
Explaining the Perfet SamplerGeorge CasellaCornell UniversityDept. of Biometry Mihael LavineDuke UniversityISDSChristian RobertCREST, Insee, ParisandUniversit�e Paris 9 { DauphineJune 7, 2000AbstratIn 1996, Propp and Wilson introdued Coupling from the Past(CFTP), an algorithm for generating a sample from the exat stationarydistribution of a Markov hain. In 1998, Fill proposed another so{alled perfet sampling algorithm. These algorithms have enormouspotential in Markov Chain Monte Carlo (MCMC) problems beause theyeliminate the need to monitor onvergene and mixing of the hain.This artile provides a brief introdution to the algorithms, with anemphasis on understanding rather than tehnial detail.1 SettingA Markov hain is a sequene of random variables fXtg that an be thoughtof as evolving over time, and where the distribution of Xt+1 depends on Xt,but not onXt�1;Xt�2; : : : . When used in Markov hain Monte Carlo (MCMC)algorithms, Markov hains are usually onstruted from a Markov transi-tion kernel K, a onditional probability density on X suh that Xt+1jXt �K(Xt;Xt+1). Interest is usually in the stationary distribution of the hain,the distribution � that satis�esZX K(x;B) d�(x) = �(B) for any B � X :
1



Thus, if Xt � � then Xt+1 � �. In a ommon appliation � is the pos-terior distribution from a Bayesian analysis and K is onstruted to havestationary distribution �.Here is an example that we follow throughout the artile.Beta-Binomial Following Casella and George (1992), and forsome suitable parameters n, � and �, let � � Beta(�; �) andXj� � Bin(n; �), leading to the joint density�(x; �) / �nx��x+��1(1� �)n�x+��1and the onditional density �jx � Beta(� + x; � + n� x).We an onstrut a Markov hain, in fat a Gibbs sampler,having � as its stationary distribution by using the followingtransition rule for (Xt; �t) 7! (Xt+1; �t+1):1. hoose �t+1 � Beta(�+ xt; � + n� xt), and2. hoose Xt+1 � Bin(n; �t+1).This transition rule has transition kernelK((xt; �t); (xt+1; �t+1)) = f((xt+1; �t+1)j(xt; �t))/ � nxt+1��xt+1+�+xt�1(1� �)�+2n�xt�xt+1�1:For future referene we note that the subhain : : : ;Xt;Xt+1; : : :is a Markov hain with Xt+1jxt � BetaBin(n; �+ xt; � +n� xt)and transition kernelK(xt; xt+1) = f(xt+1jxt) /� nxt+1��(�+ � + n)�(�+ xt + xt+1)�(� + 2n� xt � xt+1)�(�+ xt)�(� + n� xt)�(�+ � + 2n) :
Theorems about stationary distributions and ergodiity apply when theMarkov hain satis�es the three properties of irreduibility, reversibilityand aperiodiity, de�ned in Appendix 6.1. See Robert and Casella (1999,Chap. 4) for a brief desription or Meyn and Tweedie (1993) and Resnik(1992) among others for book-length treatments. These properties are as-sumed true for the rest of this artile.2



The stationary distribution of the Markov hain is also a limiting dis-tribution: Xt onverges in distribution to X � �. For MCMC purposes twouseful onsequenes of our assumptions are that 1M PMj=1 h(Xj)! E�[h(X)℄(sometimes alled the ergodi theorem) and that a entral limit theoremholds.It is typial in pratie to have MCMC algorithms begin from an arbitrar-ily hosen state at time t = 0, say, and run for a long time T , say, in thehope that XT is a draw from �. One typially disards X0; : : : ;XT�1 andestimates E�[h(X)℄ as 1M PT+M�1j=T h(Xj). A serious pratial problem is de-termining the \burn-in" time T . A seond pratial problem is determiningthe orrelation between Xt and Xt+1, whih is used to alulate the varianeof the estimate. Perfet sampling avoids both problems beause it produesindependent draws having distribution � preisely.Indeed, the major drawbak with using MCMC methods is that theirvalidity is only asymptoti: if we run the sampler kernel until the end oftime, we are bound to explore the entire distribution of interest; but, sineomputing and storage resoures are not in�nite, we are bound to stop theMCMC sampler at some point. The inuene of this stopping time on thedistribution of the hain is not harmless and in some ases may indueserious biases (Roberts and Rosenthal, 1998). Perfet sampling alleviatesthis diÆulty by produing exatly the same hain as one running an in�nitenumber of steps, by simply replaing the starting time with �1 and1 with0. And, at no additional ost, it also removes the dependene on the startingvalue! In other words, the burn-in time beomes in�nite and the hain isindeed in the stationary distribution at time 0.2 CoaleseneThe �rst step in obtaining a perfet sample is to �nd a way to make Xtindependent of the starting value. The answer is to work with oupledparallel hains.Suppose there are k states in X , and we start a Markov hain in eahstate at time t = 0. These are parallel hains. Parallel hains an be oupledthrough a transition rule � and random numbers Ut. A transition rule de-termines Xt+1 as a funtion of Xt and Ut+1. Note that the same � and same: : : ; Ut; Ut+1; : : : are used for eah hain. A ommon and onvenient hoieis to let Ut+1 � Uniform(0; 1) and take Xt+1 = �(xt; ut+1) = F�1Xt+1jxt(ut+1),the inverse-df funtion of Xt+1jxt determined by the kernel K. For illus-tration we return to the Beta-Binomial example.3



012 -QQsSSSw 012ut+1 < :278 012 -QQsQQs 012ut+1 2 (:278; :417)012 --QQs 012ut+1 2 (:417; :583) 012��3-QQs 012ut+1 2 (:583; :722)012��3-- 012ut+1 2 (:722; :833) 012��3��3- 012ut+1 2 (:833; :917) 012 ���7��3- 012ut+1 > :917Figure 1: All possible transitions for the Beta-Binomial(2,2,4) exampleBeta-binomial, ontinued. Consider the fXtg subhain fromthe previous example, and let n = 2, � = 2 and � = 4. Thestate spae is X = f0; 1; 2g. The transition probabilities arePr(0 7! 0) = :583; Pr(0 7! 1) = :333; Pr(0 7! 2) = :083;Pr(1 7! 0) = :417; Pr(1 7! 1) = :417; Pr(1 7! 2) = :167;Pr(2 7! 0) = :278; Pr(2 7! 1) = :444; Pr(2 7! 2) = :278Thus we an draw Ut+1 � Uniform(0; 1) and make the transitionsillustrated by Figure 1.Figure 1 shows that oupled hains will all go to the same state, oroalese if there is ever a time t suh that either Ut < :278 or Ut > :917.One oupled hains oalese at time t, they remain oalesed at all timesgreater than t. And beause the Ut's are mutually independent oaleseneis guaranteed to happen eventually. The next theorem gives some generalresults about oalesene.Theorem 1 Suppose we have k oupled Markov hains, X(1);X(2); : : : ;X(k),where 4



(i). X(j) starts in state j (so one hain starts in eah state of X )(ii). updating is performed aording to X(j)t+1 = �(x(j)t ; ut+1), where the Uiare mutually independent.Then(a). The time T to oalesene is a random variable that depends only onU1; U2; : : : .(b). The random variable XT , the ommon value at oalesene, is inde-pendent of any starting values.Proof: Part (a) is immediate by onstrution, and part (b) follows sine XTis a funtion only of U1; : : : ; UT and not of X0.Conlusion (b) of Theorem 1 says that T is a time at whih the initialstate of the hain has \worn o�". One might therefore hope that XT isa draw from the stationary distribution �. This hope is false. It is truethat if T � is a �xed time, and XT � is independent of X0, then XT � � �.Unfortunately, T is a random time and in general, XT 6� �, as the followingexample illustrates.Two-state Consider the Markov hain with state spae f1; 2gand transition kernel K(1; 1) = K(1; 2) = :5; K(2; 1) = 1;K(2; 2) = 0. The stationary distribution is �(1) = 2=3; �(2) =1=3. A little thought shows that parallel hains an oalese onlyin XT = 1 and therefore XT 6� �.3 Propp and WilsonPropp and Wilson (1996) disovered how to take advantage of oalesenewhile sampling the hain at a �xed time, thereby produing a random vari-able having distribution �, exatly. Their algorithm is alled Coupling fromthe Past (CFTP), and is based on the idea that if a hain were started attime t = �1 in any state X�1, it would be in equilibrium by time t = 0,so X0 would be a draw from �. This would happen sine the hain wouldhave run for an in�nite length of time.5



