Kapitel 7
Discriminant Analysis

In this section we will address the problem of classifyingratividual in one of two
(or more) known populations based on measurements of soaraathristics of the
individual.

We first consider the problem of discriminating between twaugs (classes).

7.1 Discrimination between two populations

7.1.1 Bayes and minimax solutions

We consider th@opulations ; andm, and wish to conclude whether a given indivi-
dual is a member of group one or group two. We perform measemeswfp different
characteristics of the individual and hereby get the result

Xy

X,

If the individual comes fromrr; the frequency function oX is f; (x) and if it comes
from 7y it is f5(x).

Let us furthermore assume that we have givéwsa functionL:
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Choose:
1 2

m | 0 L2

m™ | L21) 0

We will assume that there is no loss if we take the correcisitwi

In certain situations one also knows approximately whatpttier probability is to

have an individual from each of the groups i.e. we haven gasprior distribution g:
g(m) =p1, g(m) =p2.

We now seek aecision functiond: R? — {7, 7 }. d: is defined by

B [ m  hiisxeR
d(x) =dg, (x) = { o hvisx € Ry = CR;.
We divide R” in two regionsR; and R-. If our observation lies ir?; we will choose
71 and if our observation lies iRy we will choser,.

If we have gprior distribution we define the posterior distribution k by

C hem) (o)
Kmil) = 2060 + paba ()~ pr(x) + pala()”

cf.p.6.6inVol. 1.

The expected loss in this distribution is

Ex(L(mi,dR,(x))) = L(m1,dg, (x)k(m|x) + L(m2, dg, (x))k(m2|x)
_ { L(ma, m)k(m|x),  x€ Ry
L(m, m2)k(m [x), X € Ry

The Bayes solution is defined by that we have to minimise théstjty for anyx (p. 6.9
in\Vol. 1), i.e. we must defin®, by

x € R & L(2,1)k(m|x) < L(1,2)k(m |x)
L(1, 2)fi(x)p1

L(2, Dfa(x)p2 ~

f1(x) < L(2,1) p2

f(x) ~ L(1,2) 1’

s

We collect these considerations in
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SAETNING 7.1. The Bayes solution to classification problem is given by #ggan

f1(x) < L(2,1) p2

B g 2 Ta

BEMARKNING 7.1. This result is exactly the same as given in theorem 5, chapter 6
inVol. 1. v

If we do not have a prior distribution we can determine a manirstrategy i.e. deter-
mine anR; so that the maximal risk is minimised. The risk is (cf. p. 6/8l, 1)

R(m,dr,) = Em L(m,dg, (X)) =L(1,2)P{X € Ry|m}.
R(ma.dg,) = B, L(ma,dg, (X)) = L(2,1)P{X € Ry|m2}.

One can now show (see e.g. the proof for theorem 4, chaptev@.id)
SETNING 7.2. The minimax solution for the classification problem is givmnthe

region

f1(x) >},

A=l 2

wherec is determined by

f1(x)

o)
fa(x) ?

£2(X)

L(1,2)P{ < dm} =L(2,1)P{ > dma}.

BEMARKNING 7.2. The relation for the determination forcan be written

L(1,2) - (the probability for misclassification if, is true)
= L(2,1) - (the probability for misclassification if; is true)

Since one is an increasing and the other a decreasing fanafioit is obvious that

we will minimise the maximal risk when we have equality. If de not have any idea
about the size of the losses we can let them both equal onenifti@ax solution gives
us the region which minimises the maximal probability frdnstclassification. v
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We will now consider the important special case whigrandf, are normal distribu-
tions.

7.1.2 Discrimination between two normal populations

If f; andf, are normal with the same variance-covariance matrix we have

SETNING 7.3. Letm; ~ N(u;, ¥) andrs ~ N(u2, ). Then we have

fi(x)
f2(x)

1 1
>ce xS (m - p) - 5#1271#1 + 5#&271#2 >logec.

