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Density Estimation With Confidence Sets
Exemplified by Superclusters and

KATHRYN ROEDER*

Voids in the Galaxies

A method is presented for forming both a point estimate and a confidence set of semiparametric densities. The final product
is a three-dimensional figure that displays a selection of density estimates for a plausible range of smoothing parameters. The
boundaries of the smoothing parameter are determined by a nonparametric goodness-of-fit test that is based on the sample
spacings. For each value of the smoothing parameter our estimator is selected by choosing the normal mixture that maximizes
a function of the sample spacings. A point estimate is selected from this confidence set by using the method of cross-validation.
An algorithm to find the mixing distribution that maximizes the spacings functional is presented. These methods are illustrated
with a data set from the astronomy literature. The measurements are velocities at which galaxies in the Corona Borealis region
are moving away from our galaxy. If the galaxies are clustered, the velocity density will be multimodal, with clusters corre-
sponding to modes. Natural candidates for examining the distribution of the data are finite normal mixtures and histograms.
The shortcomings of these methods become apparent from the analysis of these data. By finding a confidence set of densities
a set of estimates is obtained, ranging from smooth to rough; the number of modes ranges from three to seven. The confidence

set of densities is further substantiated by performing nonparametric tests for the number of modes.

KEY WORDS: Cross-validation; Normal mixtures; Spacings; Vertex exchange method.

1. INTRODUCTION

This article presents a novel approach to density esti-
mation and illustrates this method using data from the
astronomy literature. Since the data have some interesting
features that lend themselves to a physical interpretation,
I will first present a rudimentary sketch of the problem.
After the Big Bang, it is believed that matter expanded
at a tremendous rate. Because of the local attraction of
matter, the galaxies formed. Astronomers predicted that
gravitational pull would lead to some clustering of gal-
axies; however, there are data to suggest the presence of
superclusters of galaxies, surrounded by large voids (Lap-
parent, Geller, and Huchra 1986), the so-called string-and-
filament pattern. The forces causing this large-scale clus-
tering are not yet understood. Historically, astronomers
have mapped galaxies by measuring declination and right
ascension—the latitude and longitude with respect to the
earth. A third component of position, the distance from
our galaxy to others, has recently become available. This
distance is estimated using the red shift in the light spec-
trum in fashion analogous to the way the Doppler effect
measures changes in speed via changes in sound. Given
the expansion scenario of the universe, points furthest
from our galaxy must be moving at greater velocities. Dis-
tance, then, is proportional to and can be estimated from
velocity.

If the galaxies are clumped, the distribution of velocities
would be multimodal, each mode representing a cluster
as it moves away at its own speed. Conversely, if there is
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no cluster effect, the distribution would be determined by
the sampling scheme. From our galaxy we sample a conic
section of space, but we have a declining ability to detect
galaxies at greater distances; thus the velocity density
should increase initially and gradually tail off.

In an unfilled survey of the Corona Borealis region,
velocities of 82 galaxies from 6 well-separated conic sec-
tions of space were measured (Table 1; Postman, Huchra,
and Geller 1986). The error is estimated to be less than
50 km per second. Unfilled surveys differ from filled sur-
veys in that the latter cover large continuous regions of
the sky, but the sampling is shallow. Unfilled surveys cover
less of the sky, but are deeper. A nonparametric density
estimate of these velocities, using the method of least
squares cross-validation (LSCV) with a normal kernel, is
presented in Figure 1. The multimodality of the estimate
seems to support the supercluster hypothesis; however,
this is only a point estimate of the density function (here-
after point estimate means a single density estimate out
of the class of all density functions). Different choices of
the smoothing parameter will lead to quite different es-
timates. Although LSCV leads to an optimal choice of the
smoothing parameter asymptotically (Hall 1983), for rea-
sonably sized samples the method can perform quite
poorly (Hall and Marron 1987a,b). Obviously, these data
were obtained at great effort and expense. Can we extract
more information from the data than is available from the
kernel estimate? Yes, what is needed is a method of es-
timation that provides both a density point estimate and
a confidence set of plausible densities. In this article such
a method is developed, based on inverting a distribution-
free goodness-of-fit test. The final product is a three-di-
mensional density estimate—the third dimension being a
range of plausible smoothing parameters (Fig. 2). The
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Table 1. Data for an Unfilled Survey of the Corona Borealis
Region

Velocity (km per second)

9,172 9,350 9,483

9,558 9,775 10,227
10,406 16,084 16,170
18,419 18,552 18,600
18,927 19,052 19,070
19,330 19,343 19,349
19,440 19,473 19,529
19,541 19,547 19,663
19,846 19,856 19,863
19,914 19,918 19,973
19,989 20,166 20,175
20,179 20,196 20,215
20,221 20,415 20,629
20,795 20,821 20,846
20,875 20,986 21,137
21,492 21,701 21,814
21,921 21,960 22,185
22,209 22,242 22,249
22,314 22,374 22,495
22,746 22,747 22,888
22,914 23,206 23,241
23,263 23,484 23,538
23,542 23,666 23,706
23,711 24,129 24,285
24,289 24,366 24,717
24,990 25,633 26,960
26,995 32,065 32,789
34,279

boundaries of the smoothing parameter are determined
by a nonparametric test of fit. Clearly, this presentation
is more informative than a single density estimate. More-
over, it is more informative than a point estimate with
confidence bands. This example will be pursued further
in Section 5.

2. BACKGROUND

There is a vast literature in the area of nonparametric
density estimation. For reviews of this literature see Tapia
and Thompson (1978), Wegman (1982), and Silverman
(1986). Regardless of which method of density estimation
is used, the key issue is choosing the smoothing parameter.
A data-based selection procedure that has produced good
results is LSCV (Bowman 1984; Rudemo 1982). Non-
parametric density estimators that use cross-validation
(CV) to choose the smoothing parameter have the advan-
tage of objectivity. Though it is well known that the point-
wise variance of density estimators is large—O(n~??) for
histograms and O(n~*°) for kernel estimators—LSCV
yields no indication of what other densities are plausible
alternatives for a given data set.

Consider estimating the unknown density by a normal
mixture density

X

foul) = f h-IK( )

where K(-) is the standard normal density, 4 is the smooth-
ing parameter, and Q is an arbitrary probability measure
called the mixing distribution. This is an extremely rich
class of distributions. For 4 and Q unrestricted, any density
can be closely approximated by a normal mixture. Pre-

-0
- >dQ(0),
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Figure 1. Least Squares Cross-validated Kernel Estimate of the Data
in Table 1. Velocity is in 1,000s of km/second.

cisely because this class is so large, the maximum likeli-
hood estimator of Q and 4 fails to produce a meaningful
result; the likelihood approaches infinity as f(-; Q, k) ap-
proaches a discrete distribution with spikes at the data
points (e.g., Geman and Hwang 1982). Clearly, we must
restrict either Q or /4 in some way to achieve a sensible
estimator.

A diverse class of parametric models is obtained by
considering finite mixture models. Consider the class of
all mixing distributions {Q,} with positive probability on v
points {6y, . . ., 6}, Po.(® = 0) = r; (m; > 0) and 2 7;
=1@G=12,...,v):

wih(X) = h_l Ev: 7T,'K (x ;l 01) .

@)

i=1

%

Figure 2. Confidence Set of Density Estimates. The foreground is the
estimate associated with a p value of .10, and the background is the
estimate associated with a p value of .90.
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Maximizing the likelihood over all v-point mixtures is a
parametric estimation problem [see Everitt and Hand
(1981), McLachlan and Basford (1988), and Titterington,
Smith, and Makov (1985) for a discussion of the finite
mixture problem]. Unfortunately, there is not necessarily
a unique mixing distribution Q € {Q,} that maximizes the
likelihood. Moreover, there is no clear statistical proce-
dure for choosing the number of support points. Because
of boundary problems, the usual asymptotic arguments do
not apply (Aitkin and Rubin 1985; Ghosh and Sen 198S;
J. A. Hartigan 1985; Quinn, McLachlan, and Hjort 1987).
Alternatively, consider restricting 4. For a given 4, Lind-
say (1983a) showed that there is a unique probability mea-
sure Q(h) that maximizes 2 log fgou(x;)—call this the
nonparametric maximum likelihood estimate. By applying
this method, one can obtain consistent estimates provided
that h, approaches 0 at an appropriate rate (Geman and
Hwang 1982). Unfortunately, it is unclear how one might
choose the arbitrary constant.

In this article I present the following: a method of es-
timation that selects a confidence set of densities from the
class of normal mixtures, based on the spacings between
ordered observations (Sec. 3); a data-driven method that
can be employed to choose a point estimate of the un-
derlying density (Sec. 4); further analysis of the astronomy
data set (Sec. 5); and an algorithm that can be used to
find Q(h) (Appendix).

3. SPACINGS, GOODNESS-OF-FIT TESTS, AND
CONFIDENCE SETS

Suppose that we have a random sample from a contin-
uous parametric family, {F, : § € Q}, and we want to
estimate §. A method of estimation called maximum prod-
uct spacings was recently proposed by Cheng and Amin
(1983) and Ranneby (1984). Consider an iid sample, y,,
Y2, - - - 5 Y, from a continuous distribution F,. Let x; <
X, < --» < x, be the ordered values of the sample. The
log—product-spacings function is defined as LPS(F) =
2 log(F[I(k)]), where I(k) = [x, X,.+,] is the interval
between ordered sample values and F is a member of a
family of continuous distribution functions. For notational
convenience we identify both the distribution function and
the probability measure by F. Call {F[I(k)]};Z1 the spac-
ings. The objective is to generalize this method of spacings
and apply it to density estimation.

Let Fj, denote the distribution corresponding to fg .
The selection of LPS as an objective function is motivated
by the following: the probability measure Q(k) that max-
imizes LPS(F,,) is asymptotically equivalent to the non-
parametric maximum likelihood estimator (Roeder 1988),
and the method of spacings naturally yields a goodness-
of-fit statistic that has a distribution that is independent
of the null hypothesis. In this respect, the method of spac-
ings differs from the likelihood method, and this turns out
to be the key element in preventing overfitting.

Suppose that the data are a random sample from Fj.
Because the probability integral transform has a uniform
distribution, {Fy[I(k)]}7=!' has the same distribution as a set
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of uniform spacings. The distribution of functions of uni-
form spacings has been widely studied (e.g., Cressie 1976,
1979; Darling 1953; Hall 1986; Pyke 1965). Let ¢(F;) de-
note a function of the sample spacings that is asymptoti-
cally normally distributed. The following probability
statement holds for n large: Pr[|¢p(Fy)| < Z,n] = 1 — o
If a test is constructed that rejects F if |¢(F)| > Z,,, the
inverse of this test yields a (1 — «) 100% confidence set
of distribution functions: &a) = {F : |¢p(F)| < Z.p, F a
continuous distribution function}.

Since this test is defined only up to the vector of spac-
ings, arbitrarily rough distributions are contained in the
set. As an aid in describing this set of distributions, con-
sider the graphical presentation of a smooth subset, for
example, the best fitting normal mixture distributions that
fall within &(@), (@) = {Fy, : [¢(Fou)| < Zay2, supg ¢(Fo.r)
= ¢(Fy)}. If one can a priori presume that the density
came from a class of normal mixtures with some positive
variance g2, then the probability of coverage is at least 1
— a. In addition, the confidence set generally represents
a set of consistent estimates of the density, provided that
the underlying density is a normal mixture (Roeder 1988).

For notational convenience, because ¢ is now only a
function of Q and h, let ¢(Q, h) denote ¢(Fy,). Let 5, =
{f(:; Q, h) : Q is a probability measure, f(:; Q, h) is a
normal mixture}. Choose h, > h;. Any density in J,, say
f(x; Q,, hy), can be shown to be in ¥, by the following
argument: let Q* be a convolution of a normal (0, h} —
h}) with Q,, from which it follows that f(x; Q*, h;) = f(x;
0, h,). Hence 5, C §,. It follows that (0, h) is non-
increasing as a function of 4. Take advantage of this prop-
erty to select the desired confidence set; that is, find G(a)
= {h :|p(0, h)| < Z,,} to determine the acceptable range
of smoothing parameters (Fig. 3).

The function ¢ that minimizes the length of G(a) is
unknown. A number of authors (e.g., Cressie 1979; Hall
1986) have examined the equivalent problem in testing.

N -
< \
‘9~_Za

h
Figure 3. Example of LPS(Q, h).
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They studied the Pitman asymptotic relative efficiency of
tests that F is uniform versus a general alternative with
density f,(x) = 1 + I(x)n~4, [0 l(x) dx = 1. (A proba-
bility integral transform converts any continuous null into
this framework.) For tests based on the spacings, the ef-
ficiency is greater for sums of squared spacings than for
sums of any other function of the spacings. Moreover, even
greater improvements can be obtained for functions of
higher-order gaps (i.e., let I,,(k) = [x;, Xi4n]). This sug-
gests that better results would be obtained for ¢(Q, h) =
2 FI,(k)] (m > 1) than for LPS(Q, k). Nonetheless,
preliminary simulations show that these results do not ap-
ply in this semiparametric framework (semiparametric be-
cause h is real, whereas Q is infinite-dimensional). In
simulations, squared spacings proved to be inferior in the
selection of both O and 4 (Roeder 1988). For parametric
models, log-spacings are considerably more efficient than
squared spacings for both estimation and testing. Normal
mixtures, being smooth, mimic parametric models. Pre-
sumably, then, the semiparametric estimation procedure
using LPS inherits some of the features of parametric like-
lihood estimators.

In simulations (Roeder 1988) I found that the second-
order gaps (l,(k)) performed as well as simple spacings.
Clearly, second-order gaps are more robust to near ties.
Thus I recommend a slight modification of the LPD
method: maximize

#(Q, h)
= N-12 <2 log Fou[L(k)] + nlog(n + 1) + y — 1)

+ (57216 — 3) 3)

over 5, (y is Euler’s constant). ¢(F;) is asymptotically stan-
dard normal (Cressie 1976). The function 2 log F[L(k)]
can be interpreted as a composite-rank likelihood function
(Lindsay 1988). That is, let R; denote the rank of obser-
vation x;; Fy[L,(k)] equals the conditional likelihood that
= k given the value of all of the observations except
for x;.
Compare this method of estimation to the normal kernel
estimator:
ﬁu)—jhw( )
where E, is the empirical distribution function. For 4 suf-
ficiently large, a rather surprising result emerges: Q has
no more than n/2 support points (Roeder 1988). Hence
fo, may differ substantially from the kernel estimator
(which has »n support points). For any fixed 4, f, achieves
greater comp051te-rank likelihood than f,. When 4 is se-
lected using some optimal method, this procedure should
inherit optimality features much like Stein estimators. If
the data are from a model similar to a finite normal mixture
model and 4 is selected close to the mixture model stan-
dard deviation, then f; should converge to f, faster than
the usual kernel estimator. On the other hand, if the data

) dE(y),
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arose from a model dissimilar to a finite normal mixture,
then an optimal choice of # would yield a small 4, resulting
in an estimator similar to the kernel estimator.

4. POINT ESTIMATION

In alarge number of nonparametric estimation problems
for which a smoothing parameter must be selected, the
method of CV has proved to be quite effective. For in-
stance, Geman and Hwang (1982) obtained promising re-
sults using CV for an estimation scheme that is similar to
this approach.

The method of LSCV requires that we find 4 to minimize

My(h) = jfé,, - 2n7! z fo-inlx),

where f;, is the estimate derived from the full data set
and fy_;, is the density estimate constructed from all of
the data points except x;. This procedure is computation-
ally intensive because for each value of A, Q_i must be
determined for i = 1, ..., n. This is not as computa-
tionally formidable a task as it initially appears, however,
since once Q is obtained, O _; can be obtained with a few
steps of the vertex exchange method (VEM) algorithm
(see the Appendix). Nevertheless, for larger data sets con-
sider a modification. Randomly partition the data into m
groups of size I. (If / does not divide n evenly, then the
mth group contains the remainder.) Let fs_;, be the den-
sity estimate constructed from all data points except the
jth group (xj;, - . . , x;). Then minimize

Mih) = [ £3,0 ~ 217 3 S fouiutwo

The confidence set will help to determine a range of
smoothing parameters (a grid) over which to calculate
My(h). The idea of randomly dividing the data into
subgroups has some connections to Marron (1988). In the
context of kernel density estimation, grouped LSCV pro-
vided improved rates of convergence. In kernel estimation
the optimal smoothing parameter depends on # in a well-
specified way, and hence more refined results are avail-
able. Here I appeal to the general results from the CV
and jackknife literature, which suggest that for large sam-
ples “leave one out” stategies are essentially equivalent
to “leave / out” stategies (e.g., Miller 1968).

5. SUPERCLUSTERS OF GALAXIES

In this section our density estimation procedures are
applied to the astronomy data. Figure 4 presents a selec-
tion of histograms (note that velocities are in 1,000s of km
per second). Figure 4a is nearly unimodal, and Figure 4b
suggests roughly six to eight clusters. Figures 4c and 4d
have the same interval width, but different starting values;
notice that the latter has four modes and the former has
only three. Clearly, the arbitrary nature of the histograms
is problematic. Postman et al. (1986) displayed a histogram
that is nearly identical to Figure 4b; incidentally, they
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Figure 4. Histograms of Data in Table 1: (a) bin width = 5; (b) bin width = .5; (c) bin width = 2, first endpoint = 11; (d) bin width = 2, first

endpoint = 10.

argued that the data demonstrate a deviation from the
uniform expansion theory.

To illustrate the problems inherent in finite mixture es-
timation, the data are fit to finite normal mixtures using
the EM algorithm (Aitkin and Tunnicliffe Wilson 1980;
Dempster, Laird, and Rubin 1977). Two types of models
were considered. Model I is a finite mixture of normals
with equal variances (2). Model II is a mixture of normals
with unequal means and unequal variances: fo w(x) =
2 mh 'K((x — 6,)/h;). Figures 5a and 5b represent the
fitted densities with four and five support points, respec-
tively. Notice that the estimates differ fairly substantially
depending on whether equal or unequal variances were
used. Figures Sc and 5d present the fitted density with six
support points for Models I and II, respectively. The latter
estimate is a degenerate density (variance is approaching
0 for two of the components). This is one of the major
problems with mixture estimation using Model II—the
likelihood approaches infinity for estimates with spikes at
observations; this occurs when 6; = x; and h; — 0.

For Model I, singularities in the likelihood do not occur;
however, the likelihood is frequently multimodal. Differ-
ent modes can result in dramatically different fits. With-
out experimenting with multiple starting values, it is diffi-

cult to find the global maximum. For Model I the four-,
five-, and six-point mixtures achieved Akaike-corrected
log-likelihoods (Bozdogan 1987) of —212.3, —210.4, and
—203.3, respectively. For Model II the four-, five-, and
six-point mixtures achieved Akaike-corrected log-likeli-
hoods of —210.5, —202.0, and «, respectively. Ideally,
one would like to conduct a simple likelihood ratio test to
select a model; however, since the problem is nonregular,
we cannot rely on the distribution of the likelihood ratio
to be approximately chi squared.

Recall that there is a unique density that maximizes (3).
To obtain a point estimate, LSCV was used. M,(k) is min-
imized at A = .95 [Fig. 6; M (h) is also minimized at h
= .95, [ = 5], so the point estimate fj s Was selected.
The point estimate suggests five superclusters (Fig. 7).
Also note that Q(.95) has more than five support points
(Table 2). This is partly an artifact of the algorithm. If the
grid were very fine and the convergence criteria were quite
strict, then some of these points would coalesce, reducing
the number of support points; however, this would make
very little difference in our estimated densities.

In Figure 2, the best fitting normal mixtures for a range
of smoothing values (C(.20)) are presented. In the fore-
ground is the roughest estimate in our set, which is ob-
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(equal variance), and the dashed line represents the estimate for Model Il (unequal variances); (b) mixture of five normals, Models | and II; (c)

mixture of six normals, Model I; (d) mixture of six normals, Model II.

tained by inverting a size .10 test and selecting that
distribution, Fj ,, with the smallest 4 that is not rejected
[A = .28, p value = .10; p value = Pr(Z > ¢(Q, h)]. In
the background is the smoothest estimate in our set, which
was selected by choosing that distribution with the largest
h that is not rejected (b = 1.50, p value = .90). The point
estimate lies approximately in the center of this figure (h
= .95, p value = .45). By comparing the LSCV kernel
estimate (Fig. 1; A, = .93) with this point estimate, we
see that, though the smoothing parameter is nearly the
same, the kernel estimator is much smoother. This is be-
cause Q accentuates clustering of the data. Nonetheless,
the kernel estimate would clearly fall within the set of
plausible estimates. Notice that many of the wrinkles are
smoothed out as we move from the smoothest to the rough-
est distributions; however, at least three modes are present
in every level. Contrary to the point estimate, where five
modes were observed, we see that the confidence set con-
tains at least three, but no more than seven, modes.
Nonparametric tests for multimodality also support the
conjecture that the data have more than one mode. The
dip test provides a nonparametric test of unimodality ver-
sus bimodality (Hartigan and Hartigan 1985; P. M. Har-

tigan 1985). This test rejects the hypothesis of unimodality
(p < .01). Silverman (1981, 1983) derived a test based on
the amount of smoothing required to force the normal
kernel estimator (4) to have =k modes. If considerable
smoothing is required to remove the multimodality, this
suggests that the observed modes are not merely random
noise. The test statistic is h; = inf{h : F4(-) has at most
k modes}. Approximate p values are obtained by simu-
lation [Table 3; see Izenman and Sommer (1988) for an
excellent synopsis of this method and an application to
philatelic data)]. Silverman’s test provides us with a lower
bound of three modes. This test is known to be conserv-
ative, and hence it tends to underestimate the number of
modes (Silverman 1983). One cannot construct a non-
parametric upper bound on the number of modes (Donaho
1988). ‘

APPENDIX: AN ALGORITHM FOR ESTIMATING &

In this_section 4 is considered fixed. We are trying to find
€ 91 such that ¢(Q) is maximized for all Q € 9. ¢ : M — R is
a concave functional (Roeder 1988). The type of algorithm em-
ployed is the vertex direction method (VDM). This algorithm
has been shown to converge to the global maximum (Federov
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1972; Lindsay 1983b; Wynn 1970). Various modifications to this
simple method have been proposed in the design literature (e.g.,
Atwood 1976; Boehning 1985, 1986; Wu 1978a,b). We will focus
on a modification dubbed the vertex exchange method (VEM)
by Boehning.

The key element in VDM-type methods is the relationship
between Q and the gradient function D(Q, 6). We start by de-
fining the directional derivative of ¢(F,) from F, toward Fy,:

D(Q, Q) = lim_¢ {$[(1 — &)F, + &Fp] — ¢(Fo)}
= Ek: (FlI(k))/ Foll(K)] = 1).

Since | D(Q, 6)dH() = D(Q, H), the gradient function
D(Q, 0) determines the value of all directional derivatives. A

0.20
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Figure 7. Normal Mixture Density Estimate, h = .95. This estimate
corresponds to the value of h that minimizes My(h).

623

Table 2. Estimated Mixing Distribution

When h = .95
n [’
.097 10.0
.024 19.2
.026 19.5
.016 19.8
.400 20.0
.023 22.3
.300 23.0
.004 23.2
.045 24.4
.003 26.3
.004 26.6
.018 27.0
.004 27.2
.001 27.5
.001 27.8
.006 32.7
.029 33.0

probability measure Q maximizes ¢(Q) iff (a) D(Q,0) <0V
and (b) D(Q, 6) = 0w.p.1under O (Lindsay 1983b; Roeder 1988).

Select a finite probability measure, Q,, as a starting mixture.
Let supp(Q,) = {0, 6%, . . ., 6} denote the support of Q..
For the mth step, let Q,, be the current estimator. At each step
follow this procedure:

1. Find 6,,, such that supyD(Q,; ) = D(Q., Oux), 0 € Q.

2. Find 6,;, such that inf,D(Q,; 6) = D(Qn.; Oumn), 0 €
supp(Q,,). Let n,;, denote the support at Oy, for Q,,, subject to
the condition that 7, > 0. '

3. Find B, (0 < f < 1) to maximize ¢(Q,...[B]), where Q,,.[5]
= 3 20 + Bmin(Onx — Oumin)- B may be found by using the
Newton—-Raphson method, provided that one checks that the
solution remains within (0, 1). For an algorithm that automati-
cally falls within the boundary, see Boehning (1985).

In summary, the method either adds a support point (8 < 1)
or exchanges a point (8 = 1) in the support of Q in such a way
as to maximize the increase in ¢(Q) obtainable by exchanging
these two support points. The VEM converges monotonically
(Boehning 1985). The solution has been reached when
D(Q.,; §) =0V 0 € Q. For practical purposes we will want to
know when we are quite close to 0. Let A,, = #(Q) — ¢(Q.)
be the residual. The best upper bound for A, given only knowl-
edge of 6 = sup D(Q; 0) : 0 € Q,is A = (n + Dlog[1 + d/(n
+ 1)] (Lindsay 1983b). Note that in practice it is difficult to find
the sup,D(Q, 6) over a continuous interval, so we reduce {} to

Table 3. Critical Values and p Values for Siverman’s

Test for Multimodality
k h p Value
7 .45 .63
6 .67 .20
5 .73 .32
4 .88 .25
3 .94 .53
2 2.50 .00

NOTE: Three hundred bootstrap repetitions were performed to obtain
the approximate null distribution.
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a grid. This grid can be as fine as computational constraints will
allow.

[Received May 1989. Revised March 1990.]
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