron mi-
croscopy (SEM.png), optical microscopy (Optical.png), synchrotron X-
ray CT (CT_synchrotron.png), and three resolutions of laboratory X-ray
CT (CT_lab_high_res.png, CT_lab_med_res.png, CT_lab_low_res.png).
The CT data is a single slice very close to the top, so we assume the data
to be from the same part of the sample, and this allows us to directly
compare the fibers. We will do this comparison in next exercise, but in
this we will compute the fiber location and their diameter. In Figure 2.2
you can see a visualization of the fibre data from the high resolution
X-ray CT scan.

We start by testing the blob-detection on this real data.

Suggested procedure

1. Run your blob-detection function from above on a cut-out example
of one of the images. It is important that you tune your parameters
to get the best possible results.

2.1.5 Localize blobs

It turns out, that it is difficult to detect blobs in the Laplacian scale-
space in the fiber image, such that all fibers are found. To overcome
this, we will detect the fibers as maxima in a Gaussian smoothed image.
Since the fibers are almost the same size, we can use a single scale of
the Gaussian to detect the fiber centers.

Suggested procedure

1. Smooth an image of fibers with a Gaussian and visualize the result.

2. Find locations of maxima in this image and plot the positions on top
of the original image.

3. Compute the Laplacian scale-space for the image.

4. Find the scale of each fibre as the minimum over scales at the fiber
locations.

5. Plot circles according to the found scale on top of the original image.
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6. Detect fibers in all six fiber images. Save the locations and diameters.

In the exercise in Week 4, where you will work with feature-based
image matching, you will use the results obtained in this exercise. So,
it will be possible to continue working on the parts that you did not
finish here in Week 4.



3 Feature-based segmentation

Image segmentation is the process of partitioning an image into
regions. The result of segmentation can be represented as a function
g(x, y) → ` that maps each position (x, y) in the image I to a label
` ∈ 1, . . . , nl . In practice this means that we need a way to compute
a label for every image pixel. As for representing the result of the
segmentation using labels, this is just one choice. In some other ap-
proaches, the segmentation may be represented differently, for example
using curves delineating boundaries of segments. Before talking about
the segmentation method, we will discuss the reasons for segmenting
an image.

Figure 3.1: CT-scan showing the trabec-
ular structure of a mouse bone. Top is
the image slice, middle shows the bone
in 3D and bottom shows where the slice
is taken in the image volume.

Segmentation is often done to visualize certain image structures,
to measure some quantities in the image, or both. Let’s consider
an example in Figure 3.1 that shows a cross section of a tibia bone
from a mouse, acquired using CT-scanning. If we were given the
task to segment this image, we would first need to consider what the
desired outcome is, i.e. to ask the question: ‘What would be the optimal
segmentation?’ The bone image can be segmented in many ways, and
to decide on the desired segmentation outcome you need to consider
what you want to visualize, quantify, or otherwise use in your analysis.

Here, the mouse bone has been imaged as a part of a project set
to investigate how osteoporosis affects bone growth. To visualize and
quantify effects of the osteoporosis, tibia bones from mice with and
without osteoporosis were imaged. We know that osteoporosis makes
bones weaker, and now we can try to translate this to something we
can measure by segmenting the image. We could e.g. measure the area
of the image depicting bone by counting the pixels that are labeled as
bone. This is illustrated in Figure 3.2 in the first segmentation where
the image is segmented into bone and background. Total bone area
can here be obtained by counting the white pixels, and bone fraction
is the ratio between the number of bone pixels divided by all pixels.
Yet another measure we could obtain is the boundary length of the
interface between background and bone. The finer the bone structures
are, the longer this interface would be and therefore this is a good
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Background
Region 1

Region 2

Region 3

Region 4

Background
Large trabecular bone

Small trabecular bone

Background
Bone

Background
Bone
Cartilage

Figure 3.2: Slice of a CT-scan of a trabecu-
lar mouse bone that has been segmented
based on three different criteria. The left
image is the original. The next image in
black and white is a segmentation into
bone and background. The third image
in red, green, and blue is a segmenta-
tion into bone, cartilage, and background.
The fourth image is a segmentation into
four separate bone regions, and the last
image in brown colors is a segmentation
based on the size of the trabecular struc-
tures in the bone (size of bone and holes).

measure for the bone structure. We could also compute the distribution
of bone thickness or other measures that are related to the problem we
are investigating namely the effect of osteoporosis.

The second segmentation is similar to the first, but here also the areas
of the image with cartilage has been labeled. In the third segmentation
example, the image of the bone has been separated into four regions and
background. And in the final example, the bone has been segmented
based on the coarseness of the bone, such that the finer structures
are in one region and coarser structures are in another. In all these
examples, the segmentation will allow computation of areas, shapes,
lengths, thicknesses, and other measures that could be relevant for
the investigation. But to emphasize the important point; the aim of
segmenting an image is a choice that is determined by the problem we
try to solve.

With this in mind, we can consider the segmentation method, i.e.
how to compute pixel labels given intensities of all pixels. A good
rule is to choose the simplest method that gives a satisfying result. In
some cases you might want to do manual segmentation, i.e. labeling
image regions by drawing them using a paint program or by choosing a
semi-manual segmentation method that gives some level of automation.
In this chapter, we will focus on automated segmentation methods, but
it is important to keep in mind that manual labeling can be part of a
segmentation process, e.g. to create a mask over a region of interest or
to correct areas of faulty segmentations. Having the human as part of
the segmentation loop are used in research areas such as interactive seg-
mentation or active segmentation, which addresses the issue on deciding
what should be segmented.

For automated segmentation, the simplest labeling is obtained by
classifying each pixel according to only its own intensity. In a gray-
scale image, this will typically be one or more threshold values that
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separate the pixel intensities into groups. For many image segmentation
problems, this is not sufficient for a satisfactory segmentation. In the
bone example in Figure 3.2, the first image is segmented using an
intensity threshold. But to automatically segment the image based on
e.g. the trabecular structures as in the last image requires more than
just the pixel intensity, namely one needs to also account for contextual
image information. Contextual information means that we want to
account for image patterns of the depicted structures.

Instead of using only the intensity of the pixel, when computing
the label, we can use the information from the neighborhood around a
pixel. Hereby, we capture the local appearance of the image, and we
will try to use that information for labeling each pixel in the image.
The local appearance is also known as image texture.

3.1 Supervised feature-based segmentation

We will approach the segmentation as a supervised labeling problem,
where we learn the parameters of the segmentation model from training
data. The training data consists of one or more labeled training images,
that are created by manually annotating the images. You can think
of this segmentation approach as of transferring the labels from the
training image to an unknown test image. Here, the training and test
images are of the same type, meaning having a similar appearance. The
choice of what we want to segment is now made, since we are given
the labeled training data.

Supervised labeling is also typically what you would do when work-
ing with deep learning using convolutional neural networks, which
we cover later in this note. But for now, we will work with feature
classification, where we have designed the features ourselves, and only
classification of the features is using the training data. Using chosen
features, as we will do now, has some advantages, since the features
are easy to compute and do not require training. As it turns out, we
can typically obtain good segmentation results with limited training
data. The principle of supervised feature-based segmentation is what is
used in tools like Ilastik1 and the Trainable WEKA Segmentation Tool2. 1 Stuart Berg, Dominik Kutra, Thorben

Kroeger, Christoph N Straehle, Bern-
hard X Kausler, Carsten Haubold, Mar-
tin Schiegg, Janez Ales, Thorsten Beier,
Markus Rudy, et al. Ilastik: interactive
machine learning for (bio) image anal-
ysis. Nature Methods, 16(12):1226–1232,
2019

2 Ignacio Arganda-Carreras, Verena
Kaynig, Curtis Rueden, Kevin W Eliceiri,
Johannes Schindelin, Albert Cardona,
and H Sebastian Seung. Trainable
weka segmentation: a machine learning
tool for microscopy pixel classification.
Bioinformatics, 33(15):2424–2426, 2017

3.1.1 Image features

We will start with image features. In this context, we consider so-called
dense image features, which means that features are computed for
every pixel in the image. A feature for every pixel is a vector of a
certain length, say k. The idea is that pixels originating from a similar
texture also have similar feature vectors. To store features for all image
pixels, we can choose to construct an array of size r× c× k, where r
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and c are dimensions of the image (number of rows and columns).
In this exercise we will compute two types of image features. The

first type of feature is obtained by computing a set of image derivatives
by convolving the image with Gaussian kernel and its derivatives.
The second type of features is obtained by collecting pixel intensities
from the patches centered on a pixel. There are many other features
that we could choose, e.g. SIFT3, SURF4 or ORB5 features. These 3 David G Lowe. Distinctive image fea-

tures from scale-invariant keypoints. In-
ternational journal of computer vision, 60(2):
91–110, 2004

4 Herbert Bay, Tinne Tuytelaars, and Luc
Van Gool. Surf: Speeded up robust fea-
tures. In European conference on computer
vision, pages 404–417. Springer, 2006

5 Ethan Rublee, Vincent Rabaud, Kurt
Konolige, and Gary Bradski. Orb: An
efficient alternative to sift or surf. In 2011
International conference on computer vision,
pages 2564–2571. Ieee, 2011

features successfully characterize the contextual appearance of the
image, and would therefore be useful for segmentation. But they
have been developed for detecting and matching interest points, and
therefore they are relatively complex to compute. Instead, for this
exercise we chose relatively simple features that are easy to compute,
and that still give good performance.

Features from a Gaussian and its derivatives Building on what we worked
with in the previous chapter, we use image smoothing by convolving
with a Gaussian kernel and its derivatives for computing the segmenta-
tion features.

The Gaussian features are obtained as a stack of Gaussian derivatives.
Let us use the same notation of Gaussian derivatives as we did in the
scale-space exercise, such that we have

L = (I ∗ g(x, t)) ∗ g(x, t)T ,

where L is an image I convolved with the 1D Gaussian

g(x, t) =
1√
t2π

e
−x2

2t

at scale t, where t = σ2. We will use a short notation for the Gaussian
derivative

gx =
∂g
∂x

, gxx =
∂2g
∂x2 ,

etc. Then we get the images by convolving with Gaussian derivatives
as

L = I ∗ g ∗ gT , Lx = I ∗ gx ∗ gT , Ly = I ∗ g ∗ gT
x ,

Lxx = I ∗ gxx ∗ gT , Lxy = I ∗ gx ∗ gT
x , . . .

etc. In this exercise, we will compute the higher order derivatives until
the fourth order, which will result in a 15-dimensional descriptor that
captures the local appearance of the image. The descriptor is formed by
stacking the Gaussian convolved images, such that each pixel position
has an associated 15-dimensional feature vector. That is, we have a
r× c× 15 feature image

F = [L, Lx, Ly, Lxx, Lxy, Lyy, Lxxx, Lxxy, Lxyy, Lyyy,

Lxxxx, Lxxxy, Lxxyy, Lxyyy, Lyyyy] .
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Since the response of the Gaussian derivatives becomes smaller with
increasing order, we will normalize the layers in the feature image with
the standard deviation of the feature image

L̇(x, y) =
L(x, y)
std(L)

,

where std(L) is the standard deviation of the image L. We get the
feature descriptor as

Ḟ = [L̇, L̇x, L̇y, L̇xx, L̇xy, L̇yy, L̇xxx, L̇xxy, L̇xyy, L̇yyy,

L̇xxxx, L̇xxxy, L̇xxyy, L̇xyyy, L̇yyyy] .

Multi-scale features Segmentation results will improve by computing
features at more than one scale and combining them. Therefore, you
may consider stacking features computed at multiple scales for better
segmentation. If we call a feature computed at a scale t1 for Ḟt1 , we can
compute a multi-scale feature as

Ḟmulti = [Ḟt1 , Ḟt2 , Ḟt3 ] ,

here with the three sclaes t1, t2, t3, which will result in a 45-dimensional
feature vector for each image pixel.

Figure 3.3: A training image with ground
truth labeling. Red is one label and blue
is another. Typically, this will be two
scalar values, e.g. {0, 1}.

Patch-based features Another way of computing image features is by
extracting small patches centered on a pixel and concatenating the
pixels into a feature vector. If we e.g. have a 9× 9 image patch, this
will result in an 81 dimensional feature vector for each pixel position.
Similar to the Gaussian features, this can be computed in a multi-scale
fashion.

3.1.2 Probabilistic clustering-based segmentation

The basic idea in our feature-based segmentation model is that parts
of the image that have similar appearance should have the same label.
Since the features encode the local appearance of the image, it means
that we want to give the same label to features that are similar.

Using an already labeled image, we can learn the desired labels of
the features. In practice, we typically have labels given as a separate
image. This is shown in Figure 3.3 for one of the two-label images that
you will work with in this exercise. Since the training image and the
ground-truth label image are of the same size, it is easy to look up the
label at a given position in the image.

By computing image features in both a training and a test image, we
can transfer the labels from training image to the test image. This is
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done by using a similarity measure of the image features, and here we
will use Euclidean distance

d( fp, fq) =

√
n

∑
i=1

( fp(i)− fq(i))2 ,

where fp and fq are two n-dimensional feature vectors.
A direct approach for labeling the image would be to compute the

Euclidean distance from each feature vector in the test image to each
feature vectors in the training image (or a random subset of the features
in the training image). By selecting the label of one or more of the
nearest feature vectors, we could obtain a labeling. If we select more
than one feature, we can e.g. label according to majority vote. This
would be using k-nearest neighbor classifier, which might not always
be robust, because outliers can introduce noise.

A more robust approach is using k-means clustering of feature vec-
tors, where we use cluster centers as representative feature vectors.
This is sometimes referred to as a dictionary-based approach, and each
cluster center is referred to as a visual word, while the collection of
cluster centers make up a dictionary. Each of the clusters is made up of
a number of feature vectors from the training image. This allows us to
compute the probability of a given label λ for each feature cluster C as

pC(λ) =
# elements from C with label λ

# elements in C
, (3.1)

which can be written as

pC(λ) =
1
|C| ∑

f∈C
δ (`( f )− λ) , (3.2)

where `( f ) is the label of feature element f , and

δ(x) =

{
1 if x = 0
0 otherwise

. (3.3)

A visual dictionary typically has a much larger number of elements
than labels in the segmentation problem. In the exercise we e.g. suggest
having 100-1000 elements. The local appearance of the image belonging
to the same segment may vary significantly, and despite this variation,
we want to assign the same label to pixels in the same region. By having
many ’visual words’, i.e. cluster centers of the features, we can assign
the same label to features even though they might be far from each
other in feature space.

After having assigned a label probability to each ’visual word’ (fea-
ture cluster C), we can compute the pixel-wise label of a new image by
the following steps

• create an empty label image, P, of size r× c× nl ,
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• compute features, Ḟmulti, for each pixel i,

• for each pixel position, (xi, yi), find the nearest cluster center C (in
feature space),

• set the label probabilities of the nearest cluster center into P at pixel
position (xi, yi).

Hereby, you obtain an image of label-wise probabilities.

3.2 Exercise

You should implement a probabilistic dictionary-based segmentation
using Gaussian features and k-means clustering. If time allows, you
can try the same approach for segmentation, but using image patches
instead of Gaussian features. The exercise consists of the following
steps (explained in details below):

(A) Compute features

(B) Prepare labels for clustering

(C) Build dictionary

(D) Assign dictionary to test image

(E) Compute probability image and segmentation

There are two sets of artificially composed textured images available
for training and testing in the two folders 2labels and 3labels that
you can use for testing your implementation. Furthermore, there is a
set of images of a bone with corresponding labels. Finally, there is a
set of electron microscopy images of cell membranes with 30 images
with ground truth. Only the training images have corresponding labels
because the data set was prepared for a competition (ISBI Cell Tracking
Challenge, 2012

6). But you can train on one of these and test on one or 6 Ignacio Arganda-Carreras, Srinivas C
Turaga, Daniel R Berger, Dan Cireşan,
Alessandro Giusti, Luca M Gambardella,
Jürgen Schmidhuber, Dmitry Laptev,
Sarvesh Dwivedi, Joachim M Buhmann,
et al. Crowdsourcing the creation of im-
age segmentation algorithms for connec-
tomics. Frontiers in neuroanatomy, 9:142,
2015

more of the other training images.

3.2.1 (A) Compute features

To ensure that you have time to complete the exercise, we have pre-
pared the function for computing the Gaussian feature image. It is
available as the functions get_gauss_feat_multi.m for MATLAB and
get_gauss_feat_multi function in the feature_based_segmentation.py
file for Python. Its functionality is described in the help text of the
functions. You should start by computing these features and visually
inspect what they look like. You will start working with the training
image.
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Suggested procedure

1. Read in the image and display it.

2. Compute the feature image.

3. Inspect the feature image by displaying the layers. You can sample
a few and look at them one at a time or you can display multiple
images at once.

4. Since we will be clustering the features, you can transform the feature
image of size r× c× 15n, where r is the rows, c is the columns, and
n is the number of scales, into a 2D array of size rc× 15n where each
row is a feature vector.

3.2.2 (B) Prepare labels for clustering

The label image stores the label information as unique intensity values.
Since we want to use the labels for computing label probabilities, we
must create a representation of the label image that can be used for
this. In the exercise you will work with two and three labels, but let the
number of labels be nl . nl is the number of unique labels in the label
image, but let us assume that the values in the label image is [0, ..., nl ].
Then we construct a new image that we call L ∈ Rr×c×nl , that stores
label probabilities. This means that we in each pixel of L has the value
one in the dimension of the label and zero in the rest. You should
transform the training label image to a label probability image.

3.2.3 (C) Build dictionary

You should use k-means clustering for building the dictionary. Using
all feature vectors for building the dictionary is very time consuming,
and it is sufficient to select a random subset of features. It is important
that the subset is chosen randomly to be representative for the training
image. You should both sample features and the corresponding image
labels, i.e. labels should be sampled from the same pixel positions as
the features. The labels are used for computing the label probabilities
of the clusters according to Eq. 3.2 and 3.3.

Suggested procedure

1. Select a random subset of feature vectors with corresponding labels
(you can use random permutation). If you choose e.g. 5000-10000

vectors, it should be sufficient for clustering.

2. Use k-means to cluster the feature vectors into a number of clusters.
You can choose e.g. 100-1000 clusters.
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3. Make an nl × nc array to store label probabilities, where nc is the
number of cluster centers. Compute the probability of a cluster
belonging to each of the labels using Eq. 3.2 and 3.3, and store the
probabilities in the array.

3.2.4 (D) Assign dictionary to test image

You now have a dictionary that can be used for segmentation in the
form of cluster centers with label probabilities. You can now assign each
pixel in your test image to the nearest dictionary element and use the
label probabilities of these dictionary elements for your segmentation.
We will do this, but first getting the index of the dictionary element for
each pixel in the test image.

Suggested procedure

1. Compute a feature image from the test image.

2. Use a nearest neighbor algorithm (knnsearch in MATLAB or Nearest
Neighbors from Scikit Learn in Python) and find the nearest cluster
for each feature in the image.

3. Store the index of the nearest cluster center in an image of size r× c.

3.2.5 (E) Compute probability image and segmentation

Based on the assignment image you should now compute the proba-
bility image and the final segmentation. The probability image will be
of size r× c× nl , where each pixel has a probability of belonging to
one of the nl labels. From the probability image you can compute the
segmentation as the pixel-wise most probable label. The reason we go
via a probability image, and not directly to a label image, is that we can
regularize the segmentation by e.g. smoothing the probability image
prior to choosing the most probable label.

Suggested procedure

1. Create an r× c× nl probability image.

2. In each pixel you insert the probability of the cluster center (index is
stored in the assignment image from before).

3. Obtain a segmentation by selecting the most probable label in each
pixel.

4. Try smoothing the probability image before selecting the most prob-
able label.
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3.2.6 Segmentation with patch-based features

Do the same as above using image patches instead of Gaussian features.
This is a little more difficult because of boundary effects. You can extract
image patches using the im2col function in MATLAB, and we have pro-
vided an im2col function found in the feature_based_segmentation.py
file for Python, that has the same functionality.



4 Feature-based registration

Image registration is the process of transforming one image (the
moving image) to the coordinate system of another image (the target im-
age). We will compute this transformation by matching image features.
Here we will use SIFT features (Scale invariant feature transform) that
are described in detail in1. The reason for using SIFT is that OpenCV2 1 David G Lowe. Distinctive image fea-

tures from scale-invariant keypoints. In-
ternational journal of computer vision, 60(2):
91–110, 2004

2 OpenCV. Open source computer vision
library, 2015

has a good implementation of the SIFT features, which makes it easy to
carry out the exercise on feature-based registration. But recent develop-
ments on learning-based methods for feature-matching will generally
give higher accuracy and faster computation3. Therefore, learning-

3 Jiayi Ma, Xingyu Jiang, Aoxiang Fan,
Junjun Jiang, and Junchi Yan. Image
matching from handcrafted to deep fea-
tures: A survey. International Journal of
Computer Vision, 129(1):23–79, 2021

based methods will generally be a preferred choice. Learning-based
methods roughly use the same components as traditional methods like
SIFT, which are important for image registration. Traditional interest
point features that do not involve learning such as SIFT are referred to
as hand-crafted features.

The concept of interest point image features is essential in image
analysis. The basic idea is to identify salient positions in an image
(unique key points) and use the surrounding image context to describe
the image locally in the form of a descriptor vector. This is the same
concept as we used for feature-based segmentation, where we wanted
to group parts of the image with similar appearance or texture. But in
image matching, we are interested in finding positions in two images
of the same object or scene that can uniquely be matched.

This principle has been used for solving many problems including
object recognition, image retrieval (image search), image stitching,
geometric reconstruction, etc. Solutions to many of these problems have
however been improved by machine learning methods and especially
convolutional neural networks (CNNs) have replaced feature-based
analysis in a range of applications. But interest point features are the
best performing technique for finding correspondence between images
with large structural variation, which is typical for photographs of the
same scene or images from a microscope.

Image registration based on interest point features is based on de-
tecting interest points in an image and finding unique correspondence
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between these interest points. Interest point features are composed
of two elements, namely an interest point or a key point, which is a
position in the images (an (x, y)-coordinate) and a descriptor, which is
a vector that encodes the appearance (pixel intensities) in a local neigh-
borhood around the interest point. Typically, hundreds to thousands
of features are detected in an image, and correspondence is found by
finding the descriptors with the highest similarity between two images.

The desired properties for interest point features that they are

• unique such that they encode just one position in an image,

• invariant to change in view-point, overall intensity change, and
change in noise level,

• robust such that they will be detected despite image changes, and

• efficient with respect to memory and computational time.

SIFT has been designed to have exactly these properties, and later de-
velopments are modifications that strive at optimizing these properties
either through design or machine learning.

Learning-based features Some deep learning-based alternatives to hand-
crafted features have been suggested4, showing superior performance. 4 Jiayi Ma, Xingyu Jiang, Aoxiang Fan,

Junjun Jiang, and Junchi Yan. Image
matching from handcrafted to deep fea-
tures: A survey. International Journal of
Computer Vision, 129(1):23–79, 2021

High-performance examples include SuperPoint5 that learns both in-

5 Daniel DeTone, Tomasz Malisiewicz,
and Andrew Rabinovich. Superpoint:
Self-supervised interest point detection
and description. In Proceedings of the IEEE
conference on computer vision and pattern
recognition workshops, pages 224–236, 2018

terest point detection and description and Key.Net6 that only learns

6 Axel Barroso-Laguna, Edgar Riba,
Daniel Ponsa, and Krystian Mikolajczyk.
Key. net: Keypoint detection by hand-
crafted and learned cnn filters. In Proceed-
ings of the IEEE/CVF International Confer-
ence on Computer Vision, pages 5836–5844,
2019

interest point detection.
The problem of learning interest point features is that there is no

ground truth for what a good interest point is. The SuperPoint method
solves this by generating synthetic data, where specific image features
such as corners are created and used for training an interest point
detector. This detector is then used for detecting interest points in
a set of real images. A set of corresponding images are created by
using homographies to transform one image and detecting interest
points in each of these. Since the homography gives ground truth
correspondence, the sum of all detected interest points is used as
ground truth. A second model is then trained for detecting these
interest points, and the same network is used to simultaneously learn
descriptors at the interest point locations. The resulting interest points
have the same properties as hand-crafted features, namely a location
and a vector that describes the local image appearance, which can
then be matched by comparing interest points. The advantage is faster
computation and higher accuracy in matching.

Besides learning models for computing interest point features, there
are also methods for learning the matching between interest point
features, e.g. the SuperGlue method7. Also here the advantage is higher 7 Paul-Edouard Sarlin, Daniel DeTone,

Tomasz Malisiewicz, and Andrew Ra-
binovich. Superglue: Learning feature
matching with graph neural networks.
In Proceedings of the IEEE/CVF conference
on computer vision and pattern recognition,
pages 4938–4947, 2020

performance compared to hand-crafted features.
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Hand-crafted features – SIFT The advantage of hand-crafted features is
that there is no learning involved, and therefore they will be easy to use
for any type of images. Despite the lower performance compared to
learning-based features, hand-crafted features will often perform well
for many registration problems.

Scale invariant feature transform (SIFT) described in8 is a widely 8 David G Lowe. Distinctive image fea-
tures from scale-invariant keypoints. In-
ternational journal of computer vision, 60(2):
91–110, 2004

used interest point feature. Here we focus on SIFT. But bear in mind
that many other interest point features have similar properties9.

9 Tinne Tuytelaars, Krystian Mikolajczyk,
et al. Local invariant feature detectors:
a survey. Foundations and trends® in
computer graphics and vision, 3(3):177–280,
2008

We will use SIFT for feature-based image registration. The problem
we address is that we are given two images that depict the same object
and we want to find an image transformation that aligns the two
images. This allows us to compare structures found in one image with
structures found in the other image. In some cases, the difference
between images can be modeled by a rotation R, translation t and scale
s. This is e.g. the case in microscopy or CT, where pixels have a fixed
physical size. A more general affine transformation can be computed
using a homography, but in cases where the imaging system can only
transform the image by a rotation, translation, and scale, these will
be the appropriate parameters to compute. Here we will work with
sets of corresponding 2D points, where the correspondence is found by
matching SIFT features.

Fitting two sets of 2D points in least squares sense. For two 2D point
sets P and Q with corresponding elements pi and qi (2× 1 column
vectors), where i = 1, . . . , n, we are interested in finding a rotation R, a
translation t and a scale s that minimizes the squared distance between
the two point sets. The transformation from one point set to the other
is given by

qi = sRpi + t . (4.1)

The scale s can be found e.g. by computing the ratio between average
distance to the centroid of each point set

s =
∑n

i=1 ||qi − µq||
∑n

i=1 ||pi − µp||
, (4.2)

where µp = 1
n ∑n

i=1 pi and µq = 1
n ∑n

i=1 qi are the centroids of pi and qi

respectively.
Now we want to find the rotation and translation that minimize

n

∑
i=1

(qi − sRpi − t)2 .

One way of least-squares fitting 2D point sets involves 2-by-2 covariance
matrix (normalization is not needed)

C =
n

∑
i=1

(qi − µq)(pi − µp)
T ,
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and its singular value decomposition

UΣVT = C .

Here, U and V are the left and right singular matrices respectively and
Σ is a diagonal 2-by-2 matrix containing the singular values. From this,
we obtain the rotation

R̂ = UVT . (4.3)

In rare cases, this computation can result in a reflection instead of
a rotation. If the determinant of det(R̂) = 1 it is a rotation and if
det(R̂) = −1 it is a reflection. This computation will typically only
result in a reflection e.g. if there are only two points for determining
the rotation. Therefore, we can compute the rotation taking this into
account by

R = R̂D , (4.4)

where

D =

[
1 0
0 det(R̂)

]
. (4.5)

Figure 4.1: Example of an image of the
same fiber sample acquired using a CT
scanner at three resolutions.

Finally, we find the translation as the average vector from points in
q to the rotated points in p

t =
1
n

n

∑
i=1

(qi − sRpi) = µq − sRµp . (4.6)

See e.g. Arun et al. 10 that covers a more general 3D case.

10 K Somani Arun, Thomas S Huang, and
Steven D Blostein. Least-squares fitting of
two 3-D point sets. IEEE Transactions on
Pattern Analysis and Machine Intelligence,
(5):698–700, 1987

4.1 Exercise on feature-based registration

This exercise aims at finding correspondence between images by match-
ing SIFT features and computing the transformation, i.e. the rotation,
translation, and scale between the two images. For computing the SIFT
features you can use vlFeat for MATLAB or OpenCV for Python (you will
need a newer version of OpenCV). In the extra exercise, you can use the
transformation obtained here to compare the fiber diameters that you
got from using blob detection for fibers. But for now, the purpose is to
compute the transformation.

4.1.1 Rotation, translation and scale

You should implement a function that takes two point sets as input and
returns the rotation, translation, and scale. To ensure that you have
the correct implementation, you can make a set of random 2D points
and ensure that you get the correct numbers out. You can follow this
procedure
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1. Generate a random 2D point set P.

2. Define variables for translation t, rotation R, and scale s, and decide
on their values.

3. Transform P using these parameters to obtain the point set Q.

4. Plot these point sets using two different colors.

5. Implement a function that computes the parameters t′, rotation R′,
and scale s′ from P and Q. Make sure that you get the exact same
values.

6. Add some noise to Q and recompute the parameters and test how
much noise you can add and still get reasonably good parameter
estimates.

4.1.2 Compute and match SIFT

Here you should compute SIFT features in two images and match them
using Euclidean distance between their descriptor vectors. You should
use the criterion by Lowe where a correct match is found, if the fraction
between the closest feature vector and the second closest feature vector
is less than a certain value, e.g. 0.6. There are functionality for matching
features in both vlFeat and OpenCV that you can use. You can also
implement your own matching function where you take e.g. scale and
rotation into the matching criterion. You can follow this procedure

1. Create a transformed image by rotating, scaling, and cropping an
image. We call the original image1 and the transformed image2.

2. Compute SIFT features in the two images.

3. Match the SIFT features. You can use the functionality for matching
SIFT from vlFeat for MATLAB and OpenCV for Python.

4. Display the match to see if the matching criterion is correct.

5. Extract the coordinates of the matching keypoints.

6. Use the function for computing the rotation, translation, and scale
from before to transform the set of key points found in image1 to the
set of keypoints found in image2.

7. Display image2 and plot the key points found in image2 and the
transformed key points from image1.

8. When you have confirmed that the points match, you can try to
match the CT-images of fibers at the three resolutions shown in
Figure 4.1. Visualize the matching feature points by drawing lines
between them e.g. as shown in Figure 4.2. This allows you to visually
evaluate the matching.
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4.1.3 Transform the matched features

Figure 4.2: Matching SIFT features illus-
trated by red lines.

Now you should combine the function for computing the transforma-
tion parameters and the SIFT feature matching. The matching will not
be perfect and you will most likely see some wrongly matched features.
The larger the difference in appearance or scale of the image that is
being matched, the more wrongly matched features can be expected. If
the majority of the correspondences are correct then the least-squares
fit will give a relatively good result.

Since we are computing the transformation by a least-squares fit,
the outliers will affect the result to some extent. Outliers can however
be removed relatively easily. You can compute the Euclidean distance
between the two point sets after you have aligned them. There you will
see that most of the distances are relatively small. And if you remove
matching points with a distance larger than a certain threshold, you
can repeat the computation of the transformation and obtain higher
precision in the matching. You should implement a function that makes
this two-step computation of the transformation and choose a good
criterion for a threshold.

Illustrate your transformed feature points by plotting the two point
sets on top of each other in the image e.g. as illustrated in Figure 4.3.
You should be able to see a difference in the precision of the matching
after removing the outliers.

Figure 4.3: Matching features shown in
red and green (zoom in upper right cor-
ner). Top is after computing least squares
of all matching features and bottom is
a recomputed match after removing out-
liers.

4.1.4 Transform detected fibers (optional)

You have now established a correspondence between the fiber images,
and you can now compare the detected fibers from the exercise on
scale-space blob detection. You can do this by

1. Compute transformation between two fiber images.

2. Detect blobs in the two images

3. Transform blob parameters (location and size) from one image to the
other.

4. Match blobs and compare their individual sizes.



Part II

Image analysis with
geometric priors
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In image analysis, the terms prior knowledge and contextual information
refer to all the information about the problem that is available in addition
to the image data. This additional information may refer to some local
appearance (how bright, dark, smooth, textured. . . something is) or to
some geometric property (position, size, orientation, shape. . . of this
something).

There are numerous ways of using prior information when solving
image analysis problems, and, in this part of the lecture note, we
look into three well-established approaches. First, we cover Markov
random fields (MRF) where local contextual information is a part of a
probabilistic framework that can be efficiently optimized using graph
cuts. Then we present a segmentation model based on a parametric
deformable curve, and for this, we introduce Mumford-Shah functional,
Chan-Vese algorithm, and snakes. Lastly, we cover layered surface
detection, a model useful when dealing with distinctive geometry.

The three approaches covered in this part of the note have many
common points and may be combined in different ways. For example,
layered surfaces use the same graph-cut solver as used in MRF. And
curve-based segmentation can be driven by layered surfaces.



5 Markov random fields

Markov random fields (MRF) is a probabilistic model that can be
used for various tasks in computer vision and image analysis. All
MRF formulations involve labeling, i.e. assigning labels to some image
entities, called sites, typically assigning labels to pixels. MRF are charac-
terized by the Markov property, i.e. that the probability of a site (pixel)
being assigned a certain label is only dependent on the neighborhood
of the site.

In exercises on MRF, we will use MRF model for image segmentation.
A segmentation can be formulated as assigning a (discrete) label to
each pixel in the image. Often, we would like the segmentation to be
smooth, which is the local contextual information we wan to incorporate
in our model. In MRF we do this by giving a low probability for a
configuration where many neighboring pixels have different labels. To
do so we add a term, a prior, next to the usual data-term, which in
this context is also called a likelihood term. Provided an image, we aim
at finding a label configuration that maximizes the a posterior (MAP)
probability which is a combination of a likelihood (data) term and the
term modelling a smoothness prior.

One characteristics of MRF, Markov-Gibbs equivalence following di-
rectly from Markov property, is that the probability of the MRF configu-
ration is an exponential of the negative configuration energy. It is more
practical to work with energies, as energy contributions add up, while
probabilities multiply. Therefore, instead of maximizing the posterior
probability we will minimize the posterior energy of the configuration
f given by

E( f ) = U( f |d) = U(d| f ) + U( f ) , (5.1)

where E( f ) is a (segmentation) energy of the configuration f for a
certain data (image) d. Here, U( f |d) is a posterior energy and U(d| f )
is a likelihood energy.

Another important property of MRF is that both likelihood and prior
may be expressed as sums of local contributions called potentials. In the
exercise, we will work with so-called one-clique potentials (single pixels)
and two-clique potentials (pixel pairs). In terms of clique potentials (5.1)
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becomes
E( f ) = ∑

{i}∈C1

V1( fi) + ∑
{i,j}∈C2

V2( fi, f j)

where C1 is the set of one-cliques (for example single pixels), and V1

is a one-clique potential used for modeling the likelihood term, C2 is
the set of two-cliques (for example pixel pairs), and V2 is a two-clique
potential used for modeling the prior term.

As such MRF framework allows us to compute a (global) probability
of a whole configuration when some (local) property is modeled as a
sum of clique potentials.

As discussed in the book by Li1, Chapter 1, Introduction, first para- 1 Stan Z Li. Markov random field model-
ing in image analysis. Springer Science &
Business Media, 2009

graph, the main concerns of the MRF framework are how to define clique
potentials (modelling part), and how to find the optimal solution for a given
energy function (optimization part).

5.1 Gender determination, an easy introduction to MRF

We start with the extremely small 1D example with the aim of intro-
ducing MRF terminology, demonstrating the modelling possibilities
provided by MRF, and the use of the terms likelihood or data term, prior
and posterior.

Imagine entering a bar and observing 6 persons standing along the
counter. You estimate persons heights (in cm) and record this data as

d =
[

179 174 182 162 175 165
]

.

You want to estimate the persons gender, i.e. you want to assign
either a label M or F to each person. You may consider each person
individually according to only its own height, but you also want to
utilize your knowledge of the contextual information. You decide to
pose the problem as a MRF with the neighbourhood given by the first
neighbor (person to the left and person to the right).

But first, let’s consider the likelihood (data) term. You know that the
average male height is 181 cm, the average female height is 165 cm, and
that the height for each gender may be described as following a normal
distribution where you assume the same standard deviation for both
genders. For this reason you define the likelihood terms as one clique
potentials

V1( fi) = (µ( fi)− di)
2

where di is the height of the person i, fi is a label assigned to the person
i (i.e. either M or F), and µ( fi) is either µM = 181 or µF = 165. The
likelihood energy of a configuration f = [ f1 . . . f6] is the sum of all
one-clique potentials

U(d| f ) =
6

∑
i=1

V1( fi) .
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For example, configuration
[

M M M M M F
]

has likelihood
energy of 451.

To find the configuration which minimizes the likelihood energy you
can consider the one-clique potentials for all i and both labels

(µM − di)
2 : 4 49 1 361 36 256

(µF − di)
2 : 196 81 289 9 100 0

Obviously, the minimal likelihood energy is obtained if we choose a
label which minimizes the cost for each i, resulting in a labeling

f D =
[

M M M F M F
]

, (5.2)

and giving U(d| f D) = 99. Another thing to notice is that additional
cost for deviating from this labeling varies, depending on which label
we change. For example, it costs additional 352 to label the forth person
as male, while it only costs additional 32 to label the second person as
female.

Now we want to incorporate the contextual (prior) information
about the gender of the people standing along the bar counter. To
make this example similar to modeling smoothness, let’s say that you
expect a configuration with men standing next to women to occur less
frequently then configurations where genders group. For this reason,
you may decide to incorporate a cost which penalizes a less-frequent
configuration. For prior energy you therefore define 2-clique potentials
as

V2( fi, fi′) =

{
0 if fi = fi′

100 otherwise
.

The prior energy is the sum of all 2-clique potentials for all 2-cliques (all
pairs of neighbors) in a configuration. Utilizing the fact that two-clique
contains five neighbour pairs (i, i + 1) for i = 1, ..., 5, we write

U( f ) =
5

∑
i=1

V2( fi, fi+1) .

Obviously, this prior energy is zero (i.e. minimal ) for a configuration
with all labels being equal, while a configuration alternating between
a male and a female yields a maximal prior energy of 500. The prior
energy for the configuration f D which we earlier showed to minimize
the likelihood energy is U( f D) = 300, somewhere in between the
smallest and the largest prior.

According to (5.1), the posterior energy of configuration f D is

U( f D|d) = U(d| f D) + U( f D) = 99 + 300 = 399 .

The question is, can we find a configuration which yields a better
(smaller) posterior energy? And finally, which configuration minimizes
posterior energy?
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For our small problem, we can simply try all different configurations
(there are 26 = 64 in total). Relatively easy we can confirm that a
configuration

f O =
[

M M M F F F
]

with U( f O|d) = 163 + 100 = 263 is an optimal configuration.
Note how smoothness cost of 100 (later we call this parameter β)

influences which configuration is optimal. In general, the choice of the
smoothness parameter depends on your confidence in the prior, com-
pared to the data. Note also that by incorporating the prior information
we made sure to find what we expected to find in the first place.

Finally, note the distinction between modeling (setting up the prob-
lem by defining a likelihood term and a prior term) and optimization
(finding the configuration which minimizes the posterior energy) which
in this case involved trying all configurations.

5.2 MRF modelling for image segmentation

In this exercise we define an energy function for segmenting a noisy
image, similar to the problem in Li Section 3.2.2. Here, we will compute
the energy of different configurations to confirm that minimizing the
segmentation energy leads towards the desired solution. The model
we use is very similar to the model used for gender determination. In
this exercise we use synthetic data (i.e. we produce the input image by
adding noise to a ground truth image) shown if Figure 5.1. This allows
us to evaluate the quality of our energy function. In the text the input
image is denoted D (data) and ground truth segmentation SGT where
elements of SGT are from the set {1, 2, 3} corresponding to the darkest,
medium gray, and brightest class. Figure 5.1: A ground truth (the desired

segmentation should resemble ground
truth) and a noisy image (input data).Looking at the histogram of the pixel intensities and the intensities

divided into the ground-truth classes, Figure 5.2, we observe over-
lapping distributions, so we can not expect a good segmentation if
considering only individual pixel intensities.

0 64 128 192 256

0

50

100

150

Figure 5.2: Intensity histogram of the
noisy image and the histograms for the
three segments.

Now we pose image segmentation as a MRF. Sites are pixels, labels
are from {1, 2, 3}, and we choose a first-order neighborhood (four
closest pixels). As in the previous example, we define the one-clique
potentials for the likelihood energy as the squared distance from the
class mean

V1( fi) = (µ( fi)− di)
2

where di are intensities of the (noisy) image, fi are pixel labelings given
by the configuration, and values µ are estimated from the histogram
and set to µ1 = 70, µ2 = 130, µ3 = 190. As before, the likelihood energy
is

U(d| f ) = ∑
i

V1( fi) ,
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where summation now covers all image pixels. Similarly to the pre-
vious example, we define 2-clique potentials for discrete labels which
penalizes neighbouring labels being different

V2( fi, fi′) =

{
0 fi = fi′

β otherwise
,

and prior energy
U( f ) = ∑

i∼i′
V2( fi, fi′)

where summation runs over all pairs of neighbouring pixels and β is
a smoothness weight, which for uint8 pixel intensities you may set to
100. The posterior energy is now given by (5.1).

We want to check that our optimal function leads to the desired result.
That is, we want to make sure that posterior energy gets smaller when
we approach the desired result. Therefore we want to compute the
likelihood, prior and posterior for some reasonable segmentations (MRF
configurations). For the purpose of this testing, we produce at least
two segmentations of the noisy image D. This can be a segmentation
obtained by thresholding D at intensity levels 100 and 160 (valleys
of the histogram). The second segmentation may be computed by
median filtering ST using an appropriate kernel. You are welcome to
produce additional configurations, e.g. by applying a Gaussian filter
to D prior to thresholding, or by using morphological operations. For
all candidate configurations you should take a look at the intensity
histograms of three classes, similarly as for the SGT earlier.

To observe how likelihood (V1), prior (V2) and posterior (V1 + V2)
change for different configuration, you need the functions which com-
pute these energies for a given image D, a configuration S and the MRF
parameters µ (intensities for segmentation classes) and β (smoothness
term). You may chose to write one function which returns V1 and V2,
or two separate functions.

Tasks

1. Get hold of the gray-scale image D and one configuration for the
segmentation S. To begin with, this may be a ground truth segmen-
tation. Notice that a ground truth segmentation (labeling) is not the
same as a noise-free image: elements of the segmentation are labels
1, 2, . . . while elements of the noise-free image are pixel intensities
µ1, µ2, . . . .

2. For computing V1 you need D, S and µ. First, compute an intensity-
realization of S, that is an image where each occurrence of label fi is
replaced by µ( fi). It is then easy to compute V1 as a sum of squared
differences.
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3. For computing V2 you need S and β. Recall that an almost identical
problem was solved in week 1.

4. Produce some other configurations S, by any means you find appro-
priate: thresholding, manually drawing, modifying ground truth. . . Apply
your two functions to all configurations, and display the likelihood,
prior and posterior for every configuration.

5. If we consider only the likelihood, which configuration is the most
probable? If we consider only the prior energy, which configuration
is the most probable? What if we consider the posterior energy?

6. Would you expect that minimizing the posterior energy leads to a
good segmentation? If not, try adjusting β.

5.3 Graph cuts for optimizing MRF

The interactions modelled by MRF prior make optimization (finding
an optimal configuration) of the MRF very difficult. General MRF opti-
mization methods may be very slow, but efficient graph cut algorithms
can be used for a subset of problems.

A binary (two label) MRF problem with submodular second order
energy (loosely speaking an energy favoring smoothness and having
only one-clique and two-clique potentials) can be exactly solved by
finding a minimum s-t cut of a graph constructed from the energy
function 2,3,4. A minimum s-t graph cut can be found e.g. using the 2 Yuri Boykov, Olga Veksler, and Ramin

Zabih. Fast approximate energy mini-
mization via graph cuts. IEEE Transac-
tions on Pattern Analysis and Machine Intel-
ligence, 23(11):1222–1239, 2001

3 V Kolmogorov and R Zabih. What
energy functions can be minimized via
graph cuts? IEEE Transactions on Pattern
Analysis and Machine Intelligence, 26(2):
147–159, 2004

4 Y Boykov and V Kolmogorov. An exper-
imental comparison of min-cut/max-flow
algorithms for energy minimization in vi-
sion. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 26(9):1124–1137,
2004

Ford and Fulkerson algorithm, or an efficient freely available graph cut
implementation by Boykov and Kolmogorov. A multiple-label discrete
MRF problem can also utilize graph cuts via iteratively solving multiple
two-label graph cuts, e.g. by using α expansion.

In the following exercises we are using graph cuts to optimize dis-
crete MRF. Students using python may use PyMaxflow package docu-
mented at http://pmneila.github.io/PyMaxflow/index.html. MATLAB

users may use the provided code, in particular the GraphCutMex func-
tion. This is a slightly modified version of the older Boykov implementa-
tion, the newest version can be found at http://pub.ist.ac.at/~vnk/
software.html. Furthermore, MATLAB has a built-in functionmaxflow
which also implements Boykov’s algorithm and may be used instead.

To begin with, we look back at the small example with gender
labeling. Recall that the heights (in cm) of 6 persons are

d =
[

179 174 182 162 175 165
]

and we want to estimate the persons gender. For likelihood we use
squared distance from the means µM = 181, µF = 165. For the prior
we use β = 100 as a penalty for neighbouring labels being different.

http://pmneila.github.io/PyMaxflow/index.html
http://pub.ist.ac.at/~vnk/software.html
http://pub.ist.ac.at/~vnk/software.html
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We want to construct a s-t graph corresponding to this problem. The
construction is not unique. When choosing an approach, the focus is
often on constructing a graph with fewest edges, as suggested in Li
book Section 10.4.2. However, you might prefer constructing a more
intuitive graph despite having a higher number of edges. This approach
is sketched in Figure 5.3. Terminal edges (linking to source and sink)
are used for the likelihood energy terms, while internal edges model
the prior energy terms. Confirm that a cost of an s-t cut in this graph
equals to the posterior energy of the corresponding configuration.
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1
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Figure 5.3: A sketch of a s-t graph for a
gender labeling problem.

Eterminal =



1 4 196
2 49 81
3 1 289
4 361 9
5 36 100
6 256 0



Einternal =


1 2 β β
2 3 β β
3 4 β β
4 5 β β
5 6 β β


Figure 5.4: Representing a s-t graph us-
ing two matrices, one containing weights
of terminal edges and one matrix for in-
ternal edges.

To be able to compute the optimal configuration using the MATLAB

GraphCut function, we need to create two matrices which contain edge
weights to be passed to the function. The matrix containing terminal
weights and the matrix containing weights between internal nodes for
gender assignment example are shown in Figure 5.4. Wrapper in python
has a slightly different manner of passing graph weights to the function,
as explained in the package documentation (look at A first example).

Tasks

1. Install the required maxflow package (python) for graph cuts and/or
download the provided software (MATLAB).

2. Get a small scripts which solves the gender labeling problem.

3. Run the script and get familiar with the functionality of your graph-
cut solver.

4. Which configuration is optimal? Change β = 10 and solve again.
Which configuration is optimal now? Try also β = 1000.

5.4 Binary segmentation using MRF

Now we can set up and solve a binary segmentation using MRF. When
using a method for the first time, it is always a good idea to start with
an easy example, where it is clear what the desired output is. This may
be a simple image corrupted by noise, for example a noisy image of the
DTU logo.

After that, we will segment the bone image V12_10X_x502.png shown
in Figure 5.5. The image is a slice from a CT scan of a mouse tibia. You
can visually distinguish air (very dark), bone (very bright) and cartilage
(dark). The task here is to segment the image in two segments: air and
bone. Cartilage should be segmented together with air. In the next
exercise we look at multilabel segmentation, allowing us to distinguish
all three materials as in Figure 5.6.
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The model we use is still the same as in the previous exercises, with
the likelihood as the sum of squared distances, and the prior penalizing
neighboring labels being different.

Figure 5.5: A bone image.

Tasks

1. The DTU logo is of type uint8 and should be converted into double
precision (float) before any computation. You also want to divide im-
age intensities with 255, as this will simplify the weighting between
the likelihood and the prior term.

2. For the DTU logo use µ1 = 90/255 and µ2 = 170/255.

3. To pass the weights of terminal and internal edges to graph solver,
python users may use the functionality provided by maxflow, see the
example Binary image restoration but notice that it uses a different
energy formulation. MATLAB users need to construct matrices with
indexes and weights, and here it may help to start by creating
an index matrix X = reshape(1:r*c, [r, c]). You can than use
appropriate parts of X to create index part of matrices passed to
GraphCutMex.

4. For the DTU logo, choose parameter β which yields in a good
segmentation.

0 1.6384 3.2768 4.9152 6.5536

10
4

0

0.5

1

1.5
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10

4

Figure 5.6: A segmentation of bone us-
ing maximum likelihood (top) and max-
imum posterior (middle). Histograms
show intensity distributions for the three
segmented classes.

5. The bone image is of type uint16 and after converting it into double
precision you may also want to divide image intensities with 216 − 1.

6. For bone image, you need to determine the mean intensities of the air
and bone (µ1 and µ2) by inspecting the histogram. Look at maximum
likelihood configuration, to confirm that your µ1 and µ2 are suitable.
Choose a (small) parameter β and compute the optimal configuration
for this β using your graph cut solver. Then, adjust β to obtain a
visually pleasing segmentation with reduced noise in air and bone
choose. Observe how changing β affects the segmentation.

7. For your results, you may want to produce a figure showing his-
togram of the entire image, and on top of that the intensity his-
tograms of the air and bone classes, similar to how it was done in
the modelling exercise.

5.5 Multilabel segmentation usign MRF (optional)

Multilabel segmentation is obtained using an iterative α expansion algo-
rithm. In python, use the maxflow.fastmin.aexpansion_gridfunction
which is a part of maxflow.fastmin. For those using MATLAB we pro-
vide a function multilabel_MRF which implements α expansion. Read
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the help text of the function for explanation on input and output vari-
ables.

You should first verify the quality of the solution provided by the α

expansion algorithm by segmenting the synthetic image, for example
circles. How does the energy of the graph cut solution compare to
the energies of the configurations found in the modeling exercise? Try
changing β to see how it affects the result.

Use the α expansion algorithm to segment the bone image into
air, cartilage and bone class. The challenge here is to distinguish
between air and cartilage. You should aim at producing a visually
pleasing result with cartilage as solid as possible (without noisy pixels
segmented as air) and air as clean as possible (without noisy pixels
segmented as cartilage). A good result can be obtained by tweaking two
parameters: the mean value for the cartilage class and the smoothness
weight β. The mean intensity for air and bone class can be estimated
from the histogram.When adjusting a mean value for cartilage, choose
first no smoothing (β = 0) and try to obtain a reasonable (but noisy)
segmentation. Then increase β to remove the noise.

After you have tuned the parameters and obtained a nice segmen-
tation, try segmenting the other bone image (V8_10X_x502.png). Can
you use the same parameters? Why?



6 Deformable models

Often, image segmentation involves a combination of two terms:
one dealing with the image data and the other describing a desirable
segmentation. For example, we have used Markov random fields to
impose smoothness on the segmentation. The topic of this chapter,
deformable models for image segmentation, is another strategy which
combines two contributions: the first originating from the image, and
the second imposing smoothness.

Figure 6.1: A curve (top) and its two dis-
crete representations: implicit (middle)
and parametric (bottom).

With deformable models, image segmentation is performed by evolv-
ing (moving, displacing) a curve in an image. The curve moves under
the influence of external forces, which are computed from the image
data, and internal forces which have to do with the curve itself.

Deformable models are generally classified as either parametric (also
called explicit) or implicit (in the context of image segmentation also
called geometric), depending on the method used for representing the
curve, see Figure 6.1. Despite this fundamental difference in curve rep-
resentation, the underlying principles of both methods are the same 1.

1 Chenyang Xu, Anthony Yezzi Jr, and
Jerry L Prince. On the relationship be-
tween parametric and geometric active
contours. In The Asilomar Conference on
Signals, Systems,and Computers, volume 1,
pages 483–489. IEEE, 2000b

In the exercise for this chapter, we use parametric curve represen-
tation, often called a snake 2, C(s) = (x(s), y(s)) where parameter

2 Michael Kass, Andrew Witkin, and
Demetri Terzopoulos. Snakes: Active con-
tour models. International Journal of Com-
puter Vision, 1(4):321–331, 1988

s ∈ [0, 1] is an arclength. In a discrete setting, this becomes a se-
quence of points (xs, ys), and parameter s becomes a discrete index
s = {1, . . . , n} indicating ordering of the points. It is convinient to
represent such a curve using an n× 2 array (matrix) of numbers (coor-
dinates).

In the exercise we consider an image where the task is to separate
the foreground from the background. At any time, a curve C divides
the image into inside and outside region. We want to deform the curve
such that it, eventually, delineates the foreground. In the notation, we
will use subscripts in and out for inner and the outer region of the
curve.

The curve is guided by the segmentation energy E, which should be
defined such that the desired segmentation has a minimal energy. The
desired segmentation should depend on the image data, but should
also be relatively smooth. To incorporate those two factors, there are
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two energy contributions E = Eext + Eint. Here, we use Eext to denote
external energy, which is a contribution to the segmentation energy
determined by image data. And we use Eint for internal energy, which
has to do with the curve itself.

A segmentation is obtained by iteratively moving the curve to min-
imize the energy, and the most challenging part of the approach is
deriving energy-minimizing curve deformation forces F = −∇E. Since
energy may be broken in two contributions, the forces also have two
terms, F = Fext + Fint.

To allow deformation, the curve is made dynamic (time-dependable),
and its change in time, often denoted evolution, is given by

∂C
∂t

= F(C) .

This exercise is inspired by the Chan-Vese algorithm 3, a deformable 3 Tony F Chan and Luminita A Vese. Ac-
tive contours without edges. IEEE Trans-
actions on image processing, 10(2):266–277,
2001

model for image segmentation which minimizes a piecewise-constant
Mumford-Shah functional. In the original formulation, Chan-Vese uses
a implicit (level-set) curve representation and a two-step optimization.
We will use the solution of the Chan-Vese approach, but, instead of us-
ing level-sets, we will combine it with a parametric curve representation.
For this reason, even though our model has an external energy identical
to the one used by the Chan-Vese algorithm, the internal energy we use
is the same as what is used for snakes.

In the following two sections, we briefly cover first the external, and
then the internal energy. The detailed explanation on how external
forces are derived from external energy can be found in the Chan-
Vese article. How internal forces are derived is explained in Chapter
3 of the Handbook of Medical Imaging, Image Segmentation Using
Deformable Models 4, subsection 3.2.1 and 3.2.4. Recall that you already 4 Chenyang Xu, Dzung L Pham, and

Jerry L Prince. Image segmentation using
deformable models. Handbook of medical
imaging, 2:129–174, 2000a

implemented curve smoothing as one of the introductory exercises
during the first week of the course.

6.1 External energy, Chan-Vese

An external energy closely related to the two-phase piecewise constant
Mumford-Shah model is

Eext =
∫

Ωin

(I −min)
2 dω +

∫
Ωout

(I −mout)
2 dω

where I is an image intensity as a function of the pixel position, while
min and mout are mean intensities of the inside and the outside region.
This energy seeks the best (in a squared-error sense) piecewise constant
approximation of I. An evolution that will deform a curve toward an
energy minimum is derived as

Fext = (min −mout) (2I −min −mout) N . (6.1)
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where N denotes an outward unit normal of the curve.
In other words, the curve deforms in the normal direction, and

for every point on the curve we only need to compute the (signed)
length of the displacement. We will denote the scalar components of
the force as fext = (min − mout) (2I −min −mout). Note that this can
be written as fext = 2(min −mout)

(
I − 1

2 (min + mout)
)

, i.e. the signed
length of displacement is proportional to the difference between the
image intensities and the mean of min and mout.

6.2 Internal forces, snakes

The internal energy is determined solely by the shape of the curve. In
the classical snakes formulation internal forces discourage stretching
and bending of the curve

Eint =
1
2

∫ 1

0
α

∣∣∣∣∂C
∂s

∣∣∣∣2 + β

∣∣∣∣∂2C
∂s2

∣∣∣∣2 ds ,

with weights α and β controlling the elasticity (first-order derivative)
and the rigidity (second-order derivative) term. Corresponding defor-
mation forces are

Fint =
∂

∂s

(
α

∂C
∂s

)
− ∂2

∂s2

(
β

∂2C
∂s2

)
. (6.2)

Those internal (regulatory) forces are the key to success of deformable
models, as they provide robustness to noise.

Since our snake is discrete, the derivatives should be approximated
by finite differences. Applying internal forces (regularization) now
corresponds to filtering (smoothing) the curve with filters for the second

and the (negative) fourth derivative, i.e. the filter
[

1 −2 1
]

and

the filter
[
−1 4 −6 4 −1

]
. Those contributions, weighted by

parameters α and β are now used to regularize (smooth) the curve. In
efficient implementation this is done by a matrix multiplication, and
for better stability we use a backward Euler scheme. For slightly more
detail, you can revise the introductory exercise on curve smoothing
1.1.3.

6.3 Final model

For a snake consisting of n points and represented using an n× 2 matrix
C, a final discrete update step is, adapted from Handbook of Medical
Imaging, Eq. (3.22),

Ct = Bint

(
Ct−1 + τ diag(fext)Nt−1

)
. (6.3)
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In this expression τ is the time step for displacement, while Bint is the
n × n matrix used for regularizing the curve and taking the role of
the internal forces. Curve normals are represented as an n× 2 matrix
N, and pointwise displacement is obtained by multiplying N with a
n× n diagonal matrix containing the displacement lengths. Note that
the multiplication with matrix diag(fext) is simpler to implement as a
row-wise multiplication with a vector fext.

6.4 Exercise: Segmentation and tracking

We will use a deformable model to segment and track a simple organism
in a sequence of images. You are provided with two image sequences:
crawling amoeba 5 and water bear 6. The same code can be used for 5 The video of crawling amoeba is from

Essential Cell Biology, 3rd Edition Al-
berts, Bray, Hopkin, Johnson, Lewis, Raff,
Roberts, & Walter, https://www.dnatube.
com/video/4163/Crawling-Amoeba
6 The video of water bear is from
Olympus microscopy resources, https:
//www.olympus-lifescience.com/ru/

microscope-resource/moviegallery/

pondscum/tardigrada/echiniscus

both sequences, with only a minor adjustment in a pre-processing step.
While tracking is the goal of the exercise, it is always advisable to

use very simple problems while writing the first version of the code.
You are therefore advised to first implement curve deformation (steps
3 to 9 in the approach sketched below) for a simple image, for example
the provided plusplus.png. Once you can segment plus-plus, move on
to segmenting and tracking image sequences.

Steps for solving the whole tracking problem are listed below, with
the hints for MATLAB and python users. For step 8, we provide a couple
of helping functions.

Tasks

1. Read in and inspect the movie data. In MATLAB you may use
VideoReader. You may save the image sequence as a multi-dimensional
array, or as a movie object using im2frame conversion. In python you
may use function get_reader from imageio package.

2. Process movie frames. For our segmentation method to work, movie
frames need to be transformed in grayscale images with a significant
difference in intensities of the foreground and a background. For
the movie showing the crawling amoeba (which is white on a dark
background), it is enough to convert movie frames to grayscale.
Transforming intensities to doubles between 0 and 1 is advisable, as
it might prevent issues in subsequent processing. For the movie of
the echinicsus, we want to utilize the fact that foreground is yellow
while background is blue. A example of suitable transformation is
(2b− (r + g) + 2)/4, with r, g, b being color channels (with values
between 0 and 1).

3. Choose a starting frame and initialize a snake so that it roughly
delineates the foreground object. You may define a circular snake

https://www.dnatube.com/video/4163/Crawling-Amoeba
https://www.dnatube.com/video/4163/Crawling-Amoeba
https://www.olympus-lifescience.com/ru/microscope-resource/moviegallery/pondscum/tardigrada/echiniscus
https://www.olympus-lifescience.com/ru/microscope-resource/moviegallery/pondscum/tardigrada/echiniscus
https://www.olympus-lifescience.com/ru/microscope-resource/moviegallery/pondscum/tardigrada/echiniscus
https://www.olympus-lifescience.com/ru/microscope-resource/moviegallery/pondscum/tardigrada/echiniscus
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with points (x0 + r cos α, y0 + r sin α), where (x0, y0) is a circle center,
r is a radius and angular parameter α takes n values from [0, 2π〉.
See Figure 6.2 for example, but use approximately 100 points along
the curve.

4. Compute mean intensities inside and outside the snake. In MATLAB

you can use poly2mask function. In python use polygon2mask from
package skimage.draw introduced in version 0.16.
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Figure 6.2: The first frame of a crawling
amoeba and a circular a 20-point snake.
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Figure 6.3: Red curve shows image in-
tensities along the snake in Figure 6.2.
Dashed gray lines indicate min and mout,
while gray line indicates the mean of min
and mout. Signed length of the curve dis-
placement fext is computed from the dif-
ference between the red curve and the
gray line.

Figure 6.4: External force on the curve
indicated by arrows. Displacement is in
the normal direction and the length of
the displacement is given by the values
shown in Figure 6.3.

Figure 6.5: The curve and the external
forces after 20 iterations.

5. Compute the magnitude of the snake displacement given by Eq. (6.1).
That is, for each snake point, compute the scalar value giving the
(signed) length of the deformation in the normal direction. This
depends on image data under the snake and estimated mean intensi-
ties, as shown in Figure 6.3. A simple approach evaluates the image
intensities under the snake by rounding the coordinates of the snake
points. A more advanced approach involves interpolating the image
at the positions of snake points for example using bilinear interpo-
lation, which is in MATLAB implemented in function interp2, and
is in python available under the same name in scipy.interpolate

package.

6. Write a function which takes snake points C as an input and returns
snake normals N. A normal to point ci can be approximated by
a unit vector orthogonal to ci+1 − ci−1. (Alternatively, and slightly
better, you may average the normals of two line segments meeting
at ci.) Displace the snake. Estimate a reasonable value for the size
of the update step by visualizing the displacement. You should
later fine-tune this value so that the segmentation runs sufficiently
fast, but without introducing exaggerated oscillations. This step
corresponds to computing the expression in the parentheses in the
Eq. (6.3).

7. Write a function which given α, β and n constructs a regularization
matrix Bint. Your code from the introductory exercise could be used.
Apply regularization to a snake. Estimate a reasonable values for
the regularization parameters α and β by visualizing the effect of
regularization. You should later fine-tune these values to obtain a
segmentation with the boundary which is both smooth and suffi-
ciently detailed. This step corresponds to matrix multiplication on
the right hand side of the Eq. (6.3).

8. The quality of the curve representation may deteriorate during evo-
lution, especially if you use a large time step τ and/or weak reg-
ularization, i.e. small α and β. To allow faster evolution without
curve deterioration, you may choose to apply a number of substeps
(implemented as subfunctions) which ensure the quality of the snake:
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• Constrain snake to image domain.

• Distribute points equidistantly along the snake. This can be
obtained using 1D interpolation (function interp1).

• Apply heuristics for removing crossings from the snake. For
example, if you detect self-intersection, identify two curve seg-
ments separated by the intersection and reverse the ordering of
the smallest segment.

We provide functions for distributing points and removing crossings,
in MATLAB and in python.

9. Repeat steps 4–8 until a desirable segmentation is achieved. Note that
the regularization matrix only depends on regularization parameters
and a number of snake points. This is constant when the size of the
snake and the regularization are fixed, which is a typical case. It is
therefore sufficient to precompute Bint prior to looping. Figure 6.5
shows our 20-point snake during evolution.

10. Read in the next frame of the movie, and use the results of the
previous frame as an initialization. Evolve the curve a few times by
repeating steps 4–8.

11. Process additional frames of the image sequence.



7 Layered surfaces

A segmentation problem can sometimes be geometrically con-
strained. We may for example be interested in segmenting a roughly
horizontal layer or a roughly circular object. In 3D we may be in-
terested in terrain-like surface, a tubular object, or a spherical object.
Such topological constraints strongly reduce the solution space for the
segmentation, and may turn an otherwise challenging problem into an
easily solvable problem.

An example of segmentation problem which may benefit from con-
straining the solution, such that it consists of layers, is shown in Fig-
ure 7.1.

Figure 7.1: OCT (optical coherence to-
mography) image of retina. Quantify-
ing the thickness of retinal layers informs
about eye disease and is therefore of clin-
ical importance.

In this exercise, we focus on optimal net surface detection via graph
search originally suggested by Wu and Chen1 and popularized by Li,

1 Xiaodong Wu and Danny Z Chen. Op-
timal net surface problems with applica-
tions. In Automata, Languages and Program-
ming, pages 1029–1042. Springer, 2002

Wu, Chen and Sonka2. To segment terrain-like surfaces, they construct a

2 Kang Li, Xiaodong Wu, Danny Z Chen,
and Milan Sonka. Optimal surface seg-
mentation in volumetric images – a
graph-theoretic approach. IEEE Trans-
actions on Pattern Analysis and Machine
Intelligence, 28(1):119–134, 2006

graph on a set of sample points from a volume, such that the roughness
of possible solutions is constrained. The optimality of the solution
is defined in terms of a volumetric cost function derived from the
data. The algorithm can find multiple interrelated layered terrain-
like and tubular surfaces, which made it applicable for medical image
segmentation and led to numerous extensions. One important extension
involves a cost function which determines an optimal placement of the
surface: a cost function, originally defined only in terms of on-surface
appearance, has been extended to incorporate appearance of the regions
between surfaces 3.

3 Mona Haeker, Xiaodong Wu, Michael
Abràmoff, Randy Kardon, and Milan
Sonka. Incorporation of regional infor-
mation in optimal 3-d graph search with
application for intraretinal layer segmen-
tation of optical coherence tomography
images. In Information Processing in Medi-
cal Imaging, pages 607–618. Springer, 2007

We will here review an algorithm for finding optimal layered surfaces
in 3D, with focus on the inputs and the outputs. For details on how
this algorithm works, the reader is referred to article by Li et al. Note
that while the theory given in 7.1 covers the 3D case (surfaces in the
volume), the exercise in 7.4 is on 2D case (curves in the image).

We also very briefly cover the principle of transforming the data into
a volumetric cost, which is the input to the layered surface detection
algorithm. Also this aspect of the layered surface detection is simplified
for the exercise, where we only consider cost functions derived directly
from pixel intensities.
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7.1 Layered surface detection

In a discrete volume x ∈ {1, . . . , X}, y ∈ {1, . . . , Y}, z ∈ {1, . . . , Z},
a terrain-like surface s defined by z = s(x, y) satisfies a smoothness
constraint (∆x, ∆y) if

|s(x, y)− s(x− 1, y)| ≤ ∆x and |s(x, y)− s(x, y− 1)| ≤ ∆y . (7.1)

For a cost volume c(x, y, z), an on-surface cost of s is defined as

Con(s, c) =
X

∑
x=1

Y

∑
y=1

c(x, y, s(x, y)) . (7.2)

The optimal net surface problem is concerned with finding a terrain-
like surface with a minimum cost among all surfaces satisfying the
smoothness constraint.

The polynomial time solution presented in the work by Wu and Chen
transforms the optimal net surface problem into a problem of finding a
minimum-cost closed set in a node-weighted directed graph with nodes
representing volume voxels. This is further transformed into a problem
of finding a minimum-cost s-t cut in a related arc-weighted directed
graph. Minimum-cost s-t cut can be solved in polynomial time and
efficiently found using the algorithm of Boykov and Kolmogorov 4, a 4 Y Boykov and V Kolmogorov. An exper-

imental comparison of min-cut/max-flow
algorithms for energy minimization in vi-
sion. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 26(9):1124–1137,
2004

well known tool for many image segmentation tasks. While the optimal
net surface problem is ultimately solved using the minimum-cost s-t
cut algorithm, it should be noted that the graph constructed for surface
detection is different from the graph used for Markov random fields.

The solution to the optimal net problem gives a practical tool for
detecting a surface in a volume, or a curve in an image. To use the tool,
we need to (somehow) transform the image data into a cost function
with the property of having small values in regions where we expect to
find the surface. The practical value of the solution to the optical net
problem is further increased by two very useful extensions which we
describe next.

7.1.1 Multiple surfaces

The extension to multiple surfaces developed in 5 may be exemplified 5 Kang Li, Xiaodong Wu, Danny Z Chen,
and Milan Sonka. Optimal surface seg-
mentation in volumetric images – a
graph-theoretic approach. IEEE Trans-
actions on Pattern Analysis and Machine
Intelligence, 28(1):119–134, 2006

by considering two terrain-like surfaces s1 and s2. The surfaces are said
to meet an overlap constraint (δlow, δhigh) if

δlow ≤ s2(x, y)− s1(x, y) ≤ δhigh . (7.3)

Given two cost volumes c1 and c2 the total cost associated with surfaces
s1 and s2 is

Con(s1, c1) + Con(s2, c2)
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and the optimal surface detection will return a pair of surfaces with a
minimum cost among all surfaces satisfying overlap and smoothness
constraint. Depending on the problem at hand c1 and c2 may be
different or identical, and likewise smoothness constrains may vary or
be the same for the two surfaces.

7.1.2 In-region cost

When detecting only one surface s, instead of on-surface cost as in 7.2
we may define a cost for the two regions: the one below the surface
and the one above the surface. The cost of the surface s is then given by

Cin(s, cbelow, cabove) =

=
X

∑
x=1

Y

∑
y=1

s(x,y)

∑
z=1

cbelow(x, y, z) +
Z

∑
z=s(x,y)+1

cabove(x, y, z)

 . (7.4)

That is one surface may be found by defining two cost volumes: one
with small values (dark) below and on the surface, and the other with
small values above the surface. In-region cost is evaluated over larger
area, making this approach very robust to noise. It is also practical in
cases where the boundary between two regions is blurry.

Finally, two set of layered (i.e. non-intersecting and ordered) surfaces
give rise to an in-region cost corresponding to the regions between two
neighboring surfaces. So for two surfaces s1 and s2 we have

Cin(s1, s2, c1,2) =
X

∑
x=1

Y

∑
y=1

s2(x,y)

∑
z=s1(x,y)+1

c1,2(x, y, z) . (7.5)

This cost, together with the cost for the region under the surface s1 and
the region over the surface s2, can be incorporated into the minimization
problem 6. In the text below, we use notation c0,1 and ck,k+1 for the cost 6 Mona Haeker, Xiaodong Wu, Michael

Abràmoff, Randy Kardon, and Milan
Sonka. Incorporation of regional infor-
mation in optimal 3-d graph search with
application for intraretinal layer segmen-
tation of optical coherence tomography
images. In Information Processing in Medi-
cal Imaging, pages 607–618. Springer, 2007

volumes below the first and above the last (k-th) surface.

7.2 Summary

To summarize, for finding K cost-optimal layered surfaces we need to
define
• K on-surface cost volumes ck, k = 1, . . . , K, and/or
• K+1 in-region cost volumes ck,k+1, k = 0, . . . , K.
The set of feasible surfaces is given by
• K smoothness constraints

(
∆k

x, ∆k
y

)
, k = 1, . . . , K and

• K−1 overlap constraints
(

δk,k+1
low , δk,k+1

hight

)
, k = 1, . . . , K−1.

Layered surface detection has found an immediate use for detecting
tubular surfaces. The main principle is the fact that a circle x2 + y2 =
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ρ2 appears as a straight line r = ρ when represented in polar (r, θ)

coordinates. Detecting a tubular surface is achieved by representing
the volumetric data in a cylindrical coordinate system (r, θ, z) with the
longitudinal axis r = 0 roughly aligned with the center of the tube. We
call this transformation unwrapping the volume, and we also say that
the volume is sampled along the radial rays. An important practical
parameters for unwrapping are the radial and the angular resolution.
In the unwrapped representation, the tubular surface is terrain-like and
can be defined as r = s(θ, z). When using layered surface detection
for detection of tubular surfaces, additional constraints are added to
ensure a smooth transition over θ = 0.

7.3 Constructing cost volumes

The surfaces returned by the layered surface detection algorithm are
optimal in terms of the volumetric cost. Therefore, as mentioned, to
detect a surface we need to define a cost volume which takes small
values where the data V(x, y, z) supports the surface k. This modelling
step, crucial for the performance of the algorithm, is fully dependent
on the data.

The transformation from image intensities to cost function often
involves filtering, computing gradients or cumulative sums, truncating
values etc. Finding a suitable cost function may require some expertise.

If the surface to be detected is characterized by a certain voxel
intensity vs, then the cost volume may be defined as (V − vs)2. More
often, the surface divides two regions of different intensities, so cost
volume needs to be defined in terms of change of intensity. When
computing intensity changes for tubular surfaces, the best approach
is to first unwrap the volume, and then compute the change in the r
direction.

7.3.1 Examples

Figure 7.2 demonstrates the use of the layered surface detection for
detecting a terrain-like curve in an image.
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A 400×140 pixels
image

Thresholding (for
comparison)

No smoothness
constraint

∆x=50 ∆x=2 ∆x=1
∆1

x=2, ∆2
x=2,

δ1,2
low=5

∆1
x=1, ∆2

x=2,
δ1,2

low=5
∆1

x=2, ∆2
x=2,

δ1,2
low=15

∆1
x=2, ∆2

x=2,
δ1,2

low=30, δ1,2
high=40

Surface on bright
pixels

On-dark and
on-bright, δ1,2

high=60
Four on-dark

surfaces
Eight surfaces, nine

region costs

Figure 7.2: Output of layered surface de-
tection. First three images serve to illus-
trate the problem). Images 4–6 show how
changing the smoothness constraint in-
fluences the result. Images 7–10 demon-
strate the use of the overlap constraint.
Images 11–12 demonstrate the use of dif-
ferent cost functions. Image 13 is a four-
surface detection, while image 14 uses
region costs.
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7.4 Exercise: Layered surfaces in 2D

In this exercise you will get familiar with layered surfaces. We will only
consider layered surfaces in 2D.

Figure 7.3: Layers in limestone.

Tasks

1. Run the script on_surface_cost_example which demonstrates the
use of on-surface cost. In this case we want to detect dark lines, so
for on-surface cost we use image intensities. Get familiar with the
functions for computing the optimal solution.

2. Run the script in_region_cost_example which demonstrates the use
of in-region cost. In this case we want to separate the dark and the
brigth regions, so for in-regions cost of dark region we use image
intensities I, while for bright region we use 255− I. Get familiar
with the functions for computing the optimal solution and passing
the region costs to the solver.

3. Inspect the image rammed-earth-layers-limestone.jpg. Use the
layered surface detction to detect the darkest line in the image,
shown red in Figure 7.3. Then, detect two dark lines (blue and red
line in the figure). Finally, detect the lines partitioning the dark
regions, as shown in green in Figure 7.3.

7.5 Exercise: Quantifying dental tomograms

In this exercise, you will use layered surface detection to solve a concrete
image analysis problem. The problem may be solved using different
approaches, and you are encouraged to find your own solution. You
can therefore interpret tasks below as hints, and you don’t need to solve
all the tasks.

Figure 7.4: Two slices from a dental tomo-
gram with different measure of osseoin-
tegration.

We will address the problem of quantifying dental tomograms. The
success of the dental implants depends on osseointegration, the forma-
tion of a direct interface between an implant and bone. An experiment
was conducted to experiment how different conditions and treatments
affect ossointegration. To assess the outcome of the experiment, we
want to measure the interface between an implant and the bone.

For example consider the two slices in Figure 7.4.

Tasks/hints

1. Inspect the data.

2. Use unwapping to handle tubular (circular) data.
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3. Detect the layer corresponding to the surface of the dental implant.
You may treat the slices individually or as a 3D volume.

4. For one measure of osseointegration consider a curve displaced
20 pixels from the surface of the implant. Express the measure of
osseointegration as the percentage of this curve which is passing
trough bone. You may use thresholding to divide bone from air
(threshold is around 110).

5. For another measue of osseointegration detect a surface (curve)
defining the transition from bone to air in vicinity of the implant
surface. Quantify the distance between the bone and the implant, for
example as the mean distance. You may also produce a histogram of
distances.



Part III

Image analysis with neural
networks
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Neural networks are very useful for a range of image analysis
tasks including segmentation, detection, classification, etc. Neural
networks are often easy to adapt to a specific problem and they allow
approximating an unknown function f ∗ that, based on some input x,
can predict the output y even without a priori knowing the relation
between x and y. This is done by learning a set of parameters θ from a
training set, i.e. of corresponding input values X and predictions Y. In
image analysis problems, the input will typically be an image or a part
of an image, and the output is a scalar vector or an image.

A range of high-performance libraries for neural networks exists
that are very well suited for solving a number of problems also in
image analysis. The aim here is, however, to give an understanding of
the basic elements of neural networks and get experience with their
functionality. This will be done by implementing a feed forward neural
network, a Multilayer Perceptron (MLP). The first task is to separate
simple point sets. This is not an image analysis task, but it is chosen
as a simple and easy to visualize task that can help verifying that the
implementation is correct. Furthermore, it will allow some experience
with various model parameters. This implementation will later be
applied to image classification and image segmentation.



8 Feed forward neural network

A neural network is often drawn as a directed graph as shown
in Figure 8.1. The input layer is shown on the left, hidden layers are
in the middle, and the output layer is to the right. This exercise is
based on the description in the Deep Learning book1. Chapter 5 in the 1 Ian Goodfellow, Yoshua Bengio, Aaron

Courville, and Yoshua Bengio. Deep learn-
ing, volume 1. MIT press Cambridge,
2016

book Pattern Recognition and Machine Learning2 also gives a good

2 CM Bishop. Pattern recognition and
machine learning., 2006

introduction to neural networks.
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Figure 8.1: Example of a neural network
with an input layer, one hidden layer, and
an output layer. This is termed a one
layer network, since it has one hidden
layer. Typically, there will be many hid-
den layers.

8.1 Concept of neural network

Deep Learning book (Goodfellow et al.) covers both the fundamentals
and the details of the deep learning method. Here, we will give a
brief introduction to a simple feed forward network. You will later
implement a more general version of a feed forward network.

Conceptually we want to construct a function f that takes a vector x
as input and predicts a vector y

f (x) = y.

In image analysis, the input x will often be an image reshaped into a
vector (elements of the vector are all pixel values). The output depends
on the problem to be solved. If we deal with a classification problem,
the output will typically be a vector of class probabilities. E.g. if there
are k classes, y will be a k-dimensional vector, where each element in
the vector is the probability for belonging to one of the k classes. If we
are doing image segmentation into L labels, then the output will be
an D× L matrix where each element is a probability of the i-th pixel
belonging to the j-th label where i = 1, ..., D and j = 1, ..., L.

There are steps in deep learning that require design choices. This
includes choices such as number of layers, number of nodes in these
layers and decisions regarding regularization parameters. Such settings
are referred to as hyper-parameters of the model (opposed to the edge
weights that are the model parameters and will be updated during
training).
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We will start by explaining the forward model of the feed forward
neural network. Through the forward pass we get the model prediction,
which solves our image analysis problem. But in order to construct
a model which gives us the desired results, we must first tune the
parameters of the model. This is done by changing the edge weights
such that the model can correctly predict the values of a training set.
When tuning the model parameters we use the backpropagation algorithm,
which will be explained after the forward model.

x0

x1

x2

h0

h1

h2

h3

y1

y2

W(1) W(2)

Figure 8.2: Simple three layer neural net-
work.

8.2 Forward model

For simplicity, we start by describing the network shown in Figure 8.2.
This network will solve a classification problem. The network takes a
two dimensional input vector (x1, x2) and outputs a probability for two
classes. The network contains an input layer of three nodes (also called
neurons), where two take the values of the input x1 and x2 (independent
variables) and one node, called the bias node, is set to x0 = 1. The
hidden layer contains four nodes including three nodes connected to
the input layer (h1, h2, h3) and the bias node h0 = 1. The output layer
contains the two predicted values (y1, y2) (dependent variables). The
weights of the edges connecting the nodes are termed w(l)

ij for the edge
connecting node j from layer l − 1 with node i in layer l.

The values of the nodes in the hidden layers are computed by first
computing a weighted linear combination zi of the node values and the
edge weights followed by a non-linear activation function. Here we use
the max function a(zi) = max(zi, 0), which in deep learning is called
the rectified linear units function (ReLU) to obtain hi. We have

zi =
D

∑
d=0

w(1)
id xd , (8.1)

hi = a(zi) = max{0, zi} , (8.2)

ŷj =
M

∑
m=0

w(2)
jm hm . (8.3)

Since the output of the network should be used for classification, we
want to interpret the output values as probabilities, i.e. the element
yj should be seen as the probability of the input belonging to the j-th
class. Therefore, we must transform the values ŷj into positive values
summing to 1. For this we use the softmax function

yj =
exp ŷj

∑K
k=1 exp ŷk

. (8.4)

When solving classification problem, each input will be put in the
output class j∗ with the highest value of all yj.
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Note that the output of the network is defined by the set of network
weights w(l)

ij .

8.3 Backpropagation

We now want to train the network, i.e. adjust the weights of the network
such that the output f gives the desired output. For this, we define a
loss function, which is a measure of how different is the current output
from the desired output. To measure the loss we need some data for
which we know the desired values, also called the target values.

During training, we minimize the loss over a training set of inputs
and the associated target values. In training we use the backpropagation
algorithm to compute the gradient of the loss function with respect
to each weight. Then we use an iterative optimization method called
stochastic gradient descent. Just as in gradient descent the loss is
minimized by taking steps proportional to the negative gradient.

For a classification problem, we use the cross entropy loss function
computed from the predicted value y and the target t as

L = −
K

∑
k=1

tk ln yk , (8.5)

where tk is the target value of the prediction where

tk =

{
1 if class label is k
0 otherwise

. (8.6)

The cross entropy loss gives zero if y = t and otherwise a positive value
− ln yk∗ , where k∗ is the target class.

When training the network we use the predictions and targets for all
data in our training set. However, when updating weights we do not
consider the loss function for all inputs and targets at once. Instead, we
consider one input (or a smaller sample of inputs called a minibatch)
in a random order (therefore the term stochastic in the name of the
optimization). One cycle through the full training dataset is called one
epoch.

In each iteration of the stochastic gradient descent we evaluate partial
derivatives for a certain (fixed) input in order to determine how change
in each w(l)

ij affects L. Then we use an update

w(l)new
ij = w(l)

ij − η
∂L

∂w(l)
ij

,

where η is a user-chosen learning rate.
In the derivation below we explain the computation of the partial

derivatives using backpropagation. Change in each w(l)
ij contributes to
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the change in L only trough z(l)i and using the chain rule the derivative
may be separated into two elements

∂L

∂w(l)
ij

=
∂L

∂z(l)i

difficult

∂z(l)i

∂w(l)
ij

easy

.

Since z(l)i is a linear function of w(l)
ij the second (easy) partial derivative

evaluates to h(l−1)
j (or, in the case of the first layer, input values xj).

So when implementing backpropagation, the node values need to be
stored during the forward pass.

The first (more difficult) partial derivative needs to be evaluated for
each z(l)i . We denote these values by δ

(l)
i = ∂L

∂z(l)i

, such that we have

∂L

∂w(l)
ij

= δ
(l)
i h(l−1)

j . (8.7)

Notice here that the update for weight w(l)
ij is a product of two values,

the first value depends only on the to-node and the second value
depends only on the from-node.

We still need to evaluate δ
(l)
i , i.e. establish how a change of z(l)i affects

L. This depends only on what happens in the layers further down the
pipeline, and on the choice of the non-linear activation used on z(l)i . We
distinguish between the last layer (where we use the softmax function)
and the internal layers.

For the last layer we express L as a function of z(l
∗)

k

L = −∑
k

tk ln
exp z(l

∗)
k

∑j exp z(l
∗)

j

=
using the proper-
ties of ln and the
distributive rule

= −∑
k

tkz(l
∗)

k + ∑
k

tk

= 1

ln ∑
j

exp z(l
∗)

j

equal for all k

.

The derivative of L with respect to z(l
∗)

i is therefore

δ
(l∗)
i = −ti +

1

∑j exp z(l
∗)

k

exp z(l
∗)

i = yi − ti . (8.8)

Now consider the internal layers. The change in z(l)i may change all
zl+1

k , and any of these changes may affect L. The chain rule gives

∂L

∂z(l)i

= ∑
k

∂L

∂z(l+1)
k

we have

∂z(l+1)
k

∂z(l)i

we need

.
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The first set of derivatives are δ
(l+1)
k for the layer further down the

pipeline. We already evaluated those for the last layer in (8.8), and this
is why we compute the update backwards trough the network. The
only remaining is to determine how the change of z(l)i affects z(l+1)

k .

From definition (8.1) we see that z(l+1)
k is a linear function of a

(
z(l)i
)

which gives
∂z(l+1)

k

∂z(l)i

= w(l+1)
ki a′

(
z(l)i
)

,

where a′ denotes the derivative of the activation function, which for
ReLU function takes a value zero for arguments smaller than zero, and
one otherwise. This is easy to determine by assessing whether h(l)i is
zero or larger. The final expression for internal layers is

δ
(l)
i = a′

(
z(l)i
)
∑
k

w(l+1)
ki δ

(l+1)
k . (8.9)

8.4 Implementation

You are now ready to implement your neural network based on the
following steps.

Figure 8.3: Scatter plots of point sets to
test neural network

8.4.1 Setting up the problem

You should implement the network shown in Figure 8.2 using the
description given above. This network contains a single hidden layer,
it takes a two dimensional input and classifies the input to a two
dimensional output.

You also need some test data for running your method. We have
provided a function for MATLAB called make_data.m and a script for run-
ning it called data_example.m. In python it is all in the file make_data.py.
This code will create point-sets similar to the ones shown in Figure 8.3.
In this experiment you will visualize the output of the network on the
regular grid, so you can use all of the generated points for training.
This first experiment is to ensure that you build the neural network in
a correct way.

8.4.2 Simple three layer network

You should start with a three layer network with a single hidden layer
with five neurons, i.e. four neurons where three are connected to the
input layer and one bias neuron. It is a good idea to start making a
hand drawing of the network you should implement with the nodes,
edges and notation for the parts of the network.

Below is an elaborate description of how you can implement the
simple three layer network.
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Standardize data To ensure numerical stability of the MLP, it is a good
idea to standardize the input data to have zero mean and standard
deviation of one in each dimension. Store the mean values and standard
deviations of the original points, such that you can transform new input
points using these values.

Initialize the weight as arrays Edge weights are best stored as 2D arrays
that allow computing node values between layers using vector-matrix
multiplications. For the simple three layer network, the weight arrays
W(1) and W(2) will be of dimension 3-by-3 for mapping from layer 1 to
2 (input to hidden layers without bias) and 4-by-2 for mapping from
layer 2 to 3 (hidden layer to outputs).

It is important that you initialize the weight arrays with random
numbers that are scaled adequately. Initializing with zeros is not a good
idea, as it introduces no asymmetry between neurons. If the weights are
too large or too small, you might risk numerical instability where your
network will not converge. The current recommendation in the case
of neural networks with ReLU neurons is to initialize with normally

distributed random numbers scaled with a factor
√

2
n , where n is the

number of inputs to the neuron. I.e., use n = 3 when initializing W(1)

and n = 4 for W(2).

Forward model The forward model includes a mapping from the input
x to the hidden nodes with values z. This can be computed as a
vector-matrix multiplication

z = [x, 1]W(1) , (8.10)

resulting in the 1-by-3 vector z. Then the nodes are activated using
ReLU, that is hi = a(zi) = max(0, zi).

From the hidden layer, the value ŷ is computed using a second
vector-matrix multiplication

ŷ = [h, 1]W(2) , (8.11)

resulting in a 1-by-2 vector. This is now activated using soft-max

yj =
exp ŷj

∑2
k=1 exp ŷk

. (8.12)

You can implement the forward model as a function that takes the
data x and weights W(1), W(2) as input. The function should return the
predicted values y, but also the values in the hidden nodes h, because
these will be used in the backpropagation. In the backpropagation, we
will also need the derivative of the activation function for each neuron
in the hidden layer. But those can be obtained from hi since we know
that we use ReLU activation, such that we have a′(zi)

′ = 1 if hi > 0 and
otherwise a′(zi) = 0 . So you don’t need to store the values of zi.



advanced image analysis 73

Implementing backpropagation The backpropagation will run iteratively,
where the weights W(1) and W(2) are updated in each iteration. You
will start each iteration by computing the output of the forward pass
including y, h, and z′. From this, you can compute the loss based on
the current weights.

We will now start from the output and compute the parameters
needed to update the weights. First we compute the 1-by-2 vector

δ(2) = y− t . (8.13)

where t is the target values. From δ(2) we can compute the partial
derivatives needed for updating W(2) as a matrix (outer) product

Q(2) = [h, 1]T δ(2) . (8.14)

Note here that Q(2) is a 4-by-2 matrix, and its elements are are partial
derivatives

q(2)mj =
∂L

∂w(2)
jm

. (8.15)

We now move on compute the values δ(1) for the the hidden layer
as

δ(1) = a′ ⊗ Ŵ(2)
(

δ(2)
)T

, (8.16)

where Ŵ(2) is the 3-by-2 weight matrix based on W(2) where the last
row (corresponding to bias) has been omitted. The vector a′ is a 3-by-1
vector containing derivatives of the activation in the hidden layer, i.e. it
has elements 0 or 1. The symbol ⊗ denotes element-wise multiplication.

We can now compute the partial derivatives needed for updating
W(1) as a matrix (outer) product

Q(1) = [x, 1]T δ(1) (8.17)

Now we update the weights

W(1),new = W(1) − ηQ(1) , (8.18)

W(2),new = W(2) − ηQ(2) . (8.19)

You can implement the backpropagation as a function that takes
the data point x, weight matrices W(1) and W(2), target value t, and
learning rate η as input and returns the updated weight matrices.

If you implement the forward model and backpropagation as de-
scribed here using vector-matrix multiplications, you will also be able
to input data points x and targets t as m-by-2 arrays. When you do this,
you should remember to add values for bias nodes as m-by-1 arrays of
ones. Here the forward model will return y as an m-by-2 array and h
as an m-by-3 array.
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Test your implementation The functions make_data.m or make_data.py
returns points for training and test points on a regular grid. If you
transform these point as you standardized the training points, you can
pass the test points through the forward model, and use the ouput for
illustrating the prediction by showing the result as an image.

Batch optimization A variant of stochastic gradient descend splits the
training data into smaller subsets (minibatches) and updates weight
according to the average of the gradients for the minibatch. One cycle
through the entire training dataset is called a training epoch.

8.4.3 Variable number of layers and hidden units

In the exercise above, you have obtained a neural network with a
fixed architecture, i.e. the number of neurons and hidden layer. The
architecture is however central in modeling with neural networks, and
therefore you should make the number of layers and the number of
neurons in each of the hidden layers a part of your input choice. You
will also be needing this flexibility in the later exercises for classifying
the MNIST handwritten digits.

Suggested procedure

1. Implement a neural network keeping the single hidden layer and
with variable number of hidden units.

2. Extend this by implementing a neural network with variable number
of hidden layers and with a variable number of hidden units in each
of these layers. The number of layers and hidden units are given as
input to your function. Now you can play around with your model
and from here it is easy to modify it to include other elements like
other activation functions or minibatches.

3. Again test your implementation on the given data.

Figure 8.4: Result of training on the input
data shown in colored points, and the test
result is shown in the pixel colors in the
background.

The expected output is shown in Figure 8.4. The coloring of the
pixels in the background is obtained by passing points on the regular
grid through the forward model and coloring the result in dark or
bright gray depending on the classification result.



9 Image classification

Figure 9.1: Example of the MNIST im-
ages.

In this exercise you should build neural networks for classifying
images. We will work with the relatively easy MNIST image data set
and the more challenging CIFAR-10

1 data set. Performance will be

1 Alex Krizhevsky, Geoffrey Hinton, et al.
Learning multiple layers of features from
tiny images. 2009

measured in number of misclassified images, and the goal is to obtain
the result with the least number of misclassified images.
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Figure 9.2: Table showing a classification
performance example of a classification
of the MNIST handwritten dataset.
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Figure 9.3: Examples of classified hand-
written digits and misclassified digits.

The MNIST dataset contains images of handwritten digits of 28× 28
pixels as shown in Figure 9.1. Ground truth class labels are given
together with the images. The ground truth is 10 dimensional vectors
with 1 in the dimension representing the class containing the digit
and zeros elsewhere. MNIST contains 60000 images for training your
network. If you use all 60000 images for training your network, you
might overfit your model, and to choose when to stop training you can
split the data into a training and validation set. You can for example use
50000 images for training the network and reserve 10000 for validating
it. By classifying the validation images, you can measure if you have
overfitted your model, which is seen by a drop in classification perfor-
mance of the validation data. In addition there are 10000 images for
testing, but these should only be used for evaluating the performance
of your networks after they have been trained. Figure 9.2 and 9.3 show
a classification performance example and examples of correctly and
misclassified digits.

The CIFAR-10 data set is similar to MNIST and contains 50000 small
images for training and 10000 images for testing. The images are,
however, 32× 32 RGB color images with significantly higher variation
in appearance.

The rules for the competition are:

1. Implement your own neural network for classifying the MNIST
images.

2. Train the neural network on a part of the training data (e.g. 50000

images) and validate it on another part (e.g. the remaining 10000

images).

3. When you are satisfied with the obtained result – upload the trained
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network together with Matlab or Python code for running it.

4. Hand in a description of your network and a guide on how to run
your code

5. Be a fair player and do not use the MNIST and CIFAR-10 test data
for training your networks (can be found on the internet, but do not
use it!).

6. Do an effort in making the code efficient.

9.1 Modifications of your network

The classification will be using a fully connected feed forward neural
network, similar to the one you implemented last exercise. But in
contrast to last exercise, where data was points in two dimensions,
you now have images. We treat these as vectors, so even though
MNIST images are only 28× 28 pixels the vector representation is 784
dimensions. Therefore, the network should take in 784 dimensional
vectors and return a 10 dimensional vector for classifying the digits 0 to
9. For the CIFAR-10 data, the input vector becomes 3072 dimensional
(32× 32× 3). You can use the book on deep learning by Goodfellow et
al. 2 to get ideas for this exercise. 2 Ian Goodfellow, Yoshua Bengio, Aaron

Courville, and Yoshua Bengio. Deep learn-
ing, volume 1. MIT press Cambridge,
2016

Obtaining a strong classifier requires many iterations of the back-
propagation algorithm using 50000 training images. Therefore, it is a
good idea to utilize vectorized code in your implementation. This can
be done by computing the gradients for subsets of the training data
using minibatches. You can have a minibatch as a matrix and compute
the forward propagation and gradients using matrix operations. By
averaging the gradients obtained from the minibatch, the backprop-
agation can be carried out in the same way as you would do when
training with one sample at a time. Due to the averaging, the obtained
gradients are less affected by noise and it is typically possible to have
higher learning rates.

A part of optimizing the neural network is by changing its architec-
ture. Therefore, it is recommended that you implement your network
such that you can change the number of layers and the number of
neurons in each layer.

1. Implement a fully connected neural network for image classification.
The data should be normalized and centered, i.e. vectors of unit
length using the 2-norm and with zero mean. Besides vectorizing
the code it is also worth considering the data type. Single is faster
than double, so you should consider if you want faster computations,
at the cost of lower precision. You can experimentally evaluate if the
high precision is necessary.
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2. Train the network and plot the training and validation error for each
iteration (epoch). The dataset could be split into 50000 images for
training and 10000 for validation.

9.2 Optimizing the neural network

A large number of techniques for optimizing the performance of the
neural network has been proposed. Neural networks are typically
initialized with random numbers, but the performance depends on
the choice of the initialization strategy. You can therefore optimize the
network by experimenting with different initialization strategies.

Optimization with stochastic gradient decent can be slow, but up-
dating the gradients using momentum can accelerate the learning rate.
Momentum is obtained by computing the gradients as a weighted
combination of the previous gradient and the new gradient. Hereby,
the gradient is computed as a moving average with exponential de-
cay. Another way of ensuring convergence of the gradient decent is by
adapting the learning rate. Here you can adapt the learning rate to the
individual gradient estimates.

1. Implement one or more optimization strategies and document how
it affects the obtained result.

9.3 Regularization methods

It is important that the neural network generalizes well such that it
can classify new unseen data. Since neural networks often have many
parameters it is easy to overfit the model, especially on small datasets
where a very low training error can be obtained, but the validation
error will be high. One way to overcome the problem with training
a neural network on small datasets is through dataset augmentation,
where fake data is fabricated by small modifications of the input data.
This can be done by small permutations or by adding small amounts of
noise. Hereby a much larger dataset can be obtained, which can help
the training.

Instead of adding noise to augment the training data, small amounts
of noise may be added to the hidden units in the network. You can add
random noise in each minibatch iteration. Noise can also be added to
the output targets for obtaining better performance.

Dropout is another method for regularizing the neural network. Here
a random selection of neurons are set to zero during each minibatch
iteration leaving out these neurons in that iteration. Setting the neurons
to zero resembles having a number of different neural networks and is
inspired by ensemble methods.
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1. Try experimenting with regularization methods. You can also get
inspired by architectures that other people have had success with.



10 Convolutional neural networks

Convolutional neural networks (CNNs) have many aspect in
common with multilayer perceptrons (MLPs – fully connected feed
forward neural networks) such as being a directed acyclic graph with
weighted edges and non-linear activations. CNNs use convolutions,
or more precisely correlation filters, and the weights of the convolu-
tion kernels are the parameters that are optimized when training the
network.

Since the edge weights of the CNN are implemented using convo-
lutions, many of the edge weights have the same value. This is called
weight sharing, which means that only one edge weight is learned for
many edges. This results in a significant reduction in number of model
parameters, and therefore makes it possible to have much larger input
data compared to MLP networks. Furthermore, the use of convolutions
is very efficient, and is used in both the forward pass and the back-
propagation. During backpropagation, the weights of the convolution
kernels are updated.

Working with images in 2D makes it possible to apply additional
operations to the hidden layers. This includes for example a pooling
step typically combined with a down-scaling step. Max-pooling is an
example of a widely used pooling method, where pixels are replaced
by the maximum in a local neighborhood. Max-pooling ensures that
only the important features are kept, and makes the analysis robust to
small translations. There is a number of other operations that can be
applied, and an overview is given in chapter 9 in Goodfellow et al.1. 1 Ian Goodfellow, Yoshua Bengio, Aaron

Courville, and Yoshua Bengio. Deep learn-
ing, volume 1. MIT press Cambridge,
2016

Despite that CNNs have many aspects in common with MLPs, they
are typically more complicated and therefore not as simple to im-
plement. A large number of software frameworks are available, and
training neural networks for many engineering applications will in-
volve GPU processing. This is, however, implemented in a user friendly
way in many of the software packages and highly sophisticated neu-
ral networks can be developed using high-level programming using
e.g. python that makes these frameworks easy to use. We will work
with PyTorch and get access to GPUs (Graphics Processing Units) using
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Google Colab.

10.1 Exercise

In this exercise we will work with a model for segmentation, which has
a structure similar to the U-net2. Our model is implemented in PyTorch 2

and requires that you code in python. Setting up the model and making
sure that everything runs as expected is time consuming, so we have
prepared a Google Colab notebook for you.

The U-net is designed for image segmentation and is a Fully Convo-
lutional Network (FCN), meaning that all operations from the input to
the output are convolutions. The name sounds like a fully connected
network (MLP), but it is not the same. The FCN is a CNN containing
convolutions, pooling, up-convolutions, and skip connections. The
purpose of this exercise is to work with our segmentation network to
understand the function of all the elements in the network, such that
you will be able to use and modify the network for your application.

Figure 10.1: Data examples for the seg-
mentation exercise. The top image shows
an example of the original data. The
task is to segment individual glands in
the histological colon tissue. We have
down-sampled to half size and cropped
out 128 by 128 images for this exer-
cise. The cropped images and their la-
bels are shown in the middle and bottom.
Data from: https://warwick.ac.uk/

fac/cross_fac/tia/data/glascontest/

We will work with segmenting microscopy data of glands from
patients with colon cancer and healthy controls. The microscopy images
are shown in Figure 10.1. The data has been reshaped into 128 by
128 images in RGB and the labels are binary with the value 0 in the
background and 255 in pixels labeled to contain glands. The task is to
train our CNN to take an RGB image as input and give an image with
labels as output.

To carry out the exercise, you need a Google account. As part of your
Google account, you get access to Google Colab, where it is possible
to run scripts in a notebook interactively. There is also access to GPU,
which speeds up the training. Google Colab is especially suited for
exercises, where the analysis problems are relatively small. If you have
a larger project it is recommended that you use other computational
resources.

The data for training the model is downloaded to your Google Colab
account, but there are some test data that you can get from the data
homepage.

10.2 Suggested procedure

The exercise contains some steps to investigate the model. First you
will investigate a model with pretrained weights and later you will
train the model yourself. Since the model and the dataset is relatively
small, the model can be trained within some minutes.

Taks 1: Load the model First you should follow the link to the Google
Colab notebook and run the cell that downloads the data. After that

https://warwick.ac.uk/fac/cross_fac/tia/data/glascontest/
https://warwick.ac.uk/fac/cross_fac/tia/data/glascontest/
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you should run the cells that load the data, set up the model, and load
the pretrained model.

Task 2: Model overview To have an overview of the model, it is a good
idea to make a sketch of the model on a piece of paper, which is similar
to the drawing of the U-net. This means drawing boxes for the input
image, internal neurons (images inside the network), the output image,
and write up their dimension. Also draw arrows illustrating how layers
are connected.

Through this drawing you will see what the output image size is if
you have the 128 by 128 input image. The model can also take images
of other sizes, but not all sizes are valid. What is required for sizes of
images in this model?

Task 3: Run the model You can run the model on a test image that you
can get from the data homepage. These images has the original shape,
so you need to crop out a size that fits the model.

In cases where you have a large image, you will sometimes need
to crop out smaller images and segment them individually. To see
the effect of this, you should take one of the test images and crop it
into 128 by 128 images and segment them individually and put them
together into a full image. You can choose to have the segmentations
overlapping to smooth out boundary effects.

Visualize how a segmentation with the largest crop compares to a
segmentation assembled from smaller crops.

Task 4: Weights You can look at the weights in the trained convolutional
kernels and you can try to visualize some of them. They are, however,
very small, so they might not be very informative. You should also
investigate the size of the convolutional kernels. What happens to their
sizes as you go deeper in the network? What is the number of learnable
parameters?

Task 5: Training You should now train the model. First you will create
random model parameters by creating a new model object. What is the
output, when you have not trained the model?

You should run the model for a number of epochs. When should
you stop training? How many epochs are needed?

You can try changing the learning rate, and see how that affects the
model.

Task 6: Modify the model You can try changing the model. For example
you can try another optimizer, change the activation functions, or
modify the architecture of the model.
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You can also try working with data augmentation and dropout etc.



Part IV

Mini projects



11 Texture analysis

Image texture is important for a range of image analysis problems
like object classification and quality control. Also a number of image
processing problems like denoising and inpainting are based on prin-
ciples of texture analysis. Here you will solve a texture classification
based on the Basic Image Features described in Crosier and Griffin1 1

and an inpainting problem described in the paper by Efros and Leung2. 2

11.1 Data

The data for the exercise is found in the file called texture_data.zip

that contains images with a wide variety of textures for BIF characteri-
zation used in the first part and corrupted images to be used during
the texture synthesis part of the exercise. Examples images are shown
in Figure 11.1. You are also welcome to find your own data set for the
exercise.

Figure 11.1: Examples of three classes of
textured images.

11.1.1 Basic Image Features

This section will provide a small summary of how BIFs are estimated.
The purpose of BIF is to go from an image of high dimensionality to
a lower dimensional vector representation of the image texture. This
representation uses simple geometric image features and will enable
differentiation between different textures. The following recipe is used
to estimate BIF:

1. Convolve with six Gaussian filters to get scale-normalized filter
responses (s, sx, sy, sxx, syy, sxy).

2. Calculate the flat, slope, blob (2×), line (2×) and saddle feature
responses using the formulas from3 and (s, sx, sy, sxx, syy, sxy) from 3

Step 1.

3. Classify each pixel as flat=0, slope=1, dark blob=2, white blob=3,
dark line=4, white line=5, saddle=6, by finding the label index of the
maximum feature responses of Step 2. Denote the resulting label
image as L.
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For a fixed scale, a seven bin histogram can now be formed by
counting how many times a pixel is classified as one of the classes. This
histogram is the BIF of an image for scale σ. Please note that if we
discard the flat pixels, a six bin histogram is used per scale, however
we are generally interested in a histogram that also models scale.

Four scales: How to get a histogram? When extending this BIF represen-
tation to multiple scales, the process of forming a histogram becomes
increasingly complicated. If we choose four scales σ = (1, 2, 4, 8) we
need to run steps 1 - 3 four times. This will lead to a four channel label
image L(x; i), where x is the position in the image and i = 0, ..., 3 for
the four scales. To get the texture characterization, we have to convert
these four channels of the label image into a histogram. Each bin of this
histogram counts how often a specific label configuration occurs across
the four scales. If we ignore flat BIF regions, the pixels can be classified
as one of the labels L(x; i) ∈ {1, . . . , 6}. First we want to translate this
to a number between 0 and 1295 (i.e. 64 = 1296 unique combinations).
This is done in all pixels resulting in an image B(x) by converting the
four BIF classes to one number

B(x) =
3

∑
i=0

(L(x; i)− 1)6i . (11.1)

This means that the label combination [1, 1, 1, 1] is a pixel classified as
slope on all the scales, and similarly [1, 3, 4, 6] is a pixel that is classified
as a slope at the first scale, a blob on the second scale, a line on the
third scale, and a saddle on the fourth scale.

11.2 Texture classification

In this exercise you will experiment with Basic Image Features (BIF) for
texture description.

The BIF features are computed from the following equations:

Classify according to the largest of the features:
Flat: εs
Slope: 2

√
s2

x + s2
y

Blob: ±λ

Line: 2−
1
2 (γ± λ)

Saddle: γ

where
λ = sxx + syy

γ =
√
(sxx − syy)2 + 4s2

xy

Suggestions for experiments:
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• Illustrate the BIF response in some images using color codes similar
to how this is done in Crosier and Griffin4. 4

• Show the BIF histogram (set ε = 0, σ ∈ {1, 2, 4, 8}) for an example
image.

• Compare BIF histograms for a total of 30 images (6 texture classes,
5 images per class). Construct a 30× 30 confusion matrix containing
the histogram distances based on the L1-norm (sum of absolute
difference). Show the histogram as an image and explain the pattern.

11.3 Texture synthesis: Task 2

In this exercise you will synthesize image texture using a method sim-
ilar to the one presented in5. This method is based on fitting partly 5

overlapping image patches to an image with holes by sampling (ran-
domly) from a distribution of similar image patches. The distribution is
approximated from the image itself by measuring distances to patches
from the image itself.

Suggestions for experiments:

• Choose or construct a simple test example with repeated texture and
a small hole and fill in the missing part.

• Choose a natural image and fill in a hole. Try varying number of
patches, patch size, hole size, type of image, etc.

• Can the method be used for noise reduction? Experiment with
e.g. salt and pepper noise.



12 Optical flow

Small movements between two consecutive frames of an image
series can be modeled as optical flow. The problem of optical flow is to
determine local translations between two frames as a vector field such
that the brightness constancy constraint

I(x, y, t) = I(x + ∆x, y + ∆y, t + ∆t), (12.1)

is fulfilled. Here, x and y are spatial coordinates and t is time. In this
exercise you will implement methods for computing optical flow of the
movement between two images.

A number of algorithms have been suggested for solving the flow
problem, and a simple solution is to match patterns locally using
block matching, where a window around a point in the first image is
translated and compared to a window in the other image using e.g. sum
of squared differences. This is however a time consuming task, so other
methods based on computing differentials have been suggested. These
include the Lucas-Kanade1 and the Horn-Shunck methods2 that you 1

2

will work with in this exercise. This exercise is based on the book
Computer Vision: Algorithms and Applications3, Chapter 8 (can be 3

downloaded from http://findit.dtu.dk/). But you may also find
relevant information from the internet and the two original papers.

In this exercise, different approaches for solving the optical flow
problem are given, and it is suggested that you start by working with
the basic elements of Optical flow and then try working with the Lucas-
Kanade method or the Horn Shunck method and preferably both.
These methods have a number of common elements, so when one is
implemented it is relatively easy to implement the other.

http://findit.dtu.dk/
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12.1 Optical flow

The assumption behind optical flow is that the movement between
frames is small. Therefore, the optical flow can be computed by

∂I
∂x

u +
∂I
∂y

v = −∂I
∂t

, (12.2)

where u and v are displacements in the horizontal and vertical direc-
tions respectively. [u, v]T is the velocity of the flow field.

Task: Derive (12.2) form (12.1) by using a first order Taylor approxima-
tion.

In (12.2) two unknown parameters (u, v) must be computed, but in
a single pixel there is just one equation, so the problem is underdeter-
mined. If a small neighbourhood around a pixel is assumed to have the
same displacement, it will be possible to solve (12.2) as a linear least
squares problem, where we have Au = b, where u = [u, v]T .

Figure 12.1: Two images of the same pat-
ten shifted one pixel to the left, whereas
the center part marked in the red box is
shifted on pixel to the right.

Task: Write up the elements of A and b for a 3× 3 neighbourhood.
Two small images of 10× 10 pixels called composedIm_1.png and

composedIm_2.png are available in the optical_flow_data.zip file on
Campusnet. They are made from an image by extracting two patches
shifted by one pixel. Furthermore a 3× 3 region of the same pattern is
placed in the image, but shifted in the opposite direction as shown in
Figure 12.1. You can use these two images to try simple experiments
with optical flow.

Task: Compute the optical flow vector for a window of 3× 3 pixels
centered at (r, c) = (2, 6) and (r, c) = (5, 4), where r is the row and c
is the column. You should use a simple pixel differences to compute
the differential by using the central difference filters [−1, 0, 1] and
[−1, 0, 1]T . You can also use [−1, 1] and [−1, 1]T , but then the derivative
is computed between pixels. You can ignore this and compare the result
to the central difference filter.

The least squares solution to Au = b is found by solving the mini-
mization problem

arg min
u
‖Au− b‖2. (12.3)

Taking the derivative with regards to u and setting to zero yields

u = (ATA)−1ATb. (12.4)

This allows us to precompute ATA and ATb as a number of sums over
the image that can be obtained efficiently by filtering.
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Task: Write up the elements of ATA and ATb.

Task: Precompute the input needed for ATA and ATb and implement
a filtering scheme that sums the elements for the small test images
composedIm_1.png and composedIm_2.png. Compute the flow vectors
for the full images.

Task: Display the flow vectors on top of the images using the MATLAB

function quiver.

12.2 Lucas-Kanade method

In this and the next part you should experiment with larger images.
There are some benchmark images available from the Middlebury
benchmark homepage http://vision.middlebury.edu/flow/. Some
images from here have been uploaded to CampusNet that you can use
for this exercise. But you are also welcome to experiment with your
own images.

What you implemented in until now is a simple version of the Lukas-
Kanade method. When you are working with larger images, there are
however some practical aspects to consider. The linear system Au = b
may be ill posed such that there are no vector u that fulfills the equation.
If this is the case, the 2× 2 matrix ATA does not have an inverse.

Task: Find a way to check if there is a solution to the equation Au = b,
i.e. that ATA has an inverse. Implement that in your solution for
computing the optical flow vector field.

Task: Compute and display the flow field in two larger images from
e.g. the Middlebury dataset.

In the first part of this exercise you implemented the image differen-
tial using pixel differences. There are also other methods for computing
image differentials like central differences using the filter [−1, 0, 1] and
its transpose. You may also the first order derivative of a Gaussian.

Task: Test one or more differential filters.
Instead of treating all pixels in the window equally, better results can

be obtained by weighting the pixels using a weight matrix WAu = Wb
where W is a diagonal weight matrix, resulting in the least squares
solution u = (ATWA)−1ATWb. This can efficiently be implemented
using a wight filter e.g. a Gaussian.

Task: Implement a weighted sampling window as a filter operation.
Display the result on test images using different filter size.

http://vision.middlebury.edu/flow/
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Task: Comment on performance and processing time for the Lucas-
Kanade method.

12.2.1 Horn-Shunck method

A problem with the Lucas-Kanade method is that it operates locally, so
in regions with no texture it is not possible to compute the flow vectors.
This is solved in the Horn-Shunck method where the Laplacian over
the vector field is minimized in addition to ensuring that the brightness
is constant by minimizing

E =
∫ ∫

[(Ixu + Iyv + It) + α2(‖∇u‖2‖∇v‖2)]dxdy. (12.5)

The energy E is minimized by iteratively updating the flow vectors
using the update rules

uk+1 = ūk −
Ix(Ixūk + Iyv̄k + It)

α2 + I2
x + I2

y
(12.6)

vk+1 = v̄k −
Iy(Ixūk + Iyv̄k + It)

α2 + I2
x + I2

y
(12.7)

where ūk is the average flow over a window in the x-direction and

Ix =
∂I
∂x

, Iy =
∂I
∂y

.

Task: Implement the Horn-Shunck method and test it on two larger
images from e.g. the Middlebury dataset. Display the flow vectors.

The choice of the α parameter and the number of iterations influence
the smoothness of the obtained result. Also, the choice of how the
image is differentiated will affect the performance.

Task: Display results with varying parameter choices. Display results
of a good and a bad choice of α. Do the same for number of iterations
and size of averaging.

Task: Experiment with different choice of differentiation method.

Task: Comment on performance and processing time for the Horn-
Shunck method.



13 Nerve segmentation

This project is on the practical aspects of volumetric segmentation
using geometric priors. This is demonstrated on a problem of segment-
ing myelinated axons from the volumetric data containing scans of the
human posterior interosseous nerve.

There are various strategies for solving this problem. Here we
demonstrate the use of two approaches we already presented: Markov
random fields introduced in Chapter 5 and defromable models in-
troduced in Chapter 6. Furthermore, an approach from Chapter 7

would be very suitable for segmenting nerves (but not explained in this
project).

You will be working on the small part of the large data set. For better
understanding of the goals of image analysis, we provide background
information on the large study involving a complete data set.

13.1 X-ray tomography of human peripheral nerves

Nerve disorders caused by trauma or disease can have serious conse-
quences for the affected people. One aspect of understanding nerve
disorders involves a knowledge of the structure of peripheral nerves
and their subcomponents. This is typically obtained trough microscopy.

Imaging using conventional light and electron microscopical tech-
niques only allows a two-dimensional visualization of tissues such as
peripheral nerves. With recent advances in synchrotron imaging tech-
niques, we can now also obtain detailed three-dimensional images of
tissue. This in turn allows extraction of 3D morphological information.

For a larger study1, biopsies of the posterior interosseous nerve at 1

wrist levels were taken from otherwise healthy subjects and from sub-
jects with type 1 and 2 diabetes. The aim of the study was to determine
whether diabetes influences the radius, trajectory and organization of
myelinated axons in human peripheral nerves.

Biopsies were stained in osmium (a heavy metal used for staining
lipids) which provides contrast to the image, and embedded in Epon
(epoxy resin) for stability. The samples were then imaged using X-
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ray phase contrast zoom tomography at the European Synchrotron
Radiation Facility (ESRF, Grenoble, France) with an isotropic voxel size
of 130nm. In the obtained volumetric data, the nerve fibers are aligned
with the z direction, and the stained myelin sheaths around axons (see
Figure 13.1 for a schematic drawing of a nerve) appear circular in the
x-y slices through the volume, as shown in Figure 13.2.

Node of Ranvier
Layers of myelin

Axon

Nodes of Ranvier
Myelin sheaths

Axon

Figure 13.1: A schematic drawing of a
nerve showing an axon, myelin sheaths
and nodes of Ranvier.

Figure 13.2: One slice from the volume
showing peripheral nerves, and a region
which was extracted for the exercise.

Complete data-set contains more than 10 samples, each resulting
in a volume of a size 2048× 2048× 2048 voxels. For the exercise, we
extracted a small region from one volume, as indicated in Figure 13.2.
Furthermore, extracted volume has been downsized by a factor 2, which
yields a volume of size 350× 350× 1024. The extracted volume is saved
as a stacked tiff image nerves_part.tiff.

13.2 Segmentation of myelinated nerves

A good contrast between stained myelin sheaths and the background
makes it possible to clearly distinguish individual nerve cells in the
volume. For this reason, a reasonable segmentation strategy would
utilize dark appearance of the myelin. Segmentation may be improved
by incorporating a prior knowledge about the directionality of the
nerves.

Furthermore, circular appearance of myelin sheaths allows a seg-
mentation of a single nerve cell by aligning a closed curve with the
periphery of the myelin. For this, the circle can be manually initialized
around the nerve cell, and automatically moved to the boundary of
the myelin. For segmenting a whole nerve, the curves are automati-
cally propagated trough the volume, such that the surface moves only
slightly between the slices. In every slice the surface is to be attracted
to the boundary of the myelin layer.

Figure 13.3: 3D visualization of seg-
mented of myelinated nerves.

Try segmenting nerves using Markov random fields and deformable
models. In Figure 13.3, 13.4, 13.5 and 13.6 we show results of image
analysis performed for the original study. However, those results are
obtained on a full-resolution volumes, and using a combination of
deformable models(Chapter 6) and layered surfaces(Chapter 7). Your
results might therefore be of poorer quality.

For this open assignment, we provide some tips, but you are free to
investigate other approaches.

• For MRF segmentation you might consider further downsizing the
data or using only a subset of slices.

• When using MRF segmentation you can process the volume slice-by-
slice. This corresponds to a situation where MRF-modelled smooth-
ness prior has a parameter β for two neighbouring pixels in x and
y direction, while the change of labels for neighbours in z direction
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is not penalized. However, note that nerves are elongated in the
direction orthogonal to image slices. For this reason, it would be
more appropriate to set MRF-modelled smoothness especially high
along the z direction, and this calls for a full 3D implementation of
the MRF segmentation.

• When using deformable models note that assumption of Chan-Vese
about a object of different intensity than the background does not
apply for nerves. This is because a nerve consists of a dark myelin
and a bright axon. Instead of allowing for the automatic estimation
of the parameters min and mout by averaging, it might be better to
fix those parameters using the values estimated from the images.
Alternatively, values min and mout may be estimated from a thin
band inside and outside the curve. Figure 13.4: Axons segmented using de-

formable curves visualized on a single
slice.

Figure 13.5: 3D visualization of axons
segmented using deformable curves.

Figure 13.6: Three of the axons with visi-
ble node of Ranvier.

• The robustness of the deformable models might be improved by
moving the curve towards the point where the change of intensity
in the normal direction is high. This can be implemented by un-
wrapping the image (similar to exercise 1.1.5) following the curve
normals. The gradient in normal direction can than be computed for
the unwrapped image, and curve moved to the point where gradient
is high.

• A node of Ranvier (see Figure 13.1 for schematic drawing of a nerve)
can be seen on a few of the nerves in the volume to be analysed, as
shown in Figure 13.6. Nodes are of a high interest for understanding
nerve disorders. However, those might be challenging to capture
due to the lack of myelin.

• Visualizing results in 3D usually provides a useful information on the
segmentation results. Visualization options provided by MATLAB and
python are good. Still, for large datasets, and advanced visualization
you may want to use a specialized software, and we suggest trying
ParaView. A few notes on 3D visualization using ParaView be found
in ParaView notes.

Tasks

1. Consider following microstructural measurements which can be
extracted from volumetric data:

Nerve density count: Number of axons per area of nerve-fibre cross-
section. Measured in number per area.

Myelin density: A fraction of nerve cross-section corresponding to
myelin. Expressed as dimensionless fraction (a number between 0

and 1), or a percentage.

http://people.compute.dtu.dk/vand/notes/ParaView_notes.pdf
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Average nerve area: Average area of nerves, broken down into aver-
age axon area, and average myelin area. This measure is very
related to average nerve radius.

Average nerve radius: Average radius of nerves, broken down into
average axon radius, and average myelin thickness. This measure
is very related to average nerve area.

2. Perform a binary segmentation of the data using MRF. Which mi-
crostructural measurement can you extract from your MRF segmen-
tation?

3. Perform a volumetric segmentation of few nerves using using de-
formable models. Which microstructural measurements can you
extract from your segmentation?



14 Spectral segmentation and normalized
cuts

Spectral clustering is an approach to data clustering problem,
and it includes a number of related techniques. Spectral clustering is
used in machine learning, computer vision and signal processing, with
applications in processing speech spectrograms, DNA gene expression
analysis, document retrieval and computation of Google page rank.
The name spectral originates from the mathematical term spectrum (a
set of the egenvalues of a given matrix), and this is because spectral
clustering utilizes eigenvalues and eigenvectors of the data similarity
matrix.

Spectral clustering is one of the fundamental data clustering ap-
proaches, it is easy to implement and solve by standard linear algebra
software, there is no assumptions on the nature of the clusters, and the
techniques have been mathematically rigorously proved. Disadvantages
include high computational and memory requirements of the direct
implementation. For this reason the practical use of spectral clustering
often involves computational simplifications and significant pre- or
postprecessing.

Figure 14.1: Spektral (formerly known as
CloudCutout) green-screen product.

Spectral approach has gained a great popularity for image segmenta-
tion following the seminal paper on normalized cuts by Shi and Malik
1. Recent uses of spectral approach is in the superpixel segmentation.

1

Another intriguing example is the Copenhagen-based company Spek-
tral (formerly known as CloudCutout) where spectral segmentation is
a part of the successful green-screen removal product Figure 14.1.

Spectral methods can be applied to the data which is represented
using a similarity matrix, and is often described in terms of graph parti-
tioning. For a comprehensible coverage of (general) spectral clustering
we recommend an excellent tutorial by von Luxburg 2. We will here 2

briefly cover spectral clustering, and will then turn to its use in image
segmentation.

Boiled down to four words, the essence of spectral clustering is:
Eigensolution gives graph partitioning. To be able to understand spectral
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clustering, you need to be acquainted with the concept of graph cuts
in order to describe the problem we want to solve. Furthermore, we
need to represent a graph using an adjacency matrix and a closely
related Laplacian matrix. Then we can see how eigensolution provides
a solution to a graph cut problem.
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Figure 14.2: An example of an edge-
weighted undirected graph.

1 2 3 4 5 6 7 . . .
1 0 20 20 8 0 0 7 . . .
2 20 0 20 0 0 0 0 . . .
3 20 20 0 0 0 0 0 . . .
4 8 0 0 0 20 20 0 . . .
...

...
...

...
...

...
...

...
. . .

Figure 14.3: An adjacency matrix of a
graph shown in Figure 14.2.
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(1)

(2)

(3)

Figure 14.4: Three different partitioning
of a graph.

(1) (2) (3)

cut 10 12 13

Rcut 4.4̇ 4.0 4.3̇

Ncut 0.1723 0.1293 0.1268

MMcut 0.3939 0.2784 0.2709

Figure 14.5: Values of the different cuts
shown in Figure 14.4.

14.1 Graph cuts, graph representations and eigensolutions

Recall that a graph consists of nodes and edges, and in general may
be node-weighted, edge-weighed, directed or undirected. In context
of spectral image segmentation, each pixel will correspond to a graph
node, and pairs of pixels define graph edges – we will get back to image
segmentation after covering the general case. For spectral clustering we
work with edge-weighted undirected graphs which we represent using
an adjacency matrix W with elements wij being the weight of the edge
connecting the node i and a node j. Consider for example a graph in
Figure 14.2 consisting of 12 nodes. This graph can be represented in
terms of a 12× 12 adjacency matrix, as illustrated in Figure 14.3.

A graph cut is a partitioning of a graph. The graph partitioning
problems are concerned with finding a graph cut with the least cost.
The simplest way of defining the cost of a cut is to consider all edges
between the two partitions

cut(A, B) = ∑
i∈A,j∈B

wij ,

but that might lead to unbalanced cuts. For this reason we might prefer
using some other measure of the cut cost, which also consider the size
of the partitions. Commonly used are normalized cuts

Rcut(A, B) =
cut(A, B)
|A| +

cut(A, B)
|B| ,

where we use the notation |A| for a number of vertices in subset A, but
one could also consider ratio cut and min-max cuts

Ncut(A, B) =
cut(A, B)

vol(A)
+

cut(A, B)
vol(B)

,

MMcut(A, B) =
cut(A, B)
cut(A, A)

+
cut(A, B)
cut(B, B)

,

where vol(A) is weight of all edges associated with the subset, i.e.
vol(A) = ∑i∈A di and di = ∑j wij is a degree of ith node. Figure 14.4
shows three graph cuts, while Figure 14.5 lists the costs associated with
the three cuts given by different measures. You may confirm that the
values are correct, and notice the different balancing properties of the
cost measures.
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It turns out that the solution to the graph cut problem may be
found by considering the eigensolution of the matrix closely related
to the adjacency matrix – the graph Laplacian. Depending on the cost
measure, the derivation will be slightly different, leading to the different
(unnormalized and normalized) versions of the graph Laplacians. To
normalize the Laplacian, we first define a diagonal degree matrix D
with diagonal elements being node degrees di = ∑j wij.

We define unnormalized graph Laplacian

L = D−W ,

and two normalized graph Laplacians

Lsym = D−1/2LD−1/2 = I−D−1/2WD−1/2 ,

Lrw = D−1L = I−D−1W .

These matrices are closely related to each other, and so are their
spectra. All three matrices have real-valued eigenvalues with 0 being the
smallest eigenvalue, see tutorial by von Luxburg for a more complete
list of properties.

For our purposes, the most important are eigenvectors of Lrw, i.e.
vectors satisfying Lrwu = λu. The smallest eigenvectors (corresponding
to smallest eigenvalues) yield solution relaxed versions of finding the
normalized cut. The relaxed solution is subsequently transformed into
an approximate discrete solution to the original problem, for example
using k-means clustering. In particular, the second smallest eigenvector
gives the partitioning of the data in two subsets – the very smallest
eigenvector (corresponding to 0) is constant.

It can be shown that eigenvectors of Lrw are generalized eigenvectors
of L and D, see againg von Luxburgs tutorial, Proposition (3) part
3. Therefore, to fint the solution to normalized cut, one may also
seek solution to generalized eigenproblem Lu = λDu. This is the
formulation of normalized spectral clustering according to the original
paper by Shi and Malik. In practice, solving a standard eigenproblem
requires less computation.

We can utilize other matrix algebra identities to make computation
of the spectra more accurate and/or efficient. Many eigensolvers are
more accurate when working of symmetric matrices. A strategy ex-
ploiting matrix symmetry would involve computing eigenvectors of
the (symmetric) Lsym, and transforming those to eigenvectors of Lrw

by multiplying with D−1/2, see tutorial by von Luxburg, Proposition
(3) part 2. Furthermore, if only a subset of eigenvectors is to be found,
some eigensolvers are more efficient when finding eigenvectors corre-
sponding to largest eigenvalues. This may be utilized by noticing that
that smallest eigenvectors of I−A are largest eigenvectors of A.
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14.2 Clustering 2D points

You should implement two functions. One function should take and
affinity matrix and return eigenvectors corresponding to solution for
normalized cuts. The second function should perform discretization of
the eigenvectors using k-means.

You should first test your implementation on a small 2D point set.
You can use points previously used for neural networks, but we also
provide five point sets in a mat file points_data.mat. For each of the
point sets you should:

• Visualize the point set, and identify the clusters (there are 2 clusters
in set 3 and 5, and 3 clusters in set 1, 2 and 4).

• Construct the affinity matrix W. Use the fully connected graph and
Gaussian similarity function (Luxburg, Section 2.2). You should
initially estimate parameter σ so that it reflects the distance between
the neighbouring points of the point cloud.

• Compute eigenvectors and clustering given by the normalized cut.
Visualize the clustering.

• Determine ordering (permutation) of the points according to the
clustering (so that points from the first cluster come first, followed
by points in the second cluster, etc.)

• Visualize the values of the second eigenvector, first for unsorted
points, then for sorted points.

• Visualize affinity matrix, and the affinity matrix for sorted points.

• Estimate the parameter σ which results in a meaningful clustering.
You will need to change the parameter σ between point sets.

14.3 Image segmentation

Now we use spectral clustering on a pixels of a small image. Consider
some of the provided test images. You might want to (drasticaly!)
reduce the size of your images, to avoid memory problems.

You should:

• Construct the affinity matrix W using Equation (11) from article by
Shi and Malik. Initially estimate parameters σI , σX and r. Instead
of setting a radius r, for our small example you may use a fully
connected graph (i.e. ignore if–otherwise condition of Equation (11)
which sets affinity of distant points to 0).

• Visualize the spatial part of W, the brightness part of W and the final
W.
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• Compute eigenvectors and clustering given by the normalized cut.

• Visualize the values of the second eigenvector on the image grid.

• Visualize the segmentation results.

• Estimate the model parameters to obtain meaningful segmentation.

Start by the grayscale image. Use 2 clusters for plane and 5 clusters
for vegetables. For the similarity (brightness, color) part of W treat an
RGB value of each pixel as a vector to compute the Euclidian distance
between the pair of pixels. Try also clustering the pixels using k-means
clustering by treating RGB pixels values as vectors.

Consider adapting spectral methods to be able to handle larger
images.



15 Probabilistic Chan-Vese

Chan-Vese segmentation algorithm alternates between two up-
dates: update for mean intensities of the two regions given region
boundaries, and update of the boundary between the two regions given
mean intensities. The use of mean intensities implies that the two
regions are distinguished by having different mean intensities. There
are situations, where this is not the case, see Figure 15.1. Regions can
be characterized by distributions of intensities or other features.

Figure 15.1: A deformable model used
for segmenting forward-background im-
age where two regions are characterized
by different textures.

In this mini-project you will investigate generalizations of Chan-Vese
algorithm, which allow for segmenting more challenging situations
than with the original Chan-Vese. Some inspiration can be found in
paper by Dahl and Dahl 1, which proposes a intensity-distribution

1

approach Figure 15.2 and patch-distribution approach Figure 15.3. The
approach is illustrated in Figure 15.2. Once the curve is initialized,
instead of computing mean intensities for the inside and outside region,
the distributions of intensities are collected for the inside and the
outside region. For every pixel value we now have an information on
how often it is in the inside and outside region, which can be translated
into a probability that this pixel value is inside or outside. Computing
such probabilities for all image pixels leads to probability image which
can be used to deform the curve. Alternating, in a Chan-Vese manner,
between computing probability image given the curve, and deforming
the curve given probability image leads to segmentation.

For even more general case, instead of working with distributions
of pixel intensities, distributions of image features may be used to
compute the probability image. Figure 15.3 shows an example of using
dictionary of image patches. For every patch from the dictionary we
can compute the probability of it occurring in the inside or outside
region.
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Figure 15.2: A probabilistic Chan-Vese ap-
proach when regions inside and outside
are characterized by different distribu-
tions of pixel intensities. Top row shows
easier problem of non-overlapping dis-
tributions, bottom row shows two over-
lapping distributions. Colums 1–3 show
initialization, columsn 4–6 show result
after iterating.

dictionary assignment

initial curve initial patch distribution initial probability image resulting curve resulting patch distribution resulting probability image

Figure 15.3: A probabilistic Chan-Vese
approach when regions inside and out-
side are characterized by different tex-
ture. Top row shows used dictionary of
image patches, and an assigmnent of im-
age pixels to dictionary. In the second
row, Images 1–3 show initialization and
images 4–6 show result after iterating.



16 Learning snake deformation

Snakes, covered in 6, provide a very strong model for segmenting
one simple object (foreground) from the background. The deformation
forces used to align the snake with the boundary of the object may be
defined to solve a special problem. The forces may also be learned,
as attempted by a few recent research papers (see also Figure 16.1):
Learning active contours, CVPR 2018; Fast Curve, CVPR 2019; Deep
Snake, CVPR 2020; Learned Snakes, Signal Processing 2021.

Figure 16.1: Approaches for learning
snakes deformation, images taken from
recent CVPR papers.

In this project, we can attempt learning snake deformation using
either the edge-based or the region-based approach. We could learn de-
formation from images with available ground-truth labels, for example
cells or pets, or we could attempt an approach learning deformation
without ground truth.

https://openaccess.thecvf.com/content_cvpr_2018/papers/Marcos_Learning_Deep_Structured_CVPR_2018_paper.pdf
https://openaccess.thecvf.com/content_CVPR_2019/papers/Ling_Fast_Interactive_Object_Annotation_With_Curve-GCN_CVPR_2019_paper.pdf
https://openaccess.thecvf.com/content_CVPR_2020/papers/Peng_Deep_Snake_for_Real-Time_Instance_Segmentation_CVPR_2020_paper.pdf
https://openaccess.thecvf.com/content_CVPR_2020/papers/Peng_Deep_Snake_for_Real-Time_Instance_Segmentation_CVPR_2020_paper.pdf
https://www.sciencedirect.com/science/article/pii/S0165168421000529?casa_token=4Cs9bfocgIUAAAAA:IyJPK3j0vh_rIuHGqwg4jYiov3jC9-AEpeskTuzQkrHOzrhAnUP0Oq8BblMgUTq8ZzO-GThiQc2M
http://celltrackingchallenge.net/2d-datasets/
https://www.robots.ox.ac.uk/~vgg/data/pets/


17 Orientation analysis

Analyzing orientations of images structures is often needed if
we want to visualize, quantify, or elsewhere utilize orientation informa-
tion obtainable from images. A common tool for orientation analysis is
a structure tensor.

In this mini-project you will be working with structure tensor and
orientation analysis. You may decide to focus on computation of struc-
ture tensor, visualization of the orientation information, quantification
of orientation, or some similar aspect.

17.1 Computating structure tensor

In the context of volumetric (3D) image analysis, a structure tensor is a
3-by-3 matrix which summarizes orientation in a certain neighborhood
around a certain point.

For example, consider volumetric data showing a bundle of roughly
parallel fibers. If we extract two cubes from this volume, mutually
displaced along the predominant fiber orientation, the two cubes will
have very similar intensities. For two cubes displaced along other
orientations the cube intensities would be more different. For this
reason, measuring the change of intensities between slightly displaced
cubes may be used for determining predominant orientation of imaged
structures.

It turns out that, given an initial point and a size of the cube, squared
change of intensities may be expressed as uTS u, where u is the direction
of the displacement and S is 3-by-3 symmetric positive semi-definite
matrix – a structure tensor. Finding predominant orientation now
amounts to finding u which minimizes uTS u.

For a more formal derivation, consider a volumetric data V defined
on the domain Ω ⊂ R3, where V(p) denotes voxel intensity at the point
p = [px py pz]T . Consider an arbitrary but fixed neighborhood N
around a point p, such that N(p) ⊂ Ω. We want to measure

D = ∑
p′∈N(p)

(
V(p′ + u)−V(p′)

)2 .
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Assuming a small displacement we use first order Taylor expansion
and arrive to

D = ∑
p′∈N(p)

([
Vx(p′) Vy(p′) Vz(p′)

]
u
)2

where we use notation Vx = ∂V
∂x , and correspondingly for partial deriva-

tives in y and z direction. Finally, exploiting commutativity of the inner
product leads to

D = uT ∑
p′∈N(p)

Vx(p′)
Vy(p′)
Vz(p′)

 [Vx(p′) Vy(p′) Vz(p′)
]

u .

So, as earlier claimed, we arrived to expression D = uTS u, where S is
a 3-by-3 matrix – a structure tensor computed in a point p and using
a neighborhood N. That S is symmetric and positive semi-definite
follows directly from the construction of S (note that D ≥ 0).

Using a compact notation for gradient ∇V =
[
Vx Vy Vz

]T , structure
tensor is

S = ∑∇V (∇V)T .

Her we imply that structure tensor is computed for every voxel of
the volume, i.e. structure tensor is a matrix-valued function over Ω.
The summation is conducted over a neighborhood of each voxel, and
result will be the same (up to the multiplicative factor) if summation is
replaced by an averaging filter.

Two Gaussian filters are usually involved in computing structure
tensor, see 1 for detailed description of 2D case. The one Gaussian filter 1

has to do with averaging orientation information in the neighborhood.
This can be achieved using a convolution with a Gaussian Kρ, where
parameter ρ, called integration scale, reflects the size of the neighborhood.
Now we have

S = Kρ ∗
(
∇V (∇V)T

)
.

The second Gaussian has to do with computing partial derivatives in
gradient ∇V. To make differentiation less sensitive to noise we may
convolve the volume with a Gaussian prior to computing derivatives.
More efficiently, utilizing derivative theorem of convolution, partial
derivatives can be computed by convolving with derivatives of Gaus-
sian. We denote such gradient ∇σV. The parameter σ is called noise
scale. Expression with both Gaussians is

S = Kρ ∗
(
∇Vσ (∇Vσ)

T
)

.

In summary, computing structure tensor for each voxel of a volume
V involves three steps:
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1. Convolve V with derivatives of Gaussian with standard deviation σ

to obtain Vx, Vy and Vz. For efficiency, use separability of Gaussian
kernel.

2. Using element-wise multiplication compute six volumes V2
x , V2

y , V2
z ,

VxVy, VxVz and VyVz.

3. Convolve each of the six volumes with the Gaussian kernel with
standard deviation ρ. For efficiency, use separability of Gaussian
kernel. The resulting volumes contain per-voxel elements sxx, syy,
szz, sxy, sxz and syz of the structure tensor

S =

 sxx sxy sxz

sxy syy syz

sxz syz szz

 .

17.2 Computing orientations

Given structure tensor S, predominant orientation is found by minimiz-
ing Rayleigh coefficient uTS u trough eigendecomposition of S. Being
symmetric and positive semi-definite S yields three positive eigenval-
ues λ1 ≤ λ2 ≤ λ3 and mutually orthogonal eigenvectors v1, v2 and
v3. The eigenvector v1 corresponding to the smallest eigenvalue is
an orientation leading to the smallest variation in intensities, which
indicates a predominant orientation in the volume. Note that v1 is an
orientation, and we usually represent it using an unit vector, but this
is still not an unique representation since there are two opposite unit
vectors sharing the orientation with v1.

Figure 17.1: Neighborhoods and struc-
tures corresponding to linear, planar and
spherical shape. On a linear structure
(top) cubical neighborhood can move
along the predominant direction lead-
ing to small change in intensities, while
other two orthogonal directions lead to
significantly larger and approximately
equal change. On a planar structure (mid-
dle) two directions lead to small and ap-
proximately equal change in intensities,
while third direction leads to significantly
larger change. For a case with no pre-
dominant direction (bottom) the three or-
thogonal directions lead to roughly equal
changes in intensities.

Eigendecomposition of a 3-by-3 real symmetric matrix can be com-
puted efficiently using an analytic approach by Smith 2 which uses

2

an affine transformation and a trigonometric solution of a third order
polynomial.

If there is no strong orientation in the volume, all eigenvalues will
be similar, and dominant direction will be influenced by small local
variations or the noise in the data. For this reason it is customary
to analyze the ratio between eigenvalues to determine the degree of
anisotropy in the neighborhood, and how (locally) line-like or plane-
like the imaged structure is, see illustration 17.1. Inspired by diffusion
tensor processing 3, we define values, so-called shape measures, 3

cl =
λ2 − λ1

λ3
, cp =

λ3 − λ2

λ3
, cs =

λ1

λ3

where cl gives a measure of linearity, while cp and cs measure planarity
and sphericity. Shape values are positive and sum to 1.

In summary, structure tensor is a 3-by-3 matrix that can be computed
in each volume voxel. The computation of structure tensor requires
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two parameters: noise scale σ and integration scale ρ. Being symmetric,
structure tensor can be represented with 6 scalar values. The most
important information extracted from structure tensor is a dominant
orientation. Dominant orientation is a unit vector with equivalence
relation −v ≡ v. Shape measures, also extracted from structure tensor,
may also be of interest. Shape measures are three scalar ,cl , cp and cs,
summing to 1.

17.3 Visualization

Having extracted structure tensor and performed its eigendecomposi-
tion, following values are available for every volume voxel.

• Voxel intensity V, a scalar value in a certain range.

• Shape measures cl , cp and cs, three scalar values summing to 1.

• Dominant orientation v1, an orientation vector (unit vector with
equivalence relation −v ≡ v).

• Other information, such as v2, v3, and the values λ1, λ2 and λ3 is
also available, but usually of no special interest.

Visualizing this information often requires some care.
Shape measures, being three scalar values can be conveniently repre-

sented using three RGB color channels. Voxels with large cl will appear
red, large cp will be green, and large cs blue. This is the approach used
in Figure 17.2.

Predominant orientation, is a 3D unit vector with equivalence re-
lation −v ≡ v. A common way of visualizing orientation is to use
absolute values of vector coordinates, i.e. |vx|, |vy|, and |vz|, as three
RGB color channels. Orientations roughly aligned with x direction will
be red, those aligned with y green, and z blue. This has a desirable
property that−v and v map to the same color. Furthermore, when
the imaged object has a certain geometry aligned with the coordinate
system (for example, elongated object aligned with z axis), this coloring
scheme may be favorable for the interpretation of orientations. Unde-
sirable property of the RBG color scheme is that different orientations
map to the same color, for example four orientations corresponding to
main diagonals in unit cube all map to gray.

Shape measure and predominant orientation are computed for every
voxel in the volume – regardless of whether the voxel is within the
object or material which we investigate. When using volume rendering
to visualize the extracted measures, if the value is shown in every
voxel, the valuable information might be occluded. For this reason it
might be beneficiary to combine visualization of extracted measures
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with the intensity values, which carry information on voxels containing,
or not containing, material. A visually pleasing result is obtained if
voxels containing no material are shown transparent. Furthermore,
predominant orientation is only relevant for voxels exhibiting high
linearity, so shape measure may be combined with visualization of
predominant orientation. This is the approach used in Figure 17.2.

Figure 17.2: Orientation information. In
each row, from left to right: 3D rendering
of the volumetric data, shape measures
visualized in colors, predominant orien-
tation in the material phase, visualized in
colors, predominant orientation weighed
by the measure of linearity. Top two rows
show the result on synthetic data, while
in the bottom row we see the result of ori-
entation analysis for composite material.

17.4 Applications

Some uses of orientation information are:

• Volumetric visualization of the shape measures and/or the predomi-
nant orientation.

• Producing histograms of orientations by binning orientation vectors.
These distributions live on a half sphere, which can complicate the
visualization, comparison, and fitting of distributions.

• Comparing orientation information extracted form volumetric data
with, for example, the orientations obtained via modeling and/or
simulation.

• Using local orientation to segment the volume into regions of con-
stant orientation.

• Using local orientation to tune smoothness constraint in MRF seg-
mentation.

• Using local orientation to guide fibre tracking.



18 CNN for segmentation

Image segmentation is often needed as an intermediate step when
quantifying structures in images, and we have previously been working
with patch-based segmentation. In this exercise you should train a
convolutional neural network to segment electron microscopy images
of neuronal structures. This data was part of the ISBI Challenge: Seg-
mentation of neuronal structures in EM stacks1, and can be found in the 1 Ignacio Arganda-Carreras, Srinivas C

Turaga, Daniel R Berger, Dan Cireşan,
Alessandro Giusti, Luca M Gambardella,
Jürgen Schmidhuber, Dmitry Laptev,
Sarvesh Dwivedi, Joachim M Buhmann,
et al. Crowdsourcing the creation of im-
age segmentation algorithms for connec-
tomics. Frontiers in neuroanatomy, 9:142,
2015

file EM_ISBI_Challenge.zip.

Figure 18.1: Example of EM data for seg-
mentation. Top image is the original EM
slice and the bottom image is the labels
overlaied.

The data is from a serial section Transmission Electron Microscope
and depicts the ventral nerve of a Drosophila larva. An example image
is shown in Figure 18.1. The task is to segment the membranes between
cells. These appear mostly darker than the rest of the image, but they
are often thin and smeared out, and there are other dark regions that
are not membranes, but structures such as mitochondria, that should be
part of the cell class. Therefore, this segmentation problem is difficult
and requires either a biologist that knows the anatomy or an advanced
automated image segmentation method. You should aim at building
the automated segmentation method.

The data consists of 30 images with associated labels and additional
30 test images without labels. All images are 512× 512 pixels. The task
is to build and train a neural network that can segment this type of
images. Normally, you would split your data into a training, validation
and test set. You would use the training set for learning the model
parameters and the validation set to ensure generalization of the model,
e.g. that it does not overfit to the training set. In an ideal performance
assessment, you will only use the test set once to measure the actual
performance of your method. When the same test set is used multiple
times, you would optimize for precisely that test set, which will bias
your performance assessment.

The problem here is that you only have 30 images with labels to train,
validate, and test your algorithm, if it should be done using quantitative
measures. The test set does not come with the ground truth labels,
since it was kept for evaluating performance of algorithms at the ISBI
Challenge, and therefore the images in the test set only allows you to
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do a qualitative evaluation. It is your task to choose the images for
training, validation, and test, and you should argue for your choice.

You can find inspiration for building your segmentation method in
other peoples work. The ISBI challenge data set has e.g. been used in
the U-net paper2, which is a very successful model for segmentation 2

based on deep learning. This network uses four down-sampling steps
followed by four up-sampling steps, and at each resolution there more
convolutions and activation steps. In addition there are so-called skip
connections that connects layers at different scales. This architecture
can be drawn in an u-shape, which has given the name to the method.
Furthermore, the paper describes data augmentation suited for this
type of data, so you might use the paper to get inspiration for your
solution.

18.1 Suggestions

You are suggested to implement your model using either the Deep
Learning Toolbox from MATLAB or Pytorch or similar for Python. Fur-
thermore, to avoid spending too much time in the initial training, it can
be a good idea to start with smaller images than the 512× 512 pixels.
You can e.g. split the images into smaller patches and work from these.
Then you can at a later stage, when you are sure that your model is
working as expected, increase the size of your images.

It is also a good idea to start with a simple model, where it is easy
to ensure that all steps are working as they should. Then you can
gradually increase the complexity.

Besides training the deep learning model and setting it up such that
it works as expected, there are many choices to be made for building
your model and for optimizing it. You are welcome to try out different
approaches and investigate the effect of e.g. data augmentation. It
is a very good idea to be systematic and show the effect of different
parameter choices – either using quantitative and qualitative evaluation
measures.



19 Superresolution from line scans

Scanning along a set of parallel lines is a common setting in
medical imaging. For example, consider optical coherence tomography
(OCT), well established in ophthalmology for obtaining images of
the retina. Using OCT, the retina is scanned in along a line with
a high transversal resolution. Collecting a number of scans along
parallel lines, a larger area of the retina may be covered. Since scanning
speed of the OCT systems employed in clinic is limited, and prolonged
scanning is unpleasant for the patient, the distance between the parallel
lines is often large compared to the transverse resolution of the scans.
Therefore, the resolution of the scan is much coarser in one direction.
In other words, each pixel covers a non-square area. Elongated pixels
appear as stripes and influence the visual appearance of the image. The
stripes can disturb the interpretation of the image and make it difficult
to distinguish the anatomical structures, especially evident with blood
vessels running parallel to scan lines.

Figure 19.1: Example of images obtained
using line scans in orthogonal directions.
Notice that vertical lines are less clear in
the first image, while horizontal lines are
unclear in the second.

Figure 19.2: An image with pixels di-
vided in pixels with known intensity
(black), and pixels with unknown inten-
sity (white), here shown with an upsam-
pling rate of 4.

To reveal additional anatomical structures, another OCT scan may
be performed, along the lines orthogonal to the first scan, as a pari of
images shown in Figure 19.1. Several problems emerge in connection
to this. The eye might move during scanning, and the intensity might
vary significantly between the scans. And most importantly, how to
combine two scans covering the same area, one with high resolution
in x direction, and the other in y, such that the resulting image has
a satisfactory quality? To simplify the problem, we consider a set up
as in Figure 19.2, where pixels of unknown values are to be estimated
from the pixels of known values.

This problem is very similar to single-image superresolution, which
can be obtained with great quality using neural networks. In this
mini-project, you can try using neural network for upsampling line
scans. The project involves setting up a framework based on the
publicly available frameworks. We would expect the performance to
improve significantly if prior knowledge about the appearance of the
images is incorporated in the method. The training should therefore
be performed on images having similar appearance as OCT image, but
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that can be images of vasculature obtained using other modalities. We
will provide you such images.

To evaluate the performance of the upsampling, the conventional ap-
proach is to use peak signal-to-noise ratio (PSNR) metric. Furthermore,
a comparison with the simple base-line upsampling scheme would be
nice. For example, consider a schme where each direction is linearly
upsampled, and the two contributions are combined as an average.
Such an approach is show in Figure 19.3.

Figure 19.3: A simple linear upsampling
scheme. First column: ground truth; sec-
ond column: unknown pixels masked;
third column: upsampling result; fourth
column: the error, with color indicating
the sign. Top row: image of vasculature;
bottom row: zoom in on a small part of
the image.
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