BEvIs 7.1. We introduce the inner produ¢t-) and the nornj| || by
(x]y) =x'Z"y
and

ll]* = (

We then have

(0 = =g exp(—lx — l’)
i(x) = 5 exp(—z||x — pil|%).
VI des P K

From this we readily get
f1(x) fi(x)

e e
= g + flx = ua]* > 2log e

>celog

>logc

—(x = mlx =) + (x = pa|x — p2) = 2loge
2(x|p1) = 2(x|p2) — (pa|p1) + (p2lp2) > 2loge
2(x|p1 = p2) = (malp) + (nalp2) > 2loge.

O

By using the link betweer]) andX~! we have that the theorem readily follows.
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Ry Ry
x, x
1
]
1
)
)
' LY
pl
u -
Y, x- =1
5, RESTN
1
h
\ Ilx-u, Il =1
|
1
1]
1

cl h

X2y, - %‘21'2"21 + %22'5"22 ~logec=0.

BEMARKNING 7.3. The expressio ;(3 > cis seen to define a subset®f which
is delimited by a hyper-plane (fer= 2 a straight line and fop = 3 a plane)

The vectorp - is the orthogonal projection (NB! The orthogonal projestieith re-
spect tax~!) of x on the line which connects; andus.. (It can be shown that the slope
of the projection lines etc. are equal to the slope of thesd (ellipsoid-) tangents in
the at the points where they intersect the lipg, 1i2)). Since the length of a projection
of a vector is equal to the inner product between the vectdraannity vector on the
line we see that we have classified the observation as comingf; iff the projection
of x is large enough (computed with sign). Otherwise we will sifysthe observation
as coming fromr,.

The function
-1 P | )
X' (1 — p2) — 5#12 o+ 5#22 p2 —loge

is called the discriminator or the discriminant function.

We then have that the discriminator is the linear projectibich - after the addition of
suitable constants - minimises the expected loss (the Bstyesion) or the probability
of misclassification (the minimax situation). v
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In order to make the reader more confident with the contentwilteow give a slightly
different interpretation of a discriminator. If we let

5 =3 (1 — pa),
we have the following
[E:1(X'd) — Eo(X'd)]* (1 — p2)'d)?

SETNING 7.4. p(d) = VXD = T5d

BEvis 7.2. The proof is not very interesting but fairly simple. Since readily have
thaty(k - d) = k - ¢(d) we can determine extremes foiby determining extremes for
the numerator under the following constraint

d=d=1.
We introduce a Lagrange multipliarand seek the maximum of
(d) = (1 — po)'d]* = \(d'2d - 1).
Now we have that
O = 2 — i) — pa)d — 223
If we let this equal 0, we have
(11 = pi2) (1 — pi2)'d = A2,

RY:
d= Mg*l(m — ) =k,

wheref is a scalar. u
BEMARKNING 7.4. The content of the theorem is that the linear function deirezgh
by §

X0 =6X1+ -+ 0,X,,
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is the projection that “movest; furthest possible away from, or - in the language of
analysis of variance - the projection which maximises thi@awee between populations
divided by the total variance.

The geometric content of the theorem is indicated in the alfigure where

b: is the projection of the ellipse on the lipg, 12 in the direction determined by
x'§=0

a: is the projection of the ellipse on the lipg, 12 on another direction.

Itis seen that the projection determined®gn the line which connecis, and . is
the one which “moves” the projection of the contour ellijsoof the two populations
distribution furthest possible away from each other. v

We now give a theorem which is very useful in the determimatibmisclassification
probabilities.

SATNING 7.5. We consider the criterion in theorem 7.3

1 1
Z=XT = p2) = 5B + ST .
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On this we have

Ze N(+ 3l = p2®. [lp2 = p2]]?),  hvism; sand
N(=3llm = p2l?, |11 = p2|?),  hvismz sand -

BEvIs 7.3. The proof is straight forward. Let us e.g. consider the casgue. We
then have thak(X) = x; and then

1 1
E(Z) = pZ 70 =) = g S i + 5T
1 _
= glm- p2) B (1 = piz)
1
= slm- p2?.
V(Z) = (m—p2) S S8 g — o)
= (= p2)' =7 (i — p2)
= lm- lizH24
The result regarding, is shown analogously. u

‘We will now consider some examples.

EKSEMPEL 7.1. We consider the case where

w11
w1

and we want to determine a “best” discriminator functiomc®i we know nothing
about the prior probabilities and the like, we will use thadtion which corresponds
to the constant in theorem 7.3 being 1. Since

(1) -(2 ),
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we get the following function

2 1) (3 1 ) . 1
(Ilzz)(_l 1)(1>75(2»16+1-4—2»8)+§(2-1+1»1—2-1):0
or

_ 1
bxy — 29 — 95 =0.
If we enter an arbitrary point, e.< ‘Z ) we get

1 1
5:5-2:6-9-=3->0.
BER) B 2>

This point is therfore classified as coming fram

We have indicated the situation in the following figure

1_
X 5%, = 2x,-93 =0

Konturellipse hgrende
til ™ 's fordeling

If we have a loss function, the procedure is a bit differeniclvlis seen from

EKSEMPEL 7.2. Let us assume that we have losses assigned for the diffeeeint d
sions:
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Choose:
T T2
| 0 2
Nature:
ma | 1 0

Since we have no prior probabilities we will determine thaimiax solution. We will
need

I — pol?=2-94+1-1-2-3-1=13.

From theorem 7.2 follows that we must determirso
f(X) f(X)
9. = >
2 P{fz(X) < c|m P BX) > c|ma
< 2. P{Z <logc|m} = P{Z >logc|m}

1 1
s 2. P{N(EIS, 13) <logc} = P{N(*il&, 13) > log c}
loge — 6.5 logc+6.5}
———  =P{N(0,1) > ——— .
V13 } { .1 V13

By trying with different values of we see that

& 2-P{N(0,1)<

c =~ 0.5617.
Using this value the misclassification probabilities are
If mis true: P{N(0,1) < ©£050=00} ~ 0.025.
If myis true:  P{N(0,1) < 1205065} o~ 0,050.
The discriminating line is now determined by
1 .
5xy — 2w9 — 95 = 1log0.5617,
or
51— 2x9 — 8.92 = 0.
This line intersects the line connecting and x> in ((2.36,1.46) i.e. it is moved
towardsy, compared to the mid-poin®.5,1.5). It is also obvious that the line is
moved parallelly in this direction since we see from the losgrix that it is more se-

rious to be wrong ife; is true than i is true. We must therefore expafid i.e. move
the limiting line towards.s. ¢
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We must stipulate that it is of importance that the variaoseariance matrices for the
two populations are equal. If this is not the case we will gebenpletely different
result which will be seen from the following example.

EKSEMPEL 7.3. Let us assume that the variance-covariance matrix for jatioual 2
is changed to an identity matrix i.e.

me () (h2))
w e N(()6Y)

Again we want to classify an observatidwhich comes from one of the above men-
tioned distributions. Since the variance covariance megriare not equal we cannot
use the result in theorem 7.3but have to start from the béggrwith theorem 7.2.

Fore > 0 we have

—(x = ) By (x = )+ (x = p2) By (x — pi2) > 2loge

Since
(k= m) SN x =) = 2w —4)° = (22— 2)° = 2w — 4)(z2 - 2)
223 + 23 — 22120 — 1221 + 4y + 20,
and
(x—p2) By (x = pp) = (21— 1)* + (2 — 1)
= a:f + ;t§ — 2wy — 229+ 2,
then
fi(x) 2 e
B >ce —x” 4 2w + 1021 — 622 — 18 > 2logc.
2

If we choose: = 1, we note that the curve which separafgsandR: is the hyperbola

{x| — 2% + 22125 + 1021 — 622 — 18 = 0}.

214 KAPITEL 7. DISCRIMINANT ANALYSIS

It has centre i3, —2) and asymptotes
1 —3=0,

x1 — 210 —7=0.
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These curves are shown in the above figure together with th@epellipses for the
two normal distributions. Note e.g. that a point such(@9) is in R, and therefore
will be classified as coming from the distribution with cemim (1, 1). Furthermore the
frequency functions are shown.

¢

We will not consider the problem of misclassification proiiies in cases as the above
mentioned where we have quadratic discriminators.
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7.1.3 Discrimination with unknown parameters

If one does not know the two distributiofisandf, one must estimate them based on
some observations and then construct discriminators frerestimated distributions
the same way we did for the exact distributions.

Let us consider the normal case

T < N(p, X)
m < N(u2, %),

where the parameters are unknown. If we have observakans. ., X,,, which we
know come fromr; and observation¥y, ..., Y,,, which we know come fromr; we
can estimate the parameters as follows

. 1 <
= H—IZX,:X
s = S Y. =Y
H2 = 2 P =
SR S - _xy - _yy
I e (DSRS0 X)+212<Y1 Y)(Y; - YY)

i

In complete analogy to theorem p. 206 we have the discriminator

Sl n N 1,21 1,621~
X' 1(#1*#2)*5142 1#1+§#§E o

The exact distribution of this quantity if we substitutewith a stochastic variable

X € N(u;,X) is fairly complicated but for large sample sizes it is asymptly
equal to the distribution o in theorem 7.5 so for reasonable sample sizes we can use
the theory we have derived.

The estimated norm between the expected values is
i = fial|® = D? = (i — 1) &7 (fir — fia) = [|jin — fr2| -

This is calledVlahalanobis’ distance. It should here be noted that a number of authors
use the expression Mahalabobis’ distance also on the dyénii— 2||2. This is after

the Indian statistician P.C. Mahalanobis who developedrifisnant analysis at the
same time as the English statistician R.A. Fisher in thes80'e
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By means ofD? we can test ifu; = p» since

_mitny—p-—1 ning 5
o p(ni+n2—2) ny+ne

isF(p,n1 + na — p — 1)-distributed ifyi1 = po. If 1 # po thenZ has a larger mean
value so the critical region become large valuegoThis test is of course equivalent
to Hotelling’s7?-test in section 6.1.2.

We give an example (data come from K.R. Nair: A biometric gtatthe desert locust,
Bull. Int. Stat. Inst. 1951).

EKSEMPEL 7.4. In an investigation of dessert locusts one measured thewfisly
biometric characteristics they were

z1:  length of hind femur
z5:  maximum width of the head in the genal region
3. length of pronotum at the scull

The two species which were examined are gregaria and amietéate phase between
gregaria and solotaria.

The following mean values were found.

Mean values
Gregaria| Intermediate phasp
ny =20 ng =72
x| 25.80 28.35
xo 7.81 7.41
x3 | 10.77 10.75

The estimated variance-covariance matrix is

‘ L1 T2 x3
w1 | 4.7350 0.5622 1.4685
rp | 0.5622 0.1413 0.2174
x3 | 1.4685 0.2174 0.5702

One is now interested in determining a discrimination fiorcfor classification of
future locusts by means of measurementsQfrs, x3.

First it would, however, be reasonable to investigate ifttiree measurements from
the two populations are different at all i.e. we must inget if it can be assumed that
11 = pe. We have

D* = (fu — f12) &7 (i — fiz) = 9.7421.
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This value is inserted in the test statistic p. 216 and we get

20+72-3-1 20-72
= ——————  ———— - 9.7421 = 49.70.
3(204+72-2) 20+72
Since
F(3,88)0.999 = 6,

we will reject the hypothesis of the two mean values beingédtis therefore sensible
to try constructing a discriminator.

We have

x5! (fir — fiz) = —2.7458z1 + 6.621725 + 4.582013
and
(B2 - iy 2 fig) = 25.3506.

Since there is no information on prior probabilities we widlec = 1, i.e. :logc = 0,
and we will therefore use the function

d(x) = —2.7458z1 + 6.6217x + 4.582x3 — 25.3506

in classifying the two possible species of locust.

If we for instance have caught a specimen with the measuradcteristics

27.06
X = 8.03
11.36

we getd(x) = 5.5715 > 0 meaning we will classify the individual as being a gregaria.

J

7.1.4 Test for best discrimination function
We remind that the best discrimination

6 =371 — i),
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can be found by maximising the function

R (1 — fi2)'d]?
pd) = —F"7.
#(d) 54
The maximum value is

2 (1 — fi2)' S (s — jo))? _

o) = - 2,
20 (1 = f12)' B (i — fiz) D=

i.e. MahalanobisD? is the maximum value af(d). For an arbitrary (fixedgl we now
let
R [(n — fip)'d)?
DI = ¢(d) = ~———.
1=¢(d) 3d

We can then test the hypothesis that the linear projecticeraiéned byd is the best
discriminator by means of the test statistic

ny+ny—p—1 nina(D? - D)
p—1 (n1 +n2)(n1 +n2 —2) + nna D2’

Z =

whichisF(p — 1,n1 + na — p — 1)-distributed under the hypothesis. Large values of
Z are critical.

We will not come into the reason why the distribution for théypothesis looks the
way it does but just note tha gives a measure of how much the “distance” between
the two populations is reduced by usidgnstead o . If this reduction is too big i.e. if
Zis large we will not be able to assume tagives essentially as good a discrimination
between the two populations as

EKSEMPEL 7.5. In the following table we give averages of 50 measurementfof
ferent characteristics of two different types of Iris, Wisrsicolor and Iris setosa. (The
data come from Fisher’s investigations in 1936.)

Versicolor| Setosa Differens
Baegerblads leengde 5.936 5.006 0.930
Beegerblads bredde 2.770 3.428 | —0.658
Kronblads leengde |  4.260 1.462 2.789
Kronblads bredde 1.326 0.246 1.080

The estimated variance covariance matrix (based on 98 eiegfdreedom) is

0.19534  0.09220 0.099626 0.03306
0.12108  0.04718  0.02525
0.12549  0.039586

0.02511

M
Il
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From this it readily follows that

—3.0692

© a1 | —18.0006
O=3" )= | o '7en

30.7549
Mahalanobis’ distance between the mean values is

—3.0692

D? = [0.930, —0.658, 2.789, 1.080] 7;?(7]32(13 =103.2119.

30.7549
We first test if we can assume that = p». The test statistic is

50 +50—4—1 50-50

D022 U 1032119 = 625.3256
4(50 + 50 — 2) 50+ 50 °

> F(4,95)0.9995 =~ 5.5.

It will not be reasonable to assume = .

By looking at the differences between the components,iand ., we note that the
number for versicolor is largest except for (the sepal’s width). Since we are looking
for a linear projection which takes a large value far — x» we could try with the
projection

/
x'dy = w1 — w2 + 23 + T4,

1
whered, here is the vectol
1

We will now test if it can be assumed that the best discrinsinaas the form

§ = konstant 71 = konstant d,.

1
We determine the value of corresponding tely:

[(fn = fi2)'do]?

L = 61.9479.
dy%d,
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The test statistic becomes

50+50—-4—-1 50 - 50(103.2119 — 61.9479)

4-1 (50 + 50)(50 + 50 — 2) + 50 - 50 - 61.9479

= 1984 > F(3,95)0.0005 ~ 6.5.

We must therefore reject the hypothesis and note that weotassume that the best
discriminator is of the formyy — 25 + 23 + 24. (3

7.1.5 Test for further information

Given one has measurements of a number of variables for swaduals with the

goal of determining a discriminant function. One often Haes question if it really is

necessary with all the measurements, or if one can do witkerfeariables in order to
separate the populations from each other. One could et ithinight be sufficient to

measure the length of sepal and petal in order to discrimibetween Iris versicolor
and Iris setosa.

We will reformulate these thoughts a bit more preciselyhia discrimination we me-
asure the variableX, . ... X,. We now will perform a test in order to investigate if it
is possible that the last q variables are unnecessary falishgmination.

We still assume that there ang observations fromr; andn, observations from po-
pulations. We let

X1 prqH
=X; og = Xo,
Xp—g Xp

and we perform the same partitioning of mean vectors andweei-covariance matrix

i

Y = .
[221 222]

We now compute Mahalanobis’ distance between the popuktifirst using full
information i.e. allp variables and then using the reduced information i.e. the first
p — g variables. We then have

Il
—
E X
CRC)
[

D2 = (jun — 1) &7y — fia)
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and

D2, = (" = iy sttt - D).

A test for the hypothesis that the lasvariables do not contribute to a better discrimi-
nation is based on

ny+ng —p—1 "1712(D;2, - Di,q)

Z = —.
q (n1 +n2)(n1 +n2 —2) + mnsz,,q

It can be shown that € F(g,n1 +n2 —p — 1) if Hy is true. We will omit the proof,
but just state that “measures” the relative larger distance there is betwepnlptions
when going fronp— ¢ variables tg variables. It is therefore also intuitively reasonable
that we reject the hypothesis that it is sufficient with- ¢ variables ifZ is large.

We now give an illustrative

EKsSeEMPEL 7.6. We will investigate if it is sufficient to measure the lengthsepal
and petal in order to discriminate the types of Iris givenxaraple 7.5.

We now perform an ordinary discriminant analysis on the dftan but we do not
consider the width measurements. The resulting Mahalahdistance is

D32 = 76.7082,
so the test statistic for the hypothesis given is

50+50—4—1 50-50(103.2119 — 76.7082)
2 (50 + 50 — 2)(50 - 50 - 76.7082)

= 15.6132 > F(2,95)0.0005 ~ 8.25.

We must therefore assume that there is extra informatiohénaidth measurements
which can help us in discriminating setosa from versicolor. ¢

7.2 Discrimination between several populations

7.2.1 The Bayes solution

The main idea in the generalisation in this section is tha compares the popula-
tions pairwise as in the previous section and then finallyoske the most probable
population.
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We consider the populations
Tyee o Tk

and on the basis of measurementg oharacteristics (or variables) of a given individual
we wish to classify it as coming from one of the populatians. . ., 7.

The result of the observations is

X

XF

If the individual comes fromx; then the frequency function faX is f;(x).

We assume that a loss function L is given as shown in the fafigwable.

Veelger
1 T2 Tk
™| 0  L(1,2) --- L(Lk)
m L1 0 - L(2k)
Tilstand: : : :
7 | L(k,1) L(k,2) --- 0

Finally we can assume that we have a prior distribution

g(m)=pi, i=1,... .k

For an individual with the observationwe define the discriminant value or discrimi-
nant score for the i'th population as

Si(x) =87 = =[p1fi ()LL) + - - + pafi(X)L(k, 1)]

(note thatl(z,7) = 0 so that the sum has no ter; (x)). Since the prior probability
for, is

pofyx)
pifi(x) + -+ prfi(x)
pufiy (%)

h(x) ’

k(m,|x)
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we note that by choosing the i'th populatiSh is a constant—h(x)) times the expected
loss with respect to the posterior distributionaf Since the proportionality factor
—h(x) is negative we note that the Bayes’ solution to the decisioblpm is to choose
the population which has the largest discriminant valuscfitininant score) i.e. choose
7, if

Sy > S7, Vi.

If all L(i,5) (i # j) are equal we can simplify the expression for the discriminan
score. We prefer; for m; if

Sy > 57,

i.e.if
= pubu(x) = pifi(x)) > =3 po (%) = byt ()
v v
& pifi(x) > pit;(x).

In this case we can therefore choose the discriminant score

S} = pifi(x).
In this case theBayes' rule is that we choose the population which has the largest
posterior distribution i.e. choose groupf S} > S;, Vj # i. This rule is not only used
where the losses are equal but also where it has not beerbleossidetermine such
losses. If thep;s are unknown and it is not possible to estimate them one lysisds
the discriminant score

S =fi(x),
i.e. choose the population where the observed probatslitye largest.

The minimax solutions are determined by choosing the styatéhich makes all the
misclassification probabilities equally large. (Still assng that all losses are equal.)
We will, however, not be going into more detail about thiseher

7.2.2 The Bayes’ solution in the case with several normal
distributions

We will now consider the case where

mooe N, ),

224 KAPITEL 7. DISCRIMINANT ANALYSIS

ie.
1 1 1
() = = e exD( 5 (x — 1) B (x — ),
() =~z T P () B (k= )
fori=1,...,k.

Since we get the same decision rule by choosing monotonsftramations of our
discriminant scores we will take the logarithm of the and disregard the common
factor (2m)~ %. This gives (assuming that the losses are equal)

1 1
Si= -3 log(det X;) — i(x — ) =7 — ) + log ps.

This function is quadratic i and is called a quadratic discriminant function. If all the
3, are equal then the terms

1 1
~3 logdet X — ix'Z’lx.

are common for alb;s and can therefore be omitted. We then get

1
Si=x'S" i — 5/11271#1’ + log pi.

This is seen to be a linear (affine) functionsin|f there are only two groups we note
that we choose group 1 if

S1>8, 85 —5>0
1 1 5
e XS — pg) — 5;/1)3’];11 + Euéz’]uz > log sz.’
P
i.e. the same result as p. 206.

The posterior probability for theth group becomes

() = 22
iy exp(Si)
Itis of course possible to describe the decision rules biglifig R” into setsR;, . .., Ry

so that we choose; exactly ifx € R;. Among other things this will be seen from the
following

EKSEMPEL 7.7. We consider populations;, m» andr; given by normal distributions
with expected values

4 1 2
e (3) e () o e (2),
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and the common variance-covariance matrix

cf. the example p. 210. Assuming thatallare equal so that we can disregard them in

the discriminant scores - we then have

st = @ (7 ) (5) e (
= 61— 222 — 10
2 = (1112)(7? 71)(1)*%(1@)(7?
) 1
= -3

V{s = (1112)( _

= =2z +4xy - 10.

N0

|
- L
S~—
/~
(=l )
S~——
|
no |

©
Py
/N
|

We now choose to prefer; for my if

1
uip(x) = 6z — 2wy — 10— (21 — 5)

1
= bry — 219 795

> 0.

We choose to prefer; for 73 if

uiz(x) = 6xy — 2wy — 10 — (—2z1 + 4z — 10)
= 8z — 6y
> 0,

and finally we will choose to prefer, for 73 if

1
upz(x) = w1 — 5~ (—2z1 + 4z5 — 10)
1
= 3z —4ay + 95
> 0.
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It is now evident that we will choose; if both ui2(x) > 0 andui3(x) > 0 and
analogously with the others.

We can therefore define the regions

Ry = {xluja(x) >0 A wus(x) >0}
Ry = {xfuia(x) <0 A ugg(x) >0}
Ry = {x|uiz(x) <0 A ug3(x) <0},

and we have that we will choose exactly ifx € R;.

We have sketched the situation in the following figure.

237

One can easily prove that the lines will intersect in a pdtris, however, also possible
to make a reasoning for this. Let us assume that the situst@sin figure 7.1.

We now note that

uij >0 8 > 81 & 6>
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Figur 7.1:

For the pointx we have

3(x) <0 dv.s. fao(x) < f3(x)
Z?;<:)>o d.s. f?(i) >f;(:) }éﬁ(xbf?(x)

ua(x) <0 dvs. fi(x) < fa(x)

i.e. we have now established a contradiction i.e. the tfines determined by2, u13
anduss must intersect each other in a point.

If the parameters are unknown and instead are estimatechteepserted in the esti-
mating expressions in the above mentioned relations cpribeedure in section 7.1.3.

7.2.3 Alternative discrimination procedure for the case of
several populations.

In the previous section we have given one form of the gersatidin of discriminant
analysis from 2 to several populations. We will now descebether procedure which
instead generalises theorem 7.4.
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We still considerk groups withn, ..., n;, observations in each. The group averages
are calledX, ..., X. We define an “among groups” matrix

M=

A=) (X - X)(X; - XY,

i=1

a "within groups” matrix

W =

i

3Ky — X)Xy~ XY

ki
=1 j=1

and a “total” matrix
k  n; _ _
T=3 3 Xy -X)X;-X).
i=1 j=1
A fundamental equation is

T=A+W.

We can now go ahead with the discrimination. We seek a bestimimator function
where best means that the function should maximise thelvatiseen variation among
groups and variation within groups. I.e. we seek a funcyica d'x so

o)~ YAd
A= Fwa

(dischosensa’d = 1)

is maximised. We note from theore??® that the maximum value is the largest eigen-
value\; and the corresponding eigenvecthrto

det(A — AW) =0
or
det(W™'A = AI) = 0.
We then seek a new discriminant functidp so

_ dAd,

5(ds) =
o(dz) LW,
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is maximised under the constraint that

dhd; =0 eller d; Ldy og djds =1.
This corresponds to the second largest eigenvalud¥for' A and the corresponding
eigenvector.

In this way one can continue until one gets an eigenvalud¥or! A which is 0 (or
until WA is exhausted).

A plot of the projections of the single observations (norméith the total mean) onto
thed;,d. plane will be useful as a means of visualisation. This plgrasstes the
points best in the sense described above.

The coordinates of the projections are
[d} (xij — %), db(xi; — X))

Another useful plot is one of the vectors

di1 dlp

dyy )77\ dyy )
These show with which weight the value of the single variainletributes to the plot
on the(d,, dz)-plane.

E.g. in the programme BMDO7M - STEPWISE DISCRIMINANT ANALYS - the
plane(d,, d) is denoted the first two canonical variables.

In this programme variables can - as the name indicates -chelied or removed from
the analysis in a way which is completely similar to a stepwisgression analysis
(The version which is called STEPWISE REGRESSION). Apanirfrcontrolling the
inclusion and removal of variables by means of F-tests thexea number of intuitive
criteria which are very well described in the BMD manual p324

It should also be mentioned here that Wilk'Sor the test of the hypothesis

Ho:py=---=p, against Hy:3i,j: pi # py,

_ detW ﬁ 1

Tl

The distribution of this quantity can be approximated by?aor F-distribution. The
last possibility is probably the numerically best approatimn. These are given in the
BMD manual p. 242. Cf. with section 6.1.3.
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EksSeMPEL 7.8. In the following table we give mean values and standard devis
for content of different elements for 208 washed soil sasgigllected in Jameson
Land. The variable Sum gives the sum of Y and La contents.

Variable | Mean Value| Standard deviatio
B 73 141
Ti 40563 22279
A\ 678 491
Cr 1135 1216
Mn 2562 2081
Fe 225817 122302
Co 62 26
Ni 116 54
Cu 69 56
Ga 21 10
Zr 14752 14771
Mo 29 20
Sn 56 99
Pb 351 786
Sum — -

A distributional analysis showed that the data were besieqmated by LN-distributions.
Therefore all numbers were transformed and were stane@ardfsorder to obtain a
mean of 0 and a variance of 1. The problem is to how great ametkie content of the
elements characterises the difference geologic peridusntimber of measurements
from the different periods are given below.

[ Period Number
Jura 17
Trias 80
Perm 30
Carbon 9
Devon 31
Tertigere intrusives 35
Caledonsk crystallic 4
Eleonora Bay Formatio 2

In order to examine this some discriminant analyses werepeed. We will not pur-
sue this further here. We will simply illustrate the use @ fireviously mentioned plot,
see figure 7.2.

In the above figure the coefficient for the ordinary varialoleghe two canonical vari-
ables are given.

By comparing the two figures one can e.g. see that Cu is fgidgific for Devon, and
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Figur 7.2:
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Figur 7.3:

the figures give quite a good impression of how the distrdsutf elements is for the

different periods.
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