To implement this idea in an algorithm, we use the oalesene strategy.We �rst �nd a time �T suh that X0 does not depend on X�T (oaleseneours between time �T and time 0), and then we determine X0 by startinghains from all states at time t = �T and following them to time t = 0.CFTP is an algorithm for �nding �T and X0, and goes as follows.(1). Start hains X(1);X(2); : : : ;X(k) at time t = �1 from every state ofX . Generate U0.(2). Update eah hain to time t = 0 by applying the transition rule X(j)0 =�(x(j)�1; u0). If the hains have oalesed at time t = 0, then �T = �1and the ommon value X0 is a draw from �.(3). Otherwise, move bak to time t = �2, generate U�1, and update eahhain using X(j)�1 = �(x(j)�2; u�1) and X(j)0 = �(x(j)�1; u0). If the hainshave oalesed at time t = 0, then �T = �2 and the ommon valueX0 is a draw from �.(4). Otherwise, move bak to time t = �3 and ontinue.It is ruial, when going bak to t = �2, to use the same U0 that wasalready drawn. Spei�ally, we start hains at time t = �2 from every state;draw U�1; use U�1 to update all the hains to time t = �1; use the U0 frombefore to update all the hains to time t = 0; hek for oalesene; andeither aept T = �2 and X0 if the hains have oalesed or go bak to timet = �3 if they haven't. The algorithm ontinues baking through time untiloalesene ours.Theorem 2 The CFTP algorithm returns a random variable distributed ex-atly aording to the stationary distribution of the Markov hain.Proof: The proof is based on establishing the following three fats:(1). The k Markov hains will oalese at some �nite time into one hain,all it X�t .(2). For eah j = 1; 2; : : : ; k, X(j)�t ! X � � as t!1(3). For eah j = 1; 2; : : : ; k, X(j)�t ! X�0 as t!1It then follows that X�0 and X have the same distribution and, in par-tiular, X�0 � �. See Appendix 6.2 for details.6



We use the Beta-Binomial example for illustration.Beta-Binomial, ontinued. Begin at time t = �1 and drawU0. Suppose U0 2 (:833; :917). The next piture shows the resultof updating all hains. 012t = �1��3��3- 012t = 0The hains have not oalesed, so we go to time t = �2 anddraw U�1. Suppose U�1 2 (:278; 417). The next piture showsthe result of updating all hains.012t = �2 -QQsQQs 012t = �1��3��3 012t = 0The hains have still not oalesed so we go to time t = �3.Suppose U�2 2 (:278; :417). The next piture shows the resultof updating all hains.012t = �3-QQsQQs 012t = �2 -QQs 012t = �1��3 012t = 0All hains have oalesed into X0 = 1. We aept X0 as adraw from � . Note: even though the hains have oalesed att = �1, we do not aept X�1 = 0 as a draw from �.
In CFTP, T and X0 are dependent random variables. Therefore, a userwho gets impatient or whose omputer rashes and who therefore restarts7



runs when T gets too large will generate biased samples. Another algorithm,due to Fill (1998), generates samples from � in a way that is independentof the number of steps.4 Fill's algorithmA simple version of Fill's algorithm (Fill) is:1. Arbitrarily hoose a time T and state xT = z.2. Generate XT�1jxT , XT�2jxT�1, : : : , X0jx1.3. Generate [U1jx0; x1℄, [U2jx1; x2℄, : : : , [UT jxT�1; xT ℄4. Begin hains in all states at time T = 0 and use the ommon U1, : : : ,UT to update all hains5. If the hains have oalesed by time T (and are in state z at time T ),then aept x0 as a draw from �6. Otherwise begin again, possibly with a new T and z.We note that the U1, : : : , UT used for the oalesing hains are generatedin suh a way to insure that x ! z. (We write x ! z to denote that thehain goes from state x to state z in T steps.) So, for example, generate U1to be uniform on the set fu : x1 = �(x0; u)g, U2 to be uniform on the setfu : x2 = �(x1; u)g et. See the example for a further illustration.There are two ways to prove that Fill is orret. We present one hereand one in the appendix. Let CT (z) be the event that all hains haveoalesed and are in state z at time T .First proof: Fill delivers a value only if CT (z) ours, so we need toprove Pr[X0 = xjCT (z)℄ = �(x). This probability isPr[X0 = xjCT (z)℄ = Pr[z ! x℄ Pr[CT (z)jx! z℄Px0 Pr[z ! x0℄ Pr[CT (z)jx0 ! z℄ :Now beause the oalesene event entails eah x0 ! z, we have for every x0Pr[CT (z)jx0 ! z℄ = Pr[CT (z) and x0 ! z℄Pr[x0 ! z℄ = Pr[CT (z)℄Pr[x0 ! z℄ ; (1)
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and writing Pr[x0 ! z℄ = KT (x0; z) the probability beomesPr[X0 = xjCT (z)℄ = KT (z; x) Pr[CT (z)℄=KT (x; z)Px0 KT (z; x0) Pr[CT (z)℄=KT (x0; z)= KT (z; x)=KT (x; z)Px0 KT (z; x0)=KT (x0; z) ;Using the detailed balane ondition we haveKT (z; x)=KT (x; z) = �(x)=�(z),and thus, Pr[X0 = xjCT (z)℄ = �(x)=�(z)Px0 �(x0)=�(z) = �(x):
We follow the Beta-binomial (2,2,4) example through the steps in Fill.Beta-Binomial, ontinued.1. We arbitrarily hoose T = 3 and XT = 2.2. Our hain is reversible, so [X2jX3 = 2℄ = [X3jX2 = 2℄ =BetaBin(2; 4; 4). The probabilities are given on page 4. Wegenerate X2. Suppose it turns out to equal 1. Similarly,X1jX2 = 1 � BetaBin(2; 3; 5); suppose we get X1 = 2;X0jX1 = 2 � BetaBin(2; 4; 4); suppose we get X0 = 1.The next piture shows the transitions we've generated.012t = 0QQs 012t = 1��3 012t = 2��3 012t = 33. X0 = 1, X1 = 0, X2 = 1 and X3 = 2 imply U1 � U(0; :417);U2 � U(:583; :917); and U3 � U(:833; 1). (See Figure 1.)Suppose we generate U1 2 (:278; :417), U2 2 (:833; :917)and U3 > :917.4. Begin hains in states 0, 1 and 2.5. The next piture follows the hains through time t = 3.012t = 0 -QQsQQs 012t = 1��3��3 012t = 2��3- 012t = 39



6. The hains oalese in X3 = 2; so we aept X0 = 1 as adraw from �.
Fill depends on an arbitrary hoie of T and XT . To get some feelingfor how big T needs to be and whether the hoie of XT is important, we ranFill on a Beta-binomial(16; 2; 4) example. For eah of XT = 0; 2; : : : ; 16,we ran Fill in a loop with T = 1; 3; : : : suessively until the algorithmreturned a value. The whole simulation was repeated 50 times. Figure 2 isa boxplot, sorted by XT , of the T for whih oalesene was ahieved. Thehorizontal axis is the value of XT whih we �xed in advane. The vertialaxis is the value of T for whih oalesene ourred. The �gure shows thatoalesene ourred muh more quikly when we hose either XT = 0 orXT = 16 than any other value of XT .5 Disussion� A potentially troublesome point is deteting whether oalesene hasourred. In general, starting and keeping trak of hains from everystate is omputationally infeasible. In (partially) ordered state spaeswith a monotone transition rule it is only neessary to keep trak ofhains started from the maximal and minimal members. A monotonetransition rule is one in whihXt � Yt ) Xt+1 = �(Xt; ut+1) � Yt+1 =�(Yt; ut+1). If our transition funtion is an inverse-df funtion that isstohastially ordered, then the transition rule will be monotone.This is the ase in our example, where a hain started from state 1 issandwihed between hains started from states 0 and 2. Therefore it isonly neessary to keep trak of hains started from 0 and 2 to determinewhether oalesene has ourred. In fat, if there exist maximal andminimal elements, oalesene is detetable even with a ontinuousstate spae. Non-monotone transition rules or state spaes withoutminimal and maximal elements require more sophistiated methods.See Fill et al. (1999) or Green and Murdoh (1999) for details andextensions.� In desribing CFTP we set T suessively equal to -1, -2, : : : . In fat,any dereasing sequene would do as well. Propp and Wilson (1996)argue that T = �1;�2;�4;�8; : : : is near optimal. In Fill, if X0 is10
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Figure 2: Time to oalesene for 50 runs of Fill's algorithm, for eah valueof XT .
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rejeted, or if one is generating many realizations, one may wish tohoose new values of T and z for the next proposal. Figure 2 showsthat some ombinations of (T; z) are more likely to lead to oalesenethan others. There is no general theory at present to guide the hoieof (T; z). In pratie the results of early iterations may guide the hoieof (T; z) in later iterations.� In his original algorithm desribed here, when running the k hains foroalesene, Fill used onstrained uniform variables U1; : : : ; UT ondi-tional onX0; : : : ;XT , generating [U1jx0; x1℄, [U2jx1; x2℄, : : : , [UT jxT�1; xT ℄.This insures that the hain starting in x will end up in z. This is pra-tial as long as the onditional distribution of the Ui's given the Xi'sis not too diÆult.An alternative to the algorithm desribed in Fill is to generate theUi's unonditionally. (Typially Ui � U(0; 1).) Using these Ui's, hekwhether x0 ! z. If yes, then also hek for CT (z) and either aeptor rejet X0 aordingly. Otherwise, disard the Ui's and generateanother set until �nding one suh that x0 ! z. Ultimately we willaept x0 with probability Pr[CT (z)jx0 ! z℄, as required.� Some pratial appliations of Markov hains iterate between a disreteX and a parameter � whih might be either disrete or ontinuous. Insuh ases we an obtain perfet samples from the joint distribution ofbothX and �. For example, onsider modeling the data Y as a mixtureof Normal distributions. The model is usually extended to inludeindiator variablesX, whih are not observed but whih indiate whihY 's ome from the same mixture omponents. Conditional on X, themodel is a straightforward olletion of Normals. Let � denote allunknown parameters other thanX. The posterior is typially analyzedthrough a Gibbs sampler that iterates between [Xj�℄ and [�jX℄. Theiterates of X form a subhain on a �nite state spae and are amenableto perfet sampling. Given a perfet sample of X, one an simulatefrom [�jX℄ to obtain a perfet sample of �.This remark extends to other latent variable models, but one must keepin mind that the size of the �nite parameter spae of X in the mixtureexample is kn, whih rapidly gets unmanageable unless monotoniityfeatures an be exhibited, as in Hobert et al. (1999).� To remove the diÆulty with ontinuous state spae hains, anotherpromising diretion relies on slie sampling. This tehnique is a speial12



ase of Gibbs sampling (See Robert and Casella 1999, Set. 7.1.2) andtakes advantage of the fat that the marginal (in x) of the uniformdistribution on f(x; u); u � �(x)g is �(x). The idea, detailed in Miraet al. (1999), is that, if x00 is a variable generated from the uniformdistribution on fx; �(x) � ��(x0)g, it an also be taken as a variablegenerated from the uniform distribution on fx; �(x) � ��(x1)g forall x1's suh that ��(x0) � ��(x1) � �(x00) by a simple aept{rejetargument. Therefore, assuming a bounded state spae X , