
Kapitel 7

Discriminant Analysis

In this section we will address the problem of classifying anindividual in one of two
(or more) known populations based on measurements of some characteristics of the
individual.

We first consider the problem of discriminating between two groups (classes).

7.1 Discrimination between two populations

7.1.1 Bayes and minimax solutions

We consider thepopulationsπ1 andπ2 and wish to conclude whether a given indivi-
dual is a member of group one or group two. We perform measurements ofp different
characteristics of the individual and hereby get the result

X =







X1

...
Xp






.

If the individual comes fromπ1 the frequency function ofX is f1(x) and if it comes
from π2 it is f2(x).

Let us furthermore assume that we have given aloss functionL:
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Choose:
π1 π2

π1 0 L(1, 2)
State

π2 L(2, 1) 0

We will assume that there is no loss if we take the correct decision.

In certain situations one also knows approximately what theprior probability is to
have an individual from each of the groups i.e. we haven givena prior distribution g:

g(π1) = p1, g(π2) = p2.

We now seek adecision functiond:Rp → {π1, π2}. d: is defined by

d(x) = dR1
(x) =

{

π1 hvisx ∈ R1

π2 hvisx ∈ R2 = ∁R1.

We divideRp in two regionsR1 andR2. If our observation lies inR1 we will choose
π1 and if our observation lies inR2 we will choseπ2.

If we have aprior distribution we define the posterior distribution k by

k(πi|x) =
fi(x)g(πi)

p1f1(x) + p2f2(x)
=

pifi(x)

p1f1(x) + p2f2(x)
,

cf. p. 6.6 in Vol. 1.

The expected loss in this distribution is

Ex(L(πi, dR1
(x))) = L(π1, dR1

(x))k(π1|x) + L(π2, dR1
(x))k(π2|x)

=

{

L(π2, π1)k(π2|x), x ∈ R1

L(π1, π2)k(π1|x), x ∈ R2
.

The Bayes solution is defined by that we have to minimise this quantity for anyx (p. 6.9
in Vol. 1), i.e. we must defineR1 by

x ∈ R1 ⇔ L(2, 1)k(π2|x) ≤ L(1, 2)k(π1|x)

⇔ L(1, 2)f1(x)p1

L(2, 1)f2(x)p2
≥ 1

⇔ f1(x)

f2(x)
≥ L(2, 1)

L(1, 2)

p2

p1
.

We collect these considerations in
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SÆTNING 7.1. The Bayes solution to classification problem is given by the region

R1 = {x| f1(x)

f2(x)
≥ L(2, 1)

L(1, 2)

p2

p1
}.

N

BEMÆRKNING 7.1. This result is exactly the same as given in theorem 5, chapter 6
in Vol. 1. H

If we do not have a prior distribution we can determine a minimax strategy i.e. deter-
mine anR1 so that the maximal risk is minimised. The risk is (cf. p. 6.3,Vol 1)

R(π1, dR1
) = Eπ1

L(π1, dR1
(X)) = L(1, 2)P{X ∈ R2|π1}.

R(π2, dR1
) = Eπ2

L(π2, dR1
(X)) = L(2, 1)P{X ∈ R1|π2}.

One can now show (see e.g. the proof for theorem 4, chapter 6 inVol. 1)

SÆTNING 7.2. The minimax solution for the classification problem is givenby the
region

R1 = {x| f1(x)

f2(x)
≥ c},

wherec is determined by

L(1, 2)P{ f1(x)

f2(x)
< c|π1} = L(2, 1)P{ f1(X)

f2(X)
≥ c|π2}.

N

BEMÆRKNING 7.2. The relation for the determination forc can be written

L(1, 2) · (the probability for misclassification ifπ1 is true)

= L(2, 1) · (the probability for misclassification ifπ2 is true)

Since one is an increasing and the other a decreasing function of c it is obvious that
we will minimise the maximal risk when we have equality. If wedo not have any idea
about the size of the losses we can let them both equal one. Theminimax solution gives
us the region which minimises the maximal probability from this classification. H
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We will now consider the important special case wheref1 andf2 are normal distribu-
tions.

7.1.2 Discrimination between two normal populations

If f1 andf2 are normal with the same variance-covariance matrix we have

SÆTNING 7.3. Let π1 ≃ N(µ1,Σ) andπ2 ≃ N(µ2,Σ). Then we have

f1(x)

f2(x)
≥ c⇔ x′Σ−1(µ1 − µ2) −

1

2
µ′

1Σ
−1µ1 +

1

2
µ′

2Σ
−1µ2 ≥ log c.

N

BEVIS 7.1. We introduce the inner product(·|·) and the norm‖ ‖ by

(x|y) = x′Σ−1y

and

‖x‖2 = (x|x).

We then have

fi(x) =
1√

2π
p√

detΣ
exp(−1

2
‖x− µi‖2).

From this we readily get

f1(x)

f2(x)
≥ c⇔ log

f1(x)

f2(x)
≥ log c

⇔ −‖x− µ1‖2 + ‖x− µ2‖2 ≥ 2 log c

⇔ −(x− µ1|x− µ1) + (x − µ2|x − µ2) ≥ 2 log c

⇔ 2(x|µ1) − 2(x|µ2) − (µ1|µ1) + (µ2|µ2) ≥ 2 log c

⇔ 2(x|µ1 − µ2) − (µ1|µ1) + (µ2|µ2) ≥ 2 log c.

By using the link between(|) andΣ−1 we have that the theorem readily follows.

�
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BEMÆRKNING 7.3. The expressionf1(x)
f2(x) ≥ c is seen to define a subset ofRp which

is delimited by a hyper-plane (forp = 2 a straight line and forp = 3 a plane)

The vector ~p1p2 is the orthogonal projection (NB! The orthogonal projection with re-
spect toΣ−1) of x on the line which connectsµ1 andµ2. (It can be shown that the slope
of the projection lines etc. are equal to the slope of the ellipse- (ellipsoid-) tangents in
the at the points where they intersect the line(µ1, µ2)). Since the length of a projection
of a vector is equal to the inner product between the vector and a unity vector on the
line we see that we have classified the observation as coming fromπ1 iff the projection
of x is large enough (computed with sign). Otherwise we will classify the observation
as coming fromπ2.

The function

x′Σ−1(µ1 − µ2) −
1

2
µ′

1Σ
−1µ1 +

1

2
µ′

2Σ
−1µ2 − log c

is called the discriminator or the discriminant function.

We then have that the discriminator is the linear projectionwhich - after the addition of
suitable constants - minimises the expected loss (the Bayessituation) or the probability
of misclassification (the minimax situation). H
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In order to make the reader more confident with the content - wewill now give a slightly
different interpretation of a discriminator. If we let

δ = Σ−1(µ1 − µ2),

we have the following

SÆTNING 7.4. ϕ(d) =
[E1(X

′d) − E2(X
′d)]2

V(X′d)
=

[(µ1 − µ2)
′d]2

d′Σd
.

N

BEVIS 7.2. The proof is not very interesting but fairly simple. Since wereadily have
thatϕ(k · d) = k ·ϕ(d) we can determine extremes forϕ by determining extremes for
the numerator under the following constraint

d′Σd = 1.

We introduce a Lagrange multiplierλ and seek the maximum of

ψ(d) = [(µ1 − µ2)
′d]2 − λ(d′Σd− 1).

Now we have that

∂ψ

∂d
= 2(µ1 − µ2)(µ1 − µ2)

′d− 2λΣd.

If we let this equal 0, we have

(µ1 − µ2)(µ1 − µ2)
′d = λΣd,

i.e.

d =
(µ1 − µ2)

′d

λ
Σ−1(µ1 − µ2) = k · δ,

wherek is a scalar. �

BEMÆRKNING 7.4. The content of the theorem is that the linear function determined
by δ

X′δ = δ1X1 + · · · + δpXp,
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is the projection that “moves”π1 furthest possible away fromπ2 or - in the language of
analysis of variance - the projection which maximises the variance between populations
divided by the total variance.

The geometric content of the theorem is indicated in the above figure where

b: is the projection of the ellipse on the lineµ1, µ2 in the direction determined by
x′δ = 0

a: is the projection of the ellipse on the lineµ1, µ2 on another direction.

It is seen that the projection determined byδ on the line which connectsµ1 andµ2 is
the one which “moves” the projection of the contour ellipsoids of the two populations
distribution furthest possible away from each other. H

We now give a theorem which is very useful in the determination of misclassification
probabilities.

SÆTNING 7.5. We consider the criterion in theorem 7.3

Z = X′Σ−1(µ1 − µ2) −
1

2
µ′

1Σ
−1µ1 +

1

2
µ′

2Σ
−1µ2.
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On this we have

Z ∈
{

N(+ 1
2‖µ1 − µ2‖2, ‖µ1 − µ2‖2), hvisπ1 sand

N(− 1
2‖µ1 − µ2‖2, ‖µ1 − µ2‖2), hvisπ2 sand

.

N

BEVIS 7.3. The proof is straight forward. Let us e.g. consider the caseπ1 true. We
then have thatE(X) = µ1 and then

E(Z) = µ′
1Σ

−1(µ1 − µ2) −
1

2
µ′

1Σ
−1µ1 +

1

2
µ′

2Σ
−1µ2

=
1

2
(µ1 − µ2)

′Σ−1(µ1 − µ2)

=
1

2
‖µ1 − µ2‖2.

V(Z) = (µ1 − µ2)
′Σ−1ΣΣ−1(µ1 − µ2)

= (µ1 − µ2)
′Σ−1(µ1 − µ2)

= ‖µ1 − µ2‖2.

The result regardingπ2 is shown analogously. �

We will now consider some examples.

EKSEMPEL 7.1. We consider the case where

π1 ↔ N(

(

4
2

)

,

(

1 1
1 2

)

)

π2 ↔ N(

(

1
1

)

,

(

1 1
1 2

)

),

and we want to determine a “best” discriminator function. Since we know nothing
about the prior probabilities and the like, we will use the function which corresponds
to the constantc in theorem 7.3 being 1. Since

(

1 1
1 2

)−1

=

(

2 −1
−1 1

)

,
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we get the following function

(x1x2)

(

2 −1
−1 1

)(

3
1

)

− 1

2
(2 · 16 + 1 · 4 − 2 · 8) +

1

2
(2 · 1 + 1 · 1 − 2 · 1) = 0

or

5x1 − 2x2 − 9
1

2
= 0.

If we enter an arbitrary point, e.g.

(

5
6

)

we get

5 · 5 − 2 · 6 − 9
1

2
= 3

1

2
> 0.

This point is therfore classified as coming fromπ1.

We have indicated the situation in the following figure

�

If we have a loss function, the procedure is a bit different which is seen from

EKSEMPEL 7.2. Let us assume that we have losses assigned for the different deci-
sions:
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Choose:
π1 π2

π1 0 2
Nature:

π2 1 0

Since we have no prior probabilities we will determine the minimax solution. We will
need

‖µ1 − µ2‖2 = 2 · 9 + 1 · 1 − 2 · 3 · 1 = 13.

From theorem 7.2 follows that we must determinec so

2 · P
{

f1(X)

f2(X)
< c|π1

}

= P

{

f1(X)

f2(X)
≥ c|π2

}

⇔ 2 · P{Z < log c|π1} = P{Z ≥ log c|π2}

⇔ 2 · P{N(
1

2
13, 13) < log c} = P{N(−1

2
13, 13) ≥ log c}

⇔ 2 · P
{

N(0, 1) <
log c− 6.5√

13

}

= P

{

N(0, 1) ≥ log c+ 6.5√
13

}

.

By trying with different values ofc we see that

c ≃ 0.5617.

Using this value the misclassification probabilities are

If π1 is true: P{N(0, 1) < log 0.5617−6.5√
13

} ≃ 0.025.

If π2 is true: P{N(0, 1) < log 0.5617+6.5√
13

} ≃ 0.050.

The discriminating line is now determined by

5x1 − 2x2 − 9
1

2
= log 0.5617,

or

5x1 − 2x2 − 8.92 = 0.

This line intersects the line connectingµ1 andµ2 in ((2.36, 1.46) i.e. it is moved
towardsµ2 compared to the mid-point(2.5, 1.5). It is also obvious that the line is
moved parallelly in this direction since we see from the lossmatrix that it is more se-
rious to be wrong ifµ1 is true than ifµ1 is true. We must therefore expandR1 i.e. move
the limiting line towardsµ2. �
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We must stipulate that it is of importance that the variance-covariance matrices for the
two populations are equal. If this is not the case we will get acompletely different
result which will be seen from the following example.

EKSEMPEL 7.3. Let us assume that the variance-covariance matrix for population 2
is changed to an identity matrix i.e.

π1 ↔ N

((

4
2

)

,

(

1 1
1 2

))

π2 ↔ N

((

1
1

)

,

(

1 0
0 1

))

Again we want to classify an observationX which comes from one of the above men-
tioned distributions. Since the variance covariance matrices are not equal we cannot
use the result in theorem 7.3but have to start from the beginning with theorem 7.2.

For c > 0 we have

f1(x)

f2(x)
≥ c ⇔

−(x − µ1)
′Σ−1

1 (x − µ1) + (x − µ2)
′Σ−1

2 (x − µ2) ≥ 2 log c.

Since

(x − µ1)
′Σ−1

1 (x − µ1) = 2(x1 − 4)2 − (x2 − 2)2 − 2(x1 − 4)(x2 − 2)

= 2x2
1 + x2

2 − 2x1x2 − 12x1 + 4x2 + 20,

and

(x − µ2)
′Σ−1

2 (x − µ2) = (x1 − 1)2 + (x2 − 1)2

= x2
1 + x2

2 − 2x1 − 2x2 + 2,

then

f1(x)

f2(x)
≥ c⇔ −x2 + 2x1x2 + 10x1 − 6x2 − 18 ≥ 2 log c.

If we choosec = 1, we note that the curve which separatesR1 andR2 is the hyperbola

{x| − x2
1 + 2x1x2 + 10x1 − 6x2 − 18 = 0}.
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It has centre in(3,−2) and asymptotes

x1 − 3 = 0,

x1 − 2x2 − 7 = 0.

These curves are shown in the above figure together with the contour ellipses for the
two normal distributions. Note e.g. that a point such as(9, 0) is in R2 and therefore
will be classified as coming from the distribution with centre in (1, 1). Furthermore the
frequency functions are shown.

�

We will not consider the problem of misclassification probabilities in cases as the above
mentioned where we have quadratic discriminators.
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7.1.3 Discrimination with unknown parameters

If one does not know the two distributionsf1 andf2 one must estimate them based on
some observations and then construct discriminators from the estimated distributions
the same way we did for the exact distributions.

Let us consider the normal case

π1 ↔ N(µ1,Σ)

π2 ↔ N(µ2,Σ),

where the parameters are unknown. If we have observationsX1, . . . ,Xn1
which we

know come fromπ1 and observationsY1, . . . ,Yn2
which we know come fromπ2 we

can estimate the parameters as follows

µ̂1 =
1

n1

∑

i

Xi = X̄

µ̂2 =
1

n2

∑

i

Yi = Ȳ

Σ̂ =
1

n1 + n2 − 2
(
∑

i

(Xi − X̄)(Xi − X̄)′ +
∑

i

(Yi − Ȳ)(Yi − Ȳ)′)

In complete analogy to theorem p. 206 we have the discriminator

x′Σ̂−1(µ̂1 − µ̂2) −
1

2
µ̂′

1Σ̂
−1µ̂1 +

1

2
µ̂′

2Σ̂
−1µ̂2

The exact distribution of this quantity if we substitutex with a stochastic variable
X ∈ N(µi,Σ) is fairly complicated but for large sample sizes it is asymptotically
equal to the distribution ofZ in theorem 7.5 so for reasonable sample sizes we can use
the theory we have derived.

The estimated norm between the expected values is

‖µ̂1 − µ̂2‖2 ≃ D
2 = (µ̂1 − µ̂2)

′Σ̂−1(µ̂1 − µ̂2) = ‖µ̂1 − µ̂2‖2
Σ̂−1

.

This is calledMahalanobis’ distance. It should here be noted that a number of authors
use the expression Mahalabobis’ distance also on the quantity ‖µ1−µ2‖2. This is after
the Indian statistician P.C. Mahalanobis who developed discriminant analysis at the
same time as the English statistician R.A. Fisher in the 30’es.
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By means ofD2 we can test ifµ1 = µ2 since

Z =
n1 + n2 − p− 1

p(n1 + n2 − 2)
· n1n2

n1 + n2
D

2

is F(p, n1 + n2 − p− 1)-distributed ifµ1 = µ2. If µ1 6= µ2 thenZ has a larger mean
value so the critical region become large values ofZ. This test is of course equivalent
to Hotelling’sT 2-test in section 6.1.2.

We give an example (data come from K.R. Nair: A biometric study of the desert locust,
Bull. Int. Stat. Inst. 1951).

EKSEMPEL 7.4. In an investigation of dessert locusts one measured the following
biometric characteristics they were

x1: length of hind femur
x2: maximum width of the head in the genal region
x3: length of pronotum at the scull

The two species which were examined are gregaria and an intermediate phase between
gregaria and solotaria.

The following mean values were found.

Mean values
Gregaria Intermediate phase
n1 = 20 n2 = 72

x1 25.80 28.35
x2 7.81 7.41
x3 10.77 10.75

The estimated variance-covariance matrix is

x1 x2 x3

x1 4.7350 0.5622 1.4685
x2 0.5622 0.1413 0.2174
x3 1.4685 0.2174 0.5702

One is now interested in determining a discrimination function for classification of
future locusts by means of measurements ofx1, x2, x3.

First it would, however, be reasonable to investigate if thethree measurements from
the two populations are different at all i.e. we must investigate if it can be assumed that
µ1 = µ2. We have

D
2 = (µ̂1 − µ̂2)

′Σ̂−1(µ̂1 − µ̂2) = 9.7421.
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This value is inserted in the test statistic p. 216 and we get

Z =
20 + 72 − 3 − 1

3(20 + 72 − 2)
· 20 · 72

20 + 72
· 9.7421 = 49.70.

Since

F(3, 88)0.999 ≃ 6,

we will reject the hypothesis of the two mean values being equal. It is therefore sensible
to try constructing a discriminator.

We have

x′Σ̂−1(µ̂1 − µ̂2) = −2.7458x1 + 6.6217x2 + 4.5820x3

and

1

2
(µ̂′

1Σ̂
−1µ̂1 − µ̂′

2Σ̂
−1µ̂2) = 25.3506.

Since there is no information on prior probabilities we willusec = 1, i.e. : log c = 0,
and we will therefore use the function

d(x) = −2.7458x1 + 6.6217x2 + 4.582x3 − 25.3506

in classifying the two possible species of locust.

If we for instance have caught a specimen with the measured characteristics

x =





27.06
8.03

11.36





we getd(x) = 5.5715 > 0 meaning we will classify the individual as being a gregaria.

�

7.1.4 Test for best discrimination function

We remind that the best discrimination

δ̂ = Σ̂−1(µ̂1 − µ̂2),
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can be found by maximising the function

ϕ̂(d) =
[(µ̂1 − µ̂2)

′d]2

d′Σ̂d
.

The maximum value is

ϕ̂(δ̂) =
[(µ̂1 − µ̂2)

′Σ̂−1(µ̂1 − µ̂2)]
2

(µ̂1 − µ̂2)′Σ̂−1(µ̂1 − µ̂2)
= D

2,

i.e. Mahalanobis’D2 is the maximum value of̂ϕ(d). For an arbitrary (fixed)d we now
let

D
2
1 = ϕ̂(d) =

[(µ̂1 − µ̂2)
′d]2

d′Σ̂d
.

We can then test the hypothesis that the linear projection determined byd is the best
discriminator by means of the test statistic

Z =
n1 + n2 − p− 1

p− 1
· n1n2(D

2 −D2
1)

(n1 + n2)(n1 + n2 − 2) + n1n2 D2
1

,

which isF(p− 1, n1 + n2 − p − 1)-distributed under the hypothesis. Large values of
Z are critical.

We will not come into the reason why the distribution for the0-hypothesis looks the
way it does but just note thatZ gives a measure of how much the “distance” between
the two populations is reduced by usingd instead of̂δ. If this reduction is too big i.e. if
Z is large we will not be able to assume thatd gives essentially as good a discrimination
between the two populations asδ̂.

EKSEMPEL 7.5. In the following table we give averages of 50 measurements ofdif-
ferent characteristics of two different types of Iris, Irisversicolor and Iris setosa. (The
data come from Fisher’s investigations in 1936.)

Versicolor Setosa Differens
Bægerblads længde 5.936 5.006 0.930
Bægerblads bredde 2.770 3.428 −0.658
Kronblads længde 4.260 1.462 2.789
Kronblads bredde 1.326 0.246 1.080

The estimated variance covariance matrix (based on 98 degrees of freedom) is

Σ̂ =









0.19534 0.09220 0.099626 0.03306
0.12108 0.04718 0.02525

0.12549 0.039586
0.02511








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From this it readily follows that

δ̂ = Σ̂−1(µ̂1 − µ̂2) =









−3.0692
−18.0006

21.7641
30.7549









.

Mahalanobis’ distance between the mean values is

D
2 = [0.930,−0.658, 2.789, 1.080]









−3.0692
−18.0006

21.7641
30.7549









= 103.2119.

We first test if we can assume thatµ1 = µ2. The test statistic is

50 + 50 − 4 − 1

4(50 + 50 − 2)

50 · 50

50 + 50
· 103.2119 = 625.3256

> F(4, 95)0.9995 ≃ 5.5.

It will not be reasonable to assumeµ1 = µ2.

By looking at the differences between the components inµ1 andµ2 we note that the
number for versicolor is largest except forx2 (the sepal’s width). Since we are looking
for a linear projection which takes a large value forµ1 − µ2 we could try with the
projection

x′d0 = x1 − x2 + x3 + x4,

whered0 here is the vector









1
−1

1
1









.

We will now test if it can be assumed that the best discriminator has the form

δ = konstant·









1
−1

1
1









= konstant· d0.

We determine the value ofϕ corresponding tod0:

[(µ̂1 − µ̂2)
′d0]

2

d′
0Σ̂d0

= 61.9479.
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The test statistic becomes

50 + 50 − 4 − 1

4 − 1
· 50 · 50(103.2119− 61.9479)

(50 + 50)(50 + 50 − 2) + 50 · 50 · 61.9479

= 1984 > F(3, 95)0.9995 ≃ 6.5.

We must therefore reject the hypothesis and note that we cannot assume that the best
discriminator is of the formx1 − x2 + x3 + x4. �

7.1.5 Test for further information

Given one has measurements of a number of variables for some individuals with the
goal of determining a discriminant function. One often has the question if it really is
necessary with all the measurements, or if one can do with fewer variables in order to
separate the populations from each other. One could e.g. think it might be sufficient to
measure the length of sepal and petal in order to discriminate between Iris versicolor
and Iris setosa.

We will reformulate these thoughts a bit more precisely. In the discrimination we me-
asure the variablesX1, . . . , Xp. We now will perform a test in order to investigate if it
is possible that the last q variables are unnecessary for thediscrimination.

We still assume that there aren1 observations fromπ1 andn2 observations from po-
pulationπ2. We let







X1

...
Xp−q






= X1 og







Xp−q+1

...
Xp






= X2,

and we perform the same partitioning of mean vectors and variance-covariance matrix

µi =

[

µ
(1)
i

µ
(2)
i

]

Σ =

[

Σ11 Σ12

Σ21 Σ22

]

.

We now compute Mahalanobis’ distance between the populations, first using full
information i.e. allp variables and then using the reduced information i.e. the first
p− q variables. We then have

D2
p = (µ̂1 − µ̂2)

′Σ̂−1(µ̂1 − µ̂2)
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and

D2
p−q = (µ̂

(1)
1 − µ̂

(1)
2 )′Σ̂−1

11 (µ̂
(1)
1 − µ̂

(1)
2 ).

A test for the hypothesis that the lastq variables do not contribute to a better discrimi-
nation is based on

Z =
n1 + n2 − p− 1

q

n1n2(D
2
p −D2

p−q)

(n1 + n2)(n1 + n2 − 2) + n1n2D
2
p−q

.

It can be shown thatZ ∈ F(q, n1 + n2 − p− 1) if H0 is true. We will omit the proof,
but just state thatZ “measures” the relative larger distance there is between populations
when going fromp−q variables top variables. It is therefore also intuitively reasonable
that we reject the hypothesis that it is sufficient withp− q variables ifZ is large.

We now give an illustrative

EKSEMPEL 7.6. We will investigate if it is sufficient to measure the length of sepal
and petal in order to discriminate the types of Iris given in example 7.5.

We now perform an ordinary discriminant analysis on the datagiven but we do not
consider the width measurements. The resulting Mahalanobis’ distance is

D2
2 = 76.7082,

so the test statistic for the hypothesis given is

50 + 50 − 4 − 1

2

50 · 50(103.2119− 76.7082)

(50 + 50 − 2)(50 · 50 · 76.7082)

= 15.6132 > F(2, 95)0.9995 ≃ 8.25.

We must therefore assume that there is extra information in the width measurements
which can help us in discriminating setosa from versicolor. �

7.2 Discrimination between several populations

7.2.1 The Bayes solution

The main idea in the generalisation in this section is that one compares the popula-
tions pairwise as in the previous section and then finally chooses the most probable
population.
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We consider the populations

π1, . . . , πk

and on the basis of measurements ofp characteristics (or variables) of a given individual
we wish to classify it as coming from one of the populationsπ1, . . . , πk.

The result of the observations is

X =







X1

...
Xp






.

If the individual comes fromπi then the frequency function forX is fi(x).

We assume that a loss function L is given as shown in the following table.

Vælger
π1 π2 · · · πk

π1 0 L(1, 2) · · · L(1, k)
π2 L(2, 1) 0 · · · L(2, k)

Tilstand:
...

...
...

...
πk L(k, 1) L(k, 2) · · · 0

Finally we can assume that we have a prior distribution

g(πi) = pi, i = 1, . . . , k.

For an individual with the observationx we define the discriminant value or discrimi-
nant score for the i’th population as

S∗
i (x) = S∗

i = −[p1f1(x)L(1, i) + · · · + pkfk(x)L(k, i)]

(note thatL(i, i) = 0 so that the sum has no termpifi(x)). Since the prior probability
for πν is

k(πν |x) =
pν fνx)

p1f1(x) + · · · + pkfk(x)

=
pν fν(x)

h(x)
,
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we note that by choosing the i’th populationS∗
i is a constant(−h(x)) times the expected

loss with respect to the posterior distribution ofπ. Since the proportionality factor
−h(x) is negative we note that the Bayes’ solution to the decision problem is to choose
the population which has the largest discriminant value (discriminant score) i.e. choose
πν if

S∗
ν ≥ S∗

i , ∀i.

If all L(i, j) (i 6= j) are equal we can simplify the expression for the discriminant
score. We preferπi for πj if

S∗
i > S∗

j ,

i.e. if

−(
∑

ν

pν fν(x) − pifi(x)) > −(
∑

ν

pν fν(x) − pjfj(x))

⇔ pifi(x) > pjfj(x).

In this case we can therefore choose the discriminant score

S′
i = pifi(x).

In this case theBayes’ rule is that we choose the population which has the largest
posterior distribution i.e. choose groupi, if S′

i > S′
j , ∀j 6= i. This rule is not only used

where the losses are equal but also where it has not been possible to determine such
losses. If thepis are unknown and it is not possible to estimate them one usually uses
the discriminant score

S′′
i = fi(x),

i.e. choose the population where the observed probability is the largest.

The minimax solutions are determined by choosing the strategy which makes all the
misclassification probabilities equally large. (Still assuming that all losses are equal.)
We will, however, not be going into more detail about this here.

7.2.2 The Bayes’ solution in the case with several normal
distributions

We will now consider the case where

πi ↔ N(µi,Σi),
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i.e.

fi(x) =
1√
2π

p

1√
detΣi

exp(−1

2
(x − µi)

′Σ−1
i (x − µi)),

for i = 1, . . . , k.

Since we get the same decision rule by choosing monotone transformations of our
discriminant scores we will take the logarithm of thefis and disregard the common
factor(2π)−

p

2 . This gives (assuming that the losses are equal)

S′
i = −1

2
log(detΣi) −

1

2
(x − µi)

′Σ−1
i (x − µi) + log pi.

This function is quadratic inx and is called a quadratic discriminant function. If all the
Σi are equal then the terms

−1

2
log detΣ− 1

2
x′Σ−1x.

are common for allSis and can therefore be omitted. We then get

Si = x′Σ−1µi −
1

2
µ′

iΣ
−1µi + log pi.

This is seen to be a linear (affine) function inx. If there are only two groups we note
that we choose group 1 if

S′
1 > S′

2 ⇔ S1 − S2 > 0

⇔ x′Σ−1(µ1 − µ2) −
1

2
µ′

1Σ
−1µ1 +

1

2
µ′

2Σ
−1µ2 ≥ log

p2

p1
,

i.e. the same result as p. 206.

The posterior probability for theνth group becomes

k(πν |x) =
exp(Sν)

∑k

i=1 exp(Si)

It is of course possible to describe the decision rules by dividingRp into setsR1, . . . , Rk

so that we chooseπi exactly ifx ∈ Ri. Among other things this will be seen from the
following

EKSEMPEL 7.7. We consider populationsπ1, π2 andπ3 given by normal distributions
with expected values

µ1 =

(

4
2

)

, µ1 =

(

1
1

)

, og µ3 =

(

2
6

)

,
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and the common variance-covariance matrix

Σ =

(

1 1
1 2

)

cf. the example p. 210. Assuming that allpi are equal so that we can disregard them in
the discriminant scores - we then have

S′
11 = (x1x2)

(

2 −1
−1 1

) (

4
2

)

− 1

2
(4, 2)

(

2 −1
−1 1

)(

4
2

)

= 6x1 − 2x2 − 10

S′
12 = (x1x2)

(

2 −1
−1 1

) (

1
1

)

− 1

2
(1, 1)

(

2 −1
−1 1

)(

1
1

)

= x1 −
1

2

S′
13 = (x1x2)

(

2 −1
−1 1

) (

2
6

)

− 1

2
(2, 6)

(

2 −1
−1 1

)(

2
6

)

= −2x1 + 4x2 − 10.

We now choose to preferπ1 for π2 if

u12(x) = 6x1 − 2x2 − 10 − (x1 −
1

2
)

= 5x1 − 2x2 − 9
1

2
> 0.

We choose to preferπ1 for π3 if

u13(x) = 6x1 − 2x2 − 10 − (−2x1 + 4x2 − 10)

= 8x1 − 6x2

> 0,

and finally we will choose to preferπ2 for π3 if

u23(x) = x1 −
1

2
− (−2x1 + 4x2 − 10)

= 3x1 − 4x2 + 9
1

2
> 0.
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It is now evident that we will chooseπ1 if both u12(x) > 0 andu13(x) > 0 and
analogously with the others.

We can therefore define the regions

R1 = {x|u12(x) > 0 ∧ u13(x) > 0}
R2 = {x|u12(x) < 0 ∧ u23(x) > 0}
R3 = {x|u13(x) < 0 ∧ u23(x) < 0},

and we have that we will chooseπi exactly ifx ∈ Ri.

We have sketched the situation in the following figure.

One can easily prove that the lines will intersect in a point.It is, however, also possible
to make a reasoning for this. Let us assume that the situationis as in figure 7.1.

We now note that

uij > 0 ⇔ S′
1i > S′

1j ⇔ fi > fj .
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Figur 7.1:

For the pointx we have

u23(x) < 0 d.v.s. f2(x) < f3(x)
u13(x) > 0 d.v.s. f1(x) > f3(x)

}

⇒ f1(x) > f2(x)

u12(x) < 0 d.v.s. f1(x) < f2(x)

i.e. we have now established a contradiction i.e. the three lines determined byu12, u13

andu23 must intersect each other in a point. �

If the parameters are unknown and instead are estimated theyare inserted in the esti-
mating expressions in the above mentioned relations cf. theprocedure in section 7.1.3.

7.2.3 Alternative discrimination procedure for the case of
several populations.

In the previous section we have given one form of the generalisation of discriminant
analysis from 2 to several populations. We will now describeanother procedure which
instead generalises theorem 7.4.
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We still considerk groups withn1, . . . , nk observations in each. The group averages
are calledX̄1, . . . , X̄k. We define an “among groups” matrix

A =

k
∑

i=1

ni(X̄i − X̄)(X̄i − X̄)′,

a ”within groups” matrix

W =
k

∑

i=1

ni
∑

j=1

(Xij − X̄i)(Xij − X̄i)
′

and a “total” matrix

T =

k
∑

i=1

ni
∑

j=1

(Xij − X̄)(Xij − X̄)′.

A fundamental equation is

T = A + W.

We can now go ahead with the discrimination. We seek a best discriminator function
where best means that the function should maximise the ratiobetween variation among
groups and variation within groups. I.e. we seek a functiony = d′x so

ϕ(d) =
d′Ad

d′Wd
(d is chosen sod′d = 1)

is maximised. We note from theorem?? that the maximum value is the largest eigen-
valueλ1 and the corresponding eigenvectord1 to

det(A − λW) = 0

or

det(W−1A − λI) = 0.

We then seek a new discriminant functiond2 so

ϕ(d2) =
d2Ad2

d2Wd2
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is maximised under the constraint that

d′
2d1 = 0 eller d1 ⊥ d2 og d′

2d2 = 1.

This corresponds to the second largest eigenvalue forW−1A and the corresponding
eigenvector.

In this way one can continue until one gets an eigenvalue forW−1A which is 0 (or
until W−1A is exhausted).

A plot of the projections of the single observations (normedwith the total mean) onto
the d1,d2 plane will be useful as a means of visualisation. This plan separates the
points best in the sense described above.

The coordinates of the projections are

[d′
1(xij − x̄), d′

2(xij − x̄)].

Another useful plot is one of the vectors

(

d11

d21

)

, . . . ,

(

d1p

d2p

)

.

These show with which weight the value of the single variablecontributes to the plot
on the(d1,d2)-plane.

E.g. in the programme BMD07M - STEPWISE DISCRIMINANT ANALYSIS - the
plane(d1,d2) is denoted the first two canonical variables.

In this programme variables can - as the name indicates - be included or removed from
the analysis in a way which is completely similar to a stepwise regression analysis
(The version which is called STEPWISE REGRESSION). Apart from controlling the
inclusion and removal of variables by means of F-tests thereare a number of intuitive
criteria which are very well described in the BMD manual p. 243.

It should also be mentioned here that Wilk’sΛ for the test of the hypothesis

H0 : µ1 = · · · = µk against H1 : ∃i, j : µi 6= µj ,

is

Λ =
detW

detT
=

p
∏

j=1

1

1 + λj

.

The distribution of this quantity can be approximated by aχ2 or F-distribution. The
last possibility is probably the numerically best approximation. These are given in the
BMD manual p. 242. Cf. with section 6.1.3.
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EKSEMPEL 7.8. In the following table we give mean values and standard deviations
for content of different elements for 208 washed soil samples collected in Jameson
Land. The variable Sum gives the sum of Y and La contents.

Variable Mean Value Standard deviation
B 73 141
Ti 40563 22279
V 678 491
Cr 1135 1216
Mn 2562 2081
Fe 225817 122302
Co 62 26
Ni 116 54
Cu 69 56
Ga 21 10
Zr 14752 14771
Mo 29 20
Sn 56 99
Pb 351 786
Sum − −

A distributional analysis showed that the data were best approximated by LN-distributions.
Therefore all numbers were transformed and were standardised in order to obtain a
mean of 0 and a variance of 1. The problem is to how great an extent the content of the
elements characterises the difference geologic periods. The number of measurements
from the different periods are given below.

Period Number
Jura 17
Trias 80
Perm 30
Carbon 9
Devon 31
Tertiære intrusives 35
Caledonsk crystallic 4
Eleonora Bay Formation 2

In order to examine this some discriminant analyses were performed. We will not pur-
sue this further here. We will simply illustrate the use of the previously mentioned plot,
see figure 7.2.

In the above figure the coefficient for the ordinary variableson the two canonical vari-
ables are given.

By comparing the two figures one can e.g. see that Cu is fairly specific for Devon, and



7.2. DISCRIMINATION BETWEEN SEVERAL POPULATIONS 231

Figur 7.2:

Figur 7.3:

the figures give quite a good impression of how the distribution of elements is for the
different periods. �


