Kapitel 7
Discriminant Analysis

In this section we will address the problem of classifying an individual in one of two (or more) known populations based on measurements of some characteristics of the individual.

We first consider the problem of discriminating between two groups (classes).

7.1 Discrimination between two populations

7.1.1 Bayes and minimax solutions

We consider the populations π_{1} and π_{2} and wish to conclude whether a given individual is a member of group one or group two. We perform measurements of p different characteristics of the individual and hereby get the result

$$
\mathbf{x}=\left(\begin{array}{c}
X_{1} \\
\vdots \\
X_{p}
\end{array}\right)
$$

If the individual comes from π_{1} the frequency function of \mathbf{X} is $f_{1}(\mathbf{x})$ and if it comes from π_{2} it is $f_{2}(\mathbf{x})$

Let us furthermore assume that we have given a loss function L

SETNING 7.1. The Bayes solution to classification problem is given by the region

$$
R_{1}=\left\{\mathbf{x} \left\lvert\, \frac{\mathrm{f}_{1}(\mathbf{x})}{\mathrm{f}_{2}(\mathbf{x})} \geq \frac{\mathrm{L}(2,1)}{\mathrm{L}(1,2)} \frac{p_{2}}{p_{1}}\right.\right\} .
$$

Bemerkning 7.1. This result is exactly the same as given in theorem 5 , chapter 6 in Vol. 1.

If we do not have a prior distribution we can determine a minimax strategy i.e. deterIf we do not have a prior distribution we can determine a minimax strategy i.e.
mine an R_{1} so that the maximal risk is minimised. The risk is (cf. p. 6.3, Vol 1)
$R\left(\pi_{1}, \mathrm{~d}_{R_{1}}\right)=\mathrm{E}_{\pi_{1}} \mathrm{~L}\left(\pi_{1}, \mathrm{~d}_{R_{1}}(\mathbf{X})\right)=\mathrm{L}(1,2) P\left\{\mathbf{X} \in R_{2} \mid \pi_{1}\right\}$.
$R\left(\pi_{2}, \mathrm{~d}_{R_{1}}\right)=\mathrm{E}_{\pi_{2}} \mathrm{~L}\left(\pi_{2}, \mathrm{~d}_{R_{1}}(\mathbf{X})\right)=\mathrm{L}(2,1) P\left\{\mathbf{X} \in R_{1} \mid \pi_{2}\right\}$.
One can now show (see e.g. the proof for theorem 4, chapter 6 in Vol. 1)
SETNing 7.2. The minimax solution for the classification problem is given by the region

$$
R_{1}=\left\{\mathbf{x} \frac{\mathrm{f}_{1}(\mathbf{x})}{\mathrm{f}_{2}(\mathbf{x})} \geq c\right\},
$$

where c is determined by

$$
\mathrm{L}(1,2) P\left\{\left.\frac{\mathrm{f}_{1}(\mathbf{x})}{\mathrm{f}_{2}(\mathbf{x})}<c \right\rvert\, \pi_{1}\right\}=\mathrm{L}(2,1) P\left\{\left.\frac{\mathrm{f}_{1}(\mathbf{X})}{\mathrm{f}_{2}(\mathbf{X})} \geq c \right\rvert\, \pi_{2}\right\} .
$$

Bemfrkining 7.2. The relation for the determination for c can be written
$\mathrm{L}(1,2)$. (the probability for misclassification if π_{1} is true)
$=\mathrm{L}(2,1)$. (the probability for misclassification if π_{2} is true)
Since one is an increasing and the other a decreasing function of c it is obvious that we will minimise the maximal risk when we have equality. If we do not have any idea we will minimise the maximal risk when we have equality. If we do not have any idea
about the size of the losses we can let them both equal one. The minimax solution gives
us the region which minimises the maximal probability from this classification.
e will now consider the important special case where f_{1} and f_{2} are normal distributions.
7.1.2 Discrimination between two normal populations

If f_{1} and f_{2} are normal with the same variance-covariance matrix we have
SETNiNG 7.3. Let $\pi_{1} \simeq \mathrm{~N}\left(\mu_{1}, \boldsymbol{\Sigma}\right)$ and $\pi_{2} \simeq \mathrm{~N}\left(\mu_{2}, \boldsymbol{\Sigma}\right)$. Then we have

$$
\frac{\mathrm{f}_{1}(\mathbf{x})}{\mathrm{f}_{2}(\mathbf{x})} \geq c \Leftrightarrow \mathbf{x}^{\prime} \boldsymbol{\Sigma}^{-1}\left(\mu_{1}-\mu_{2}\right)-\frac{1}{2} \mu_{1}^{\prime} \boldsymbol{\Sigma}^{-1} \mu_{1}+\frac{1}{2} \mu_{2}^{\prime} \boldsymbol{\Sigma}^{-1} \mu_{2} \geq \log c .
$$

-

Bevis 7.1. We introduce the inner product ($\cdot \cdot$) and the norm \|| || by

$$
(\mathbf{x} \mid \mathbf{y})=\mathbf{x}^{\prime} \boldsymbol{\Sigma}^{-1} \mathbf{y}
$$

and

$$
\|x\|^{2}=(\mathbf{x} \mid \mathbf{x}) .
$$

We then have

$$
\mathrm{f}_{i}(\mathbf{x})=\frac{1}{{\sqrt{2 \pi^{p}}}^{p} \sqrt{\operatorname{det} \boldsymbol{\Sigma}}} \exp \left(-\frac{1}{2}\left\|\mathbf{x}-\mu_{i}\right\|^{2}\right) .
$$

From this we readily get

$$
\frac{\mathrm{f}_{1}(\mathbf{x})}{\mathrm{f}_{2}(\mathbf{x})} \geq c \Leftrightarrow \log \frac{\mathrm{f}_{1}(\mathbf{x})}{\mathrm{f}_{2}(\mathbf{x})} \geq \log c
$$

$\Leftrightarrow-\left\|\mathbf{x}-\mu_{1}\right\|^{2}+\left\|\mathbf{x}-\mu_{2}\right\|^{2} \geq 2 \log c$
$\Leftrightarrow-\left(\mathbf{x}-\mu_{1} \mid \mathbf{x}-\mu_{1}\right)+\left(\mathbf{x}-\mu_{2} \mid \mathbf{x}-\mu_{2}\right) \geq 2 \log c$
$\Leftrightarrow 2\left(\mathbf{x} \mid \mu_{1}\right)-2\left(\mathbf{x} \mid \mu_{2}\right)-\left(\mu_{1} \mid \mu_{1}\right)+\left(\mu_{2} \mid \mu_{2}\right) \geq 2 \log c$
$\Leftrightarrow 2\left(\mathbf{x} \mid \mu_{1}-\mu_{2}\right)-\left(\mu_{1} \mid \mu_{1}\right)+\left(\mu_{2} \mid \mu_{2}\right) \geq 2 \log c$.
By using the link between (\mid) and $\boldsymbol{\Sigma}^{-1}$ we have that the theorem readily follows.

Bemerkning 7.3. The expression $\frac{\mathrm{f}_{1}(\mathbf{x})}{\mathrm{f}_{2}(\mathbf{x})} \geq c$ is seen to define a subset of R^{p} which is delimited by a hyper-plane (for $p=2$ a straight line and for $p=3$ a plane)

The vector $p_{1} \vec{p}_{2}$ is the orthogonal projection (NB! The orthogonal projection with respect to Σ^{-1}) of \mathbf{x} on the line which connects μ_{1} and μ_{2}. (It can be shown that the slope of the projection lines etc. are equal to the slope of the ellipse- (ellipsoid-) tangents in the at the points where they intersect the line $\left(\mu_{1}, \mu_{2}\right)$). Since the length of a projection of a vector is equal to the inner product between the vector and a unity vector on the
line we see that we have classified the observation as coming from π_{1} iff the projection of x is large enough (computed with sign). Otherwise we will classify the observation as coming from π_{2}.
The function

$$
\mathbf{x}^{\prime} \boldsymbol{\Sigma}^{-1}\left(\mu_{1}-\mu_{2}\right)-\frac{1}{2} \mu_{1}^{\prime} \boldsymbol{\Sigma}^{-1} \mu_{1}+\frac{1}{2} \mu_{2}^{\prime} \boldsymbol{\Sigma}^{-1} \mu_{2}-\log c
$$

is called the discriminator or the discriminant function.
We then have that the discriminator is the linear projection which - after the addition of suitable constants - minimises the expected loss (the Bayes situation) or the probability
of misclassification (the minimax situation).

In different interpretation of a discriminator. If we let

$$
\delta=\boldsymbol{\Sigma}^{-1}\left(\mu_{1}-\mu_{2}\right),
$$

we have the following

Evis 7.2. The proof is not very interesting but fairly simple. Since we readily hav hat $\varphi(k \cdot d)=k \cdot \varphi($ d $)$ we can determine extremes for φ by determining extremes for the numerator under the following constraint
$d^{\prime}{ }^{\prime} \mathbf{d}=1$.
We introduce a Lagrange multiplier λ and seek the maximum of

$$
\psi(\mathbf{d})=\left[\left(\mu_{1}-\mu_{2}\right)^{\prime} d\right]^{2}-\lambda\left(\mathbf{d}^{\prime} \boldsymbol{\Sigma} \mathbf{d}-1\right) .
$$

Now we have that

$$
\frac{\partial \psi}{\partial \mathbf{d}}=2\left(\mu_{1}-\mu_{2}\right)\left(\mu_{1}-\mu_{2}\right)^{\prime} \mathbf{d}-2 \lambda \Sigma \mathbf{d} .
$$

If we let this equal 0 , we have

$$
\left(\mu_{1}-\mu_{2}\right)\left(\mu_{1}-\mu_{2}\right)^{\prime} \mathbf{d}=\lambda \boldsymbol{\Sigma} \mathbf{d},
$$

i.e.

$$
\mathbf{d}=\frac{\left(\mu_{1}-\mu_{2}\right)^{\prime} \mathbf{d}}{\lambda} \Sigma^{-1}\left(\mu_{1}-\mu_{2}\right)=k \cdot \delta,
$$

where k is a scalar.

Bemfrking 7.4. The content of the theorem is that the linear function determined by δ
$\mathbf{X}^{\prime} \delta=\delta_{1} X_{1}+\cdots+\delta_{p} X_{p}$,

is the projection that "moves" π_{1} furthest possible away from π_{2} or - in the language of analysis of variance - the projection which maximises the variance between populations
divided by the total variance.
The geometric content of the theorem is indicated in the above figure where
b: is the projection of the ellipse on the line μ_{1}, μ_{2} in the direction determined by $\mathbf{x}^{\prime} \delta=0$
a: is the projection of the ellipse on the line μ_{1}, μ_{2} on another direction.
It is seen that the projection determined by δ on the line which connects μ_{1} and μ_{2} is the one which "moves" the projection of the contour ellipsoids of the two populations
distribution furthest possible away from each other.

We now give a theorem which is very useful in the determination of misclassification probabilities.
SETNiNG 7.5. We consider the criterion in theorem 7.3

$$
Z=\mathbf{X}^{\prime} \boldsymbol{\Sigma}^{-1}\left(\mu_{1}-\mu_{2}\right)-\frac{1}{2} \mu_{1}^{\prime} \boldsymbol{\Sigma}^{-1} \mu_{1}+\frac{1}{2} \mu_{2}^{\prime} \boldsymbol{\Sigma}^{-1} \mu_{2} .
$$

On this we have

$$
Z \in \begin{cases}\mathrm{~N}\left(+\frac{1}{2}\left\|\mu_{1}-\mu_{2}\right\|^{2},\left\|\mu_{1}-\mu_{2}\right\|^{2}\right), & \text { hvis } \pi_{1} \text { sand } \\ \mathrm{N}\left(-\frac{1}{2}\left\|\mu_{1}-\mu_{2}\right\|^{2},\left\|\mu_{1}-\mu_{2}\right\|^{2}\right), & \text { hvis } \pi_{2} \text { sand }\end{cases}
$$

Bevis 7.3. The proof is straight forward. Let us e.g. consider the case π_{1} true. We then have that $\mathrm{E}(\mathbf{X})=\mu_{1}$ and then

$$
\begin{aligned}
\mathrm{E}(Z) & =\mu_{1}^{\prime} \boldsymbol{\Sigma}^{-1}\left(\mu_{1}-\mu_{2}\right)-\frac{1}{2} \mu_{1}^{\prime} \boldsymbol{\Sigma}^{-1} \mu_{1}+\frac{1}{2} \mu_{2}^{\prime} \boldsymbol{\Sigma}^{-1} \mu_{2} \\
& =\frac{1}{2}\left(\mu_{1}-\mu_{2}\right)^{\prime} \boldsymbol{\Sigma}^{-1}\left(\mu_{1}-\mu_{2}\right) \\
& =\frac{1}{2}\left\|\mu_{1}-\mu_{2}\right\|^{2} .
\end{aligned}
$$

$\mathrm{V}(Z)=\left(\mu_{1}-\mu_{2}\right)^{\prime} \boldsymbol{\Sigma}^{-1} \boldsymbol{\Sigma} \boldsymbol{\Sigma}^{-1}\left(\mu_{1}-\mu_{2}\right)$ $=\left(\mu_{1}-\mu_{2}\right)^{\prime} \boldsymbol{\Sigma}^{-1}\left(\mu_{1}-\mu_{2}\right)$
$=\left\|\mu_{1}-\mu_{2}\right\|^{2}$
The result regarding π_{2} is shown analogously

We will now consider some examples.
Eksempel 7.1. We consider the case where
$\pi_{1} \leftrightarrow N\left(\binom{4}{2},\left(\begin{array}{ll}1 & 1 \\ 1 & 2\end{array}\right)\right)$
$\pi_{2} \leftrightarrow \mathrm{~N}\left(\binom{1}{1},\left(\begin{array}{ll}1 & 1 \\ 1 & 2\end{array}\right)\right.$,
and we want to determine a "best" discriminator function. Since we know nothing about the prior probabilities and the like, we will use the function which corresponds to the constant c in theorem 7.3 being 1 . Since

$$
\left(\begin{array}{ll}
1 & 1 \\
1 & 2
\end{array}\right)^{-1}=\left(\begin{array}{rr}
2 & -1 \\
-1 & 1
\end{array}\right),
$$

we get the following function

$$
\left(x_{1} x_{2}\right)\left(\begin{array}{rr}
2 & -1 \\
-1 & 1
\end{array}\right)\binom{3}{1}-\frac{1}{2}(2 \cdot 16+1 \cdot 4-2 \cdot 8)+\frac{1}{2}(2 \cdot 1+1 \cdot 1-2 \cdot 1)=0
$$

or
$5 x_{1}-2 x_{2}-9 \frac{1}{2}=0$.
If we enter an arbitrary point, e.g. $\binom{5}{6}$ we get

$$
5 \cdot 5-2 \cdot 6-9 \frac{1}{2}=3 \frac{1}{2}>0 .
$$

This point is therfore classified as coming from π_{1}.
We have indicated the situation in the following figure

If we have a loss function, the procedure is a bit different which is seen from
Eksempel 7.2. Let us assume that we have losses assigned for the different decisions:

Since we have no prior probabilities we will determine the minimax solution. We will need

$$
\left\|\mu_{1}-\mu_{2}\right\|^{2}=2 \cdot 9+1 \cdot 1-2 \cdot 3 \cdot 1=13 .
$$

From theorem 7.2 follows that we must determine c so
$2 \cdot P\left\{\left.\frac{\mathrm{f}_{1}(\mathbf{X})}{\mathrm{f}_{2}(\mathbf{X})}<c \right\rvert\, \pi_{1}\right\}=P\left\{\left.\frac{\mathrm{f}_{1}(\mathbf{X})}{\mathrm{f}_{2}(\mathbf{X})} \geq c \right\rvert\, \pi_{2}\right\}$
$\Leftrightarrow 2 \cdot P\left\{Z<\log c \mid \pi_{1}\right\}=P\left\{Z \geq \log c \mid \pi_{2}\right\}$
$\Leftrightarrow 2 \cdot P\left\{\mathrm{~N}\left(\frac{1}{2} 13,13\right)<\log c\right\}=P\left\{\mathrm{~N}\left(-\frac{1}{2} 13,13\right) \geq \log c\right\}$
$\Leftrightarrow 2 \cdot P\left\{\mathrm{~N}(0,1)<\frac{\log c-6.5}{\sqrt{13}}\right\}=P\left\{\mathrm{~N}(0,1) \geq \frac{\log c+6.5}{\sqrt{13}}\right\}$
By trying with different values of c we see that
$c \simeq 0.5617$.
Using this value the misclassification probabilities are

$$
\begin{array}{ll}
\text { If } \pi_{1} \text { is true: } & P\left\{\mathrm{~N}(0,1)<\frac{\log 0.5617-6.5}{\sqrt{13}}\right\} \simeq 0.025 . \\
\text { If } \pi_{2} \text { is true: } & P\left\{\mathrm{~N}(0,1)<\frac{\log 0.5617+6.5}{\sqrt{13}}\right\} \simeq 0.050 .
\end{array}
$$

The discriminating line is now determined by

$$
5 x_{1}-2 x_{2}-9 \frac{1}{2}=\log 0.5617,
$$

or

$$
5 x_{1}-2 x_{2}-8.92=0 .
$$

This line intersects the line connecting μ_{1} and μ_{2} in $((2.36,1.46)$ i.e. it is moved towards μ_{2} compared to the mid-point ($2.5,1.5$). It is also obvious that the line is towards μ_{2} compared to the mid-point $(2.5,1.5)$. It is also obvious that the line
moved parallelly in this direction since we see from the loss matrix that it is more se moved parallelly in this direction since we see from the loss matrix that it is more se-
rious to be wrong if μ_{1} is true than if μ_{1} is true. We must therefore expand R_{1} i.e. mov the limiting line towards μ_{2}.

We must stipulate that it is of importance that the variance-covariance matrices for the two populations are equal. If this is not the case we will get a completely different result which will be seen from the following example.
EкSEmpeL 7.3. Let us assume that the variance-covariance matrix for population 2 is changed to an identity matrix i.e.

$$
\begin{aligned}
& \pi_{1} \leftrightarrow \mathrm{~N}\left(\binom{4}{2},\left(\begin{array}{ll}
1 & 1 \\
1 & 2
\end{array}\right)\right) \\
& \pi_{2} \leftrightarrow \mathrm{~N}\left(\binom{1}{1},\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)\right)
\end{aligned}
$$

Again we want to classify an observation X which comes from one of the above mentioned distributions. Since the variance covariance matrices are not equal we cannot use the result in theorem 7.3but have to start from the beginning with theorem 7.2.
For $c>0$ we have
$\frac{\mathrm{f}_{1}(\mathbf{x})}{\mathrm{f}_{2}(\mathbf{x})} \geq c \Leftrightarrow$

$$
-\left(\mathbf{x}-\mu_{1}\right)^{\prime} \boldsymbol{\Sigma}_{1}^{-1}\left(\mathbf{x}-\mu_{1}\right)+\left(\mathbf{x}-\mu_{2}\right)^{\prime} \boldsymbol{\Sigma}_{2}^{-1}\left(\mathbf{x}-\mu_{2}\right) \geq 2 \log c .
$$

Since

$$
\begin{aligned}
\left(\mathbf{x}-\mu_{1}\right)^{\prime} \mathbf{\Sigma}_{1}^{-1}\left(\mathbf{x}-\mu_{1}\right) & =2\left(x_{1}-4\right)^{2}-\left(x_{2}-2\right)^{2}-2\left(x_{1}-4\right)\left(x_{2}-2\right) \\
& =2 x_{1}^{2}+x_{2}^{2}-2 x_{1} x_{2}-12 x_{1}+4 x_{2}+20,
\end{aligned}
$$

and

$$
\begin{aligned}
\left(\mathbf{x}-\mu_{2}\right)^{\prime} \mathbf{D}_{2}^{-1}\left(\mathbf{x}-\mu_{2}\right) & =\left(x_{1}-1\right)^{2}+\left(x_{2}-1\right)^{2} \\
& =x_{2}^{2}+x_{2}^{2}-2 x_{1}-2 x_{2}+
\end{aligned}
$$

then

$$
\frac{\mathrm{f}_{1}(\mathbf{x})}{\mathrm{f}_{2}(\mathbf{x})} \geq c \Leftrightarrow-x^{2}+2 x_{1} x_{2}+10 x_{1}-6 x_{2}-18 \geq 2 \log c .
$$

If we choose $c=1$, we note that the curve which separates R_{1} and R_{2} is the hyperbola

$$
\left\{\mathbf{x} \mid-x_{1}^{2}+2 x_{1} x_{2}+10 x_{1}-6 x_{2}-18=0\right\} .
$$

It has centre in $(3,-2)$ and asymptotes
$x_{1}-3=0$,
$x_{1}-2 x_{2}-7=0$.

These curves are shown in the above figure together with the contour ellipses for the wo normal distributions. Note e.g. that a point such as $(9,0)$ is in R_{2} and therefore will be classified as coming from the distribution with centre in $(1,1)$. Furthermore the frequency functions are show

We will not consider the problem of misclassification probabilities in cases as the above mentioned where we have quadratic discriminators.

7.1.3 Discrimination with unknown parameters

If one does not know the two distributions f_{1} and f_{2} one must estimate them based on some observations and then construct discriminators from the estimated distributions the same way we did for the exact distributions.
Let us consider the normal case
$\pi_{1} \leftrightarrow \mathrm{~N}\left(\mu_{1}, \boldsymbol{\Sigma}\right)$
$\pi_{2} \leftrightarrow \mathrm{~N}\left(\mu_{2}, \boldsymbol{\Sigma}\right)$,
where the parameters are unknown. If we have observations $\mathbf{X}_{1}, \ldots, \mathbf{X}_{n_{1}}$ which we know come from π_{1} and observations $\mathbf{Y}_{1}, \ldots, \mathbf{Y}_{n_{2}}$ which we know come from π_{2} we
can estimate the parameters as follows

$$
\begin{aligned}
\hat{\mu}_{1} & =\frac{1}{n_{1}} \sum_{i} \mathbf{X}_{i}=\overline{\mathbf{X}} \\
\hat{\mu}_{2} & =\frac{1}{n_{2}} \sum_{i} \mathbf{Y}_{i}=\overline{\mathbf{Y}} \\
\hat{\mathbf{\Sigma}} & =\frac{1}{n_{1}+n_{2}-2}\left(\sum_{i}\left(\mathbf{X}_{i}-\overline{\mathbf{X}}\right)\left(\mathbf{X}_{i}-\overline{\mathbf{X}}\right)^{\prime}+\sum_{i}\left(\mathbf{Y}_{i}-\overline{\mathbf{Y}}\right)\left(\mathbf{Y}_{i}-\overline{\mathbf{Y}}\right)^{\prime}\right)
\end{aligned}
$$

In complete analogy to theorem p. 206 we have the discriminator

$$
\mathbf{x}^{\prime} \hat{\boldsymbol{\Sigma}}^{-1}\left(\hat{\mu}_{1}-\hat{\mu}_{2}\right)-\frac{1}{2} \hat{\mu}_{1}^{\prime} \hat{\boldsymbol{\Sigma}}^{-1} \hat{\mu}_{1}+\frac{1}{2} \hat{\mu}_{2}^{\prime} \hat{\boldsymbol{\Sigma}}^{-1} \hat{\mu}_{2}
$$

The exact distribution of this quantity if we substitute x with a stochastic variable $\mathbf{X} \in \mathbb{N}\left(\mu_{i}, \boldsymbol{\Sigma}\right)$ is fairly complicated but for large sample sizes it is asymptotically equal to the distribution of Z in theorem 7.5 so for reasonable sample sizes we can use the theory we have derived.
The estimated norm between the expected values is

$$
\left\|\hat{\mu}_{1}-\hat{\mu}_{2}\right\|^{2} \simeq \mathrm{D}^{2}=\left(\hat{\mu}_{1}-\hat{\mu}_{2}\right)^{\prime} \hat{\Sigma}^{-1}\left(\hat{\mu}_{1}-\hat{\mu}_{2}\right)=\left\|\hat{\mu}_{1}-\hat{\mu}_{2}\right\|_{\Sigma^{-1}}^{2} .
$$

This is called Mahalanobis' distance. It should here be noted that a number of authors use the expression Mahalabobis' distance also on the quantity $\left\|\mu_{1}-\mu_{2}\right\|^{2}$. This is after
the Indian statistician PC. Mahalanobis who developed discriminant analysis at the same time as the English statistician R.A. Fisher in the 30'es.

By means of D^{2} we can test if $\mu_{1}=\mu_{2}$ since

$$
Z=\frac{n_{1}+n_{2}-p-1}{p\left(n_{1}+n_{2}-2\right)} \cdot \frac{n_{1} n_{2}}{n_{1}+n_{2}} \mathrm{D}^{2}
$$

is $\mathrm{F}\left(p, n_{1}+n_{2}-p-1\right)$-distributed if $\mu_{1}=\mu_{2}$. If $\mu_{1} \neq \mu_{2}$ then Z has a larger mean value so the critical region become large values of Z. This test is of course equivalent
o Hotelling's T^{2}-test in section 6.1.2.

We give an example (data come from K.R. Nair: A biometric study of the desert locust, Bull. Int. Stat. Inst. 1951).
EkSempel 7.4. In an investigation of dessert locusts one measured the following biometric characteristics they were
x_{1} : length of hind femur
$\begin{array}{ll}x_{2}: & \text { maximum width of the head in the genal region } \\ x_{3}: & \text { length of pronotum the cull }\end{array}$
x_{3} : length of pronotum at the scull
The two species which were examined are gregaria and an intermediate phase between gregaria and solotaria.
The following mean values were found.

	Mean values	
	Gregaria	Intermediate phase
	$n_{1}=20$	$n_{2}=72$
x_{1}	25.80	28.35
x_{2}	7.81	7.11
x_{3}	10.77	10.75

The estimated variance-covariance matrix is

$$
\begin{array}{c|ccc}
& x_{1} & x_{2} & x_{3} \\
\hline x_{1} & 4.7350 & 0.5622 & 1.4685 \\
x_{2} & 0.5622 & 0.1413 & 0.2174 \\
x_{3} & 1.4685 & 0.2174 & 0.5702
\end{array}
$$

One is now interested in determining a discrimination function for classification of future locusts by means of measurements of x_{1}, x_{2}, x_{3}.
First it would, however, be reasonable to investigate if the three measurements from he two populations are different at all i.e. we must investigate if it can be assumed that $\mu_{1}=\mu_{2}$. We have
$\mathrm{D}^{2}=\left(\hat{\mu}_{1}-\hat{\mu}_{2}\right)^{\prime} \hat{\boldsymbol{\Sigma}}^{-1}\left(\hat{\mu}_{1}-\hat{\mu}_{2}\right)=9.7421$.

This value is inserted in the test statistic p. 216 and we get

$$
Z=\frac{20+72-3-1}{3(20+72-2)} \cdot \frac{20 \cdot 72}{20+72} \cdot 9.7421=49.70 .
$$

Since
$F(3,88)_{0.999} \simeq 6$,
we will reject the hypothesis of the two mean values being equal. It is therefore sensible to try constructing a discriminator

We have

$$
\mathbf{x}^{\prime} \boldsymbol{\Sigma}^{-1}\left(\hat{\mu}_{1}-\hat{\mu}_{2}\right)=-2.7458 x_{1}+6.6217 x_{2}+4.5820 x_{3}
$$

and

$$
\frac{1}{2}\left(\hat{\mu}_{1}^{\prime} \hat{\boldsymbol{\Sigma}}^{-1} \hat{\mu}_{1}-\hat{\mu}_{2}^{\prime} \hat{\boldsymbol{\Sigma}}^{-1} \hat{\mu}_{2}\right)=25.3506 .
$$

Since there is no information on prior probabilities we will use $c=1$, i.e. $: \log c=0$, and we will therefore use the function

$$
\mathrm{d}(\mathbf{x})=-2.7458 x_{1}+6.6217 x_{2}+4.582 x_{3}-25.3506
$$

in classifying the two possible species of locust.
If we for instance have caught a specimen with the measured characteristics

$$
\mathbf{x}=\left(\begin{array}{c}
27.06 \\
8.03 \\
11.36
\end{array}\right)
$$

we get $\mathrm{d}(\mathrm{x})=5.5715>0$ meaning we will classify the individual as being a gregaria.

7.1.4 Test for best discrimination function

We remind that the best discrimination

$$
\hat{\delta}=\hat{\boldsymbol{\Sigma}}^{-1}\left(\hat{\mu}_{1}-\hat{\mu}_{2}\right),
$$

can be found by maximising the function

$$
\hat{\varphi}(\mathbf{d})=\frac{\left[\left(\hat{\mu}_{1}-\hat{\mu}_{2}\right)^{\prime} \mathbf{d}\right]^{2}}{\mathbf{d}^{\prime} \boldsymbol{\Sigma} \mathbf{d}}
$$

The maximum value is

$$
\hat{\varphi}(\hat{\delta})=\frac{\left[\left(\hat{\mu}_{1}-\hat{\mu}_{2}\right)^{\prime} \hat{\boldsymbol{\Sigma}}^{-1}\left(\hat{\mu}_{1}-\hat{\mu}_{2}\right)\right]^{2}}{\left(\hat{\mu}_{1}-\hat{\mu}_{2}\right)^{\prime} \boldsymbol{\Sigma}^{-1}\left(\hat{\mu}_{1}-\hat{\mu}_{2}\right)}=\mathrm{D}^{2},
$$

i.e. Mahalanobis' D^{2} is the maximum value of $\hat{\varphi}(\mathbf{d})$. For an arbitrary (fixed) \mathbf{d} we now let

$$
D_{1}^{2}=\hat{\varphi}(\mathbf{d})=\frac{\left[\left(\hat{\mu}_{1}-\hat{\mu}_{2}\right)^{\prime} \mathbf{d}\right]^{2}}{\mathbf{d}^{\prime} \hat{\boldsymbol{\Sigma}} \mathbf{d}} .
$$

We can then test the hypothesis that the linear projection determined by \mathbf{d} is the best We can then test the hypothesis that the li
discriminator by means of the test statistic

$$
Z=\frac{n_{1}+n_{2}-p-1}{p-1} \cdot \frac{n_{1} n_{2}\left(\mathrm{D}^{2}-\mathrm{D}_{1}^{2}\right)}{\left(n_{1}+n_{2}\right)\left(n_{1}+n_{2}-2\right)+n_{1} n_{2} \mathrm{D}_{1}^{2}},
$$

which is $\mathrm{F}\left(p-1, n_{1}+n_{2}-p-1\right)$-distributed under the hypothesis. Large values of Z are critical.
We will not come into the reason why the distribution for the 0 -hypothesis looks th way it does but just note that Z gives a measure of how much the "distance" betwee the two populations is reduced by using d instead of $\hat{\delta}$. If this reduction is too big i.e. if Z is large we will not be able to assume that \mathbf{d} gives essentially as good a discrimination between the two populations as $\hat{\delta}$.
EKSEMPEL 7.5. In the following table we give averages of 50 measurements of dif ferent characteristics of two different types of Iris, Iris versicolor and Iris setosa. (The data come from Fisher's investigations in 1936.)

	Versicolor	Setosa	Differens
Bægerblads langde	5.936	5.006	0.930
Bxerbblads bredde	2.770	3.428	-0.658
Kronblads længde	4.260	1.462	2.789
Kronblads bredde	1.326	0.246	1.080

The estimated variance covariance matrix (based on 98 degrees of freedom) is

$$
\hat{\boldsymbol{\Sigma}}=\left[\begin{array}{cccc}
0.19534 & 0.09220 & 0.099626 & 0.03306 \\
& 0.12108 & 0.04718 & 0.02525 \\
& & 0.12549 & 0.039586 \\
& & 0.02511
\end{array}\right]
$$

From this it readily follows that

$$
\hat{\delta}=\hat{\boldsymbol{\Sigma}}^{-1}\left(\hat{\mu}_{1}-\hat{\mu}_{2}\right)=\left[\begin{array}{r}
-3.0692 \\
-18.0006 \\
21.7641 \\
30.7549
\end{array}\right]
$$

Mahalanobis' distance between the mean values is

$$
\mathrm{D}^{2}=[0.930,-0.658,2.789,1.080]\left[\begin{array}{r}
-3.0692 \\
-18.0006 \\
21.7641 \\
30.7549
\end{array}\right]=103.2119 .
$$

We first test if we can assume that $\mu_{1}=\mu_{2}$. The test statistic is

$$
\begin{aligned}
& \frac{50+50-4-1}{4(50+50-2)} \frac{50 \cdot 50}{50+50} \cdot 103.2119=625.3256 \\
& >\mathrm{F}(4,95)_{0.9995} \simeq 5.5 .
\end{aligned}
$$

It will not be reasonable to assume $\mu_{1}=\mu_{2}$.
By looking at the differences between the components in μ_{1} and μ_{2} we note that the number for versicolor is largest except for x_{2} (the sepal's width). Since we are looking for a linear projection which takes a large value for $\mu_{1}-\mu_{2}$ we could try with the projection
$\mathbf{x}^{\prime} \mathbf{d}_{0}=x_{1}-x_{2}+x_{3}+x_{4}$,
where \mathbf{d}_{0} here is the vector $\left[\begin{array}{r}1 \\ -1 \\ 1 \\ 1\end{array}\right]$
We will now test if it can be assumed that the best discriminator has the form

$$
\delta=\text { konstant } \cdot\left[\begin{array}{r}
1 \\
-1 \\
1 \\
1
\end{array}\right]=\text { konstant } \cdot \mathbf{d}_{0} .
$$

We determine the value of φ corresponding to d_{0}

$$
\frac{\left[\left(\hat{\mu}_{1}-\hat{\mu}_{2}\right)^{\prime} \mathbf{d}_{0}\right]^{2}}{\mathbf{d}_{0}^{\prime} \hat{\boldsymbol{\Sigma}} \mathbf{d}_{0}}=61.9479 .
$$

The test statistic becomes

$$
\frac{50+50-4-1}{4-1} \cdot \frac{50 \cdot 50(103.2119-61.9479)}{(50+50)(50+50-2)+50 \cdot 50 \cdot 61.9479}
$$

$$
=1984>F(3,95)_{0.9995} \simeq 6.5 .
$$

We must therefore reject the hypothesis and note that we cannot assume that the best discriminator is of the form $x_{1}-x_{2}+x_{3}+x_{4}$.

7.1.5 Test for further information

位 oal of determining a discriminant function. One often has the question if it really necessary with all the measuremens, or if one can do winl fewer variables in order to separate the populations from each other. One could e.g. think it might be sufficient to measure the length of sepal and petal in order to discriminate between Iris versicolo and Iris setosa.

We will reformulate these thoughts a bit more precisely. In the discrimination we me asure the variables X_{1}, \ldots, X_{p}. We now will perform a test in order to investigate if it is possible that the last q variables are unnecessary for the discrimination.

We still assume that there are n_{1} observations from π_{1} and n_{2} observations from population π_{2}. We let

and we perform the same partitioning of mean vectors and variance-covariance matrix
$\mu_{i}=\left[\begin{array}{l}\mu_{i}^{(1)} \\ \mu_{i}^{(2)}\end{array}\right]$
$\boldsymbol{\Sigma}=\left[\begin{array}{ll}\boldsymbol{\Sigma}_{11} & \boldsymbol{\Sigma}_{12} \\ \boldsymbol{\Sigma}_{21} & \boldsymbol{\Sigma}_{22}\end{array}\right]$
We now compute Mahalanobis' distance between the populations, first using ful information i.e. all p variables and then using the reduced information i.e. the firs $p-q$ variables. We then have

$$
D_{p}^{2}=\left(\hat{\mu}_{1}-\hat{\mu}_{2}\right)^{\prime} \hat{\boldsymbol{\Sigma}}^{-1}\left(\hat{\mu}_{1}-\hat{\mu}_{2}\right)
$$

$$
D_{p-q}^{2}=\left(\hat{\mu}_{1}^{(1)}-\hat{\mu}_{2}^{(1)}\right)^{\prime} \hat{\boldsymbol{\Sigma}}_{11}^{-1}\left(\hat{\mu}_{1}^{(1)}-\hat{\mu}_{2}^{(1)}\right) .
$$

A test for the hypothesis that the last q variables do not contribute to a better discrimination is based on

$$
Z=\frac{n_{1}+n_{2}-p-1}{q} \frac{n_{1} n_{2}\left(D_{p}^{2}-D_{p-q}^{2}\right)}{\left(n_{1}+n_{2}\right)\left(n_{1}+n_{2}-2\right)+n_{1} n_{2} D_{p-q}^{2}} .
$$

It can be shown that $Z \in \mathrm{~F}\left(q, n_{1}+n_{2}-p-1\right)$ if H_{0} is true. We will omit the proof, but just state that Z "measures" the relative larger distance there is between populations when going from $p-q$ variables to p variables. It is therefore also intuitively reasonable that we reject the hypothesis that it is sufficient with $p-q$ variables if Z is large.

We now give an illustrative
Eksempel 7.6. We will investigate if it is sufficient to measure the length of sepal and petal in order to discriminate the types of Iris given in example 7.5.
We now perform an ordinary discriminant analysis on the data given but we do not consider the width measurements. The resulting Mahalanobis' distance is

$$
D_{2}^{2}=76.7082,
$$

so the test statistic for the hypothesis given is

$$
\begin{aligned}
& \frac{50+50-4-1}{2} \frac{50 \cdot 50(103.2119-76.7082)}{(50+50-2)(50 \cdot 50 \cdot 76.7082)} \\
& =15.6132>F(2,95)_{0.9995} \simeq 8.25 .
\end{aligned}
$$

We must therefore assume that there is extra information in the width measurements which can help us in discriminating setosa from versicolor.

7.2 Discrimination between several populations

7.2.1 The Bayes solution

The main idea in the generalisation in this section is that one compares the populapopulation.

We consider the populations
π_{1}, \ldots, π_{k}
and on the basis of measurements of p characteristics (or variables) of a given individual we wish to classify it as coming from one of the populations π_{1}, \ldots, π_{k}.
The result of the observations is

$$
\mathbf{X}=\left(\begin{array}{c}
X_{1} \\
\vdots \\
X_{p}
\end{array}\right)
$$

If the individual comes from π_{i} then the frequency function for \mathbf{X} is $f_{i}(\mathbf{x})$.
We assume that a loss function L is given as shown in the following table.

		VæIger			
	π_{1}	π_{2}	\cdots	π_{k}	
	π_{1}	0	$\mathrm{~L}(1,2)$	\cdots	
$\mathrm{L}(1, k)$					
	π_{2}	$\mathrm{~L}(2,1)$	0	\cdots	
Tilstand : $:$	\vdots	\vdots	\vdots		
	$\pi_{k}(2, k)$				
	$\mathrm{L}(k, 1)$	$\mathrm{L}(k, 2)$	\cdots	\vdots	

Finally we can assume that we have a prior distribution

$$
\mathrm{g}\left(\pi_{i}\right)=p_{i}, \quad i=1, \ldots, k .
$$

For an individual with the observation x we define the discriminant value or discriminant score for the i 'th population a

$$
S_{i}^{*}(\mathbf{x})=S_{i}^{*}=-\left[p_{1} \mathrm{f}_{1}(\mathbf{x}) \mathrm{L}(1, i)+\cdots+p_{k} \mathrm{f}_{k}(\mathbf{x}) \mathrm{L}(k, i)\right]
$$

(note that $\mathrm{L}(i, i)=0$ so that the sum has no term $p_{i} \mathrm{f}_{i}(\mathrm{x})$). Since the prior probability for π_{ν} is

$$
\begin{aligned}
\mathrm{k}\left(\pi_{\nu} \mid \mathbf{x}\right) & =\frac{\left.p_{\nu} \mathrm{f}_{\nu} \mathbf{x}\right)}{p_{1} \mathrm{f}_{1}(\mathbf{x})+\cdots+p_{k} \mathrm{f}_{k}(\mathbf{x})} \\
& =\frac{p_{\nu} \mathrm{f}_{\nu}(\mathbf{x})}{\mathrm{h}(\mathbf{x})},
\end{aligned}
$$

we note that by choosing the ${ }^{i}$ ' th population S_{i}^{*} is a constant $(-\mathrm{h}(\mathbf{x}))$ times the expected loss with respect to the posterior distribution of π. Since the proportionality factor $-\mathrm{h}(\mathrm{x})$ is negative we note that the Bayes' solution to the decision problem is to choose the population which has the largest discriminant value (discriminant score) i.e. choose π_{ν} if

$$
S_{\nu}^{*} \geq S_{i}^{*}, \quad \forall i
$$

If all $\mathrm{L}(i, j)(i \neq j)$ are equal we can simplify the expression for the discriminant score. We prefer π_{i} for π_{j} if

$$
S_{i}^{*}>S_{j}^{*},
$$

i.e. if

$$
-\left(\sum_{\nu} p_{\nu} \mathrm{f}_{\nu}(\mathbf{x})-p_{i} \mathrm{f}_{i}(\mathbf{x})\right)>-\left(\sum_{\nu} p_{\nu} \mathrm{f}_{\nu}(\mathbf{x})-p_{j} \mathrm{f}_{j}(\mathbf{x})\right)
$$

$$
\Leftrightarrow \quad p_{i} f_{i}(\mathbf{x})>p_{j} \mathrm{f}_{j}(\mathbf{x}) .
$$

In this case we can therefore choose the discriminant score

$$
S_{i}^{\prime}=p_{i} \mathrm{f}_{i}(\mathbf{x}) .
$$

In this case the Bayes' rule is that we choose the population which has the largest In this case the Bayes' rule is that we choose the population which has the largest where the losses are equal but also where it has not been possible to determine such losses. If the p_{i} sare unknown and it is not possible to estimate them one usually uses the discriminant score

$$
S_{i}^{\prime \prime}=\mathrm{f}_{i}(\mathrm{x}),
$$

i.e. choose the population where the observed probability is the largest.

The minimax solutions are determined by choosing the strategy which makes all the misclassification probabilities equally large. (Still assuming that all losses are equal.) We will, however, not be going into more detail about this here.

7.2.2 The Bayes' solution in the case with several normal

 distributionsWe will now consider the case where
$\pi_{i} \leftrightarrow \mathrm{~N}\left(\mu_{i}, \boldsymbol{\Sigma}_{i}\right)$,
i.e.

$$
\mathrm{f}_{i}(\mathbf{x})=\frac{1}{\sqrt{2 \pi^{p}}} \frac{1}{\sqrt{\operatorname{det} \boldsymbol{\Sigma}_{i}}} \exp \left(-\frac{1}{2}\left(\mathbf{x}-\mu_{i}\right)^{\prime} \boldsymbol{\Sigma}_{i}^{-1}\left(\mathbf{x}-\mu_{i}\right)\right)
$$

for $i=1, \ldots, k$.
Since we get the same decision rule by choosing monotone transformations of our discriminant scores we will take the logarithm of the f_{i} s and disregard the common
factor $(2 \pi)^{-\frac{s}{2}}$. This gives (assuming that the losses are equal) factor $(2 \pi)^{-\frac{2}{2}}$. This gives (assuming that the losses are equal

$$
S_{i}^{\prime}=-\frac{1}{2} \log \left(\operatorname{det} \boldsymbol{\Sigma}_{i}\right)-\frac{1}{2}\left(\mathbf{x}-\mu_{i}\right)^{\prime} \mathbf{\Sigma}_{i}^{-1}\left(\mathbf{x}-\mu_{i}\right)+\log p_{i} .
$$

This function is quadratic in x and is called a quadratic discriminant function. If all the Σ_{i} are equal then the terms

$$
-\frac{1}{2} \log \operatorname{det} \boldsymbol{\Sigma}-\frac{1}{2} \mathbf{x}^{\prime} \boldsymbol{\Sigma}^{-1} \mathbf{x} .
$$

are common for all $S_{i} s$ and can therefore be omitted. We then get

$$
S_{i}=\mathbf{x}^{\prime} \boldsymbol{\Sigma}^{-1} \mu_{i}-\frac{1}{2} \mu_{i}^{\prime} \boldsymbol{\Sigma}^{-1} \mu_{i}+\log p_{i} .
$$

This is seen to be a linear (affine) function in \mathbf{x}. If there are only two groups we not that we choose group 1 if

$$
\begin{aligned}
& S_{1}^{\prime}>S_{2}^{\prime} \Leftrightarrow S_{1}-S_{2}>0 \\
\Leftrightarrow & \mathbf{x}^{\prime} \boldsymbol{\Sigma}^{-1}\left(\mu_{1}-\mu_{2}\right)-\frac{1}{2} \mu_{1}^{\prime} \boldsymbol{\Sigma}^{-1} \mu_{1}+\frac{1}{2} \mu_{2}^{\prime} \boldsymbol{\Sigma}^{-1} \mu_{2} \geq \log \frac{p_{2}}{p_{1}},
\end{aligned}
$$

i.e. the same result as p. 206

The posterior probability for the ν th group becomes

$$
\mathrm{k}\left(\pi_{\nu} \mid \mathbf{x}\right)=\frac{\exp \left(S_{\nu}\right)}{\sum_{i=1}^{k} \exp \left(S_{i}\right)}
$$

It is of course possible to describe the decision rules by dividing R^{p} into sets R_{1}, \ldots, R_{k} ot that we choose π_{i} exactly if $\mathbf{x} \in R_{i}$. Among other things this will be seen from the following
EKSEMPEL 7.7. We consider populations π_{1}, π_{2} and π_{3} given by normal distribution with expected values

$$
\mu_{1}=\binom{4}{2}, \quad \mu_{1}=\binom{1}{1}, \quad \text { og } \quad \mu_{3}=\binom{2}{6},
$$

and the common variance-covariance matrix

$$
\boldsymbol{\Sigma}=\left(\begin{array}{ll}
1 & 1 \\
1 & 2
\end{array}\right)
$$

cf. the example p. 210. Assuming that all p_{i} are equal so that we can disregard them in the discriminant scores - we then have
$\begin{aligned} S_{11}^{\prime} & =\left(x_{1} x_{2}\right)\left(\begin{array}{rr}2 & -1 \\ -1 & 1\end{array}\right)\binom{4}{2}-\frac{1}{2}(4,2)\left(\begin{array}{rr}2 & -1 \\ -1 & 1\end{array}\right)\binom{4}{2} \\ & =6 x_{1}-2 x_{2}-10\end{aligned}$
$S_{12}^{\prime}=\left(x_{1} x_{2}\right)\left(\begin{array}{rr}2 & -1 \\ -1 & 1\end{array}\right)\binom{1}{1}-\frac{1}{2}(1,1)\left(\begin{array}{rr}2 & -1 \\ -1 & 1\end{array}\right)\binom{1}{1}$
$=x_{1}-\frac{1}{2}$
$S_{13}^{\prime}=\left(x_{1} x_{2}\right)\left(\begin{array}{rr}2 & -1 \\ -1 & 1\end{array}\right)\binom{2}{6}-\frac{1}{2}(2,6)\left(\begin{array}{rr}2 & -1 \\ -1 & 1\end{array}\right)\binom{2}{6}$

$$
=-2 x_{1}+4 x_{2}-10 .
$$

We now choose to prefer π_{1} for π_{2} if

$$
\begin{aligned}
u_{12}(\mathbf{x}) & =6 x_{1}-2 x_{2}-10-\left(x_{1}-\frac{1}{2}\right) \\
& =5 x_{1}-2 x_{2}-9 \frac{1}{2} \\
& >0 .
\end{aligned}
$$

We choose to prefer π_{1} for π_{3} if
$u_{13}(\mathbf{x})=6 x_{1}-2 x_{2}-10-\left(-2 x_{1}+4 x_{2}-10\right)$

$$
=8 x_{1}-6 x_{2}
$$

$$
>0,
$$

and finally we will choose to prefer π_{2} for π_{3} if

$$
\begin{aligned}
u_{23}(\mathbf{x}) & =x_{1}-\frac{1}{2}-\left(-2 x_{1}+4 x_{2}-10\right) \\
& =3 x_{1}-4 x_{2}+9 \frac{1}{2}
\end{aligned}
$$

$$
>0 .
$$

Figur 7.1:
For the point x we have

$$
\left.\begin{array}{ll}
u_{23}(\mathbf{x})<0 & \text { d.v.s. }
\end{array} \begin{array}{l}
\mathrm{f}_{2}(\mathbf{x})<\mathrm{f}_{3}(\mathbf{x}) \\
u_{13}(\mathbf{x})>0
\end{array} \text { d.v.s. } \mathrm{f}_{1}(\mathbf{x})>\mathrm{f}_{3}(\mathbf{x})\right\} \Rightarrow \mathrm{f}_{1}(\mathbf{x})>\mathrm{f}_{2}(\mathbf{x})
$$

i.e. we have now established a contradiction i.e. the three lines determined by u_{12}, u_{13}
and u_{23} must intersect each other in a point.

If the parameters are unknown and instead are estimated they are inserted in the estimating expressions in the above mentioned relations cf. the procedure in section 7.1.3.

7.2.3 Alternative discrimination procedure for the case of

 several populations.In the previous section we have given one form of the generalisation of discriminant instead generalises theorem 7.4 .

We still consider k groups with n_{1}, \ldots, n_{k} observations in each. The group averages are called $\overline{\mathbf{X}}_{1}, \ldots, \mathbf{X}_{k}$. We define an "among groups" matrix

$$
\mathbf{A}=\sum_{i=1}^{k} n_{i}\left(\overline{\mathbf{X}}_{i}-\overline{\mathbf{X}}\right)\left(\overline{\mathbf{X}}_{i}-\overline{\mathbf{X}}\right)^{\prime},
$$

a "within groups" matrix

$$
\mathbf{W}=\sum_{i=1}^{k} \sum_{j=1}^{n_{i}}\left(\mathbf{X}_{i j}-\overline{\mathbf{X}}_{i}\right)\left(\mathbf{X}_{i j}-\overline{\mathbf{X}}_{i}\right)^{\prime}
$$

and a "total" matrix

$$
\mathbf{T}=\sum_{i=1}^{k} \sum_{j=1}^{n_{i}}\left(\mathbf{X}_{i j}-\overline{\mathbf{X}}\right)\left(\mathbf{X}_{i j}-\overline{\mathbf{X}}\right)^{\prime}
$$

A fundamental equation is

$$
\mathbf{T}=\mathbf{A}+\mathbf{W} .
$$

We can now go ahead with the discrimination. We seek a best discriminator functio where best means that the function should maximise the ratio between variation among groups and variation within groups. I.e. we seek a function $\mathrm{y}=\mathrm{d}^{\prime} \mathrm{x}$ so

$$
\varphi(\mathbf{d})=\frac{\mathbf{d}^{\prime} \mathbf{A} \mathbf{d}}{\mathbf{d}^{\prime} \mathbf{W} \mathbf{d}} \quad\left(\mathbf{d} \text { is chosen so } \mathrm{d}^{\prime} \mathbf{d}=1\right)
$$

is maximised. We note from theorem ?? that the maximum value is the largest eigen value λ_{1} and the corresponding eigenvector d_{1} to

$$
\operatorname{det}(\mathbf{A}-\lambda \mathbf{W})=0
$$

or

$$
\operatorname{det}\left(\mathbf{W}^{-1} \mathbf{A}-\lambda \mathbf{I}\right)=0 .
$$

We then seek a new discriminant function d_{2} so
$\varphi\left(\mathbf{d}_{2}\right)=\frac{\mathbf{d}_{2} \mathbf{A} \mathbf{d}_{2}}{\mathbf{d}_{2} \mathbf{W} \mathbf{d}_{2}}$

is maximised under the constraint that

$$
\mathbf{d}_{2}^{\prime} \mathbf{d}_{1}=0 \quad \text { eller } \quad \mathbf{d}_{1} \perp \mathbf{d}_{2} \quad \text { og } \quad \mathbf{d}_{2}^{\prime} \mathbf{d}_{2}=1 .
$$

This corresponds to the second largest eigenvalue for $\mathbf{W}^{-1} \mathbf{A}$ and the corresponding eigenvector
In this way one can continue until one gets an eigenvalue for $\mathbf{W}^{-1} \mathbf{A}$ which is 0 (or until $\mathbf{W}^{-1} \mathbf{A}$ is exhausted).
A plot of the projections of the single observations (normed with the total mean) onto ${ }_{\text {the }} \mathbf{d}_{1}, \mathbf{d}_{2}$ plane will be useful as a means of visualisation. This plan separates the points best in the sense described above
The coordinates of the projections are

$$
\left[\mathbf{d}_{1}^{\prime}\left(\mathbf{x}_{i j}-\overline{\mathbf{x}}\right), \quad \mathbf{d}_{2}^{\prime}\left(\mathbf{x}_{i j}-\overline{\mathbf{x}}\right)\right] .
$$

Another useful plot is one of the vectors

$$
\binom{d_{11}}{d_{21}}, \ldots,\binom{d_{1 p}}{d_{2 p}} .
$$

These show with which weight the value of the single variable contributes to the plot on the ($\mathrm{d}_{1}, \mathrm{~d}_{2}$)-plane.
E.g. in the programme BMD07M - STEPWISE DISCRIMINANT ANALYSIS - the plane $\left(\mathbf{d}_{1}, \mathbf{d}_{2}\right)$ is denoted the first two canonical variables.
In this programme variables can - as the name indicates - be included or removed from the analysis in a way which is completely similar to a stepwise regression analysis (The version which is called STEPWISE REGRESSION). Apart from controlling the inclusion and removal of variables by means of F-tests there are a number of intuitive
criteria which are very well described in the BMD manual p. 243 .

It should also be mentioned here that Wilk's Λ for the test of the hypothesis

$$
H_{0}: \mu_{1}=\cdots=\mu_{k} \quad \text { against } \quad H_{1}: \exists i, j: \mu_{i} \neq \mu_{j},
$$

is

$$
\Lambda=\frac{\operatorname{det} \mathbf{W}}{\operatorname{det} \mathbf{T}}=\prod_{j=1}^{p} \frac{1}{1+\lambda_{j}} .
$$

The distribution of this quantity can be approximated by a χ^{2} or F-distribution. The BMD manual p. 242. Cf. with section 6.1.3.

EKSEMPEL 7.8. In the following table we give mean values and standard deviation or content of different elements for 208 washed soil samples collected in Jameson Land. The variable Sum gives the sum of Y and La contents.

Variable	Mean Value	Standard deviation
B	73	141
Ti	40563	22279
V	678	491
Cr	1135	1216
Mn	2562	2081
Fe	225817	122302
Co	62	26
Ni	116	54
Cu	69	56
Ga	21	10
Zr	14752	14771
Mo	29	20
Sn	56	99
Pb	351	786
Sum	-	-

A distributional analysis showed that the data were best approximated by LN-distributions. Therefore all numbers were transformed and were standardised in order to obtain mean of 0 and a variance of 1 . The problem is to how great an extent the content of the
elements characterises the difference geologic periods. The number of measurements from the different periods are given below.

Period	Number
Jura	17
Trias	80
Perm	30
Carbon	9
Devon	31
Tertixre intrusives	35
Caledonsk crystallic	4
Eleonora Bay Formation	2

In order to examine this some discriminant analyses were performed. We will not pur se this further here. We will simply illustrate the use of the previously mentioned plot, sue tigure 7.2 .
sen
the above figure te cifin for ables are given.

By comparing the two figures one can e.g. see that Cu is fairly specific for Devon, and

Figur 7.3:
the figures give quite a good impression of how the distribution of elements is for the
different periods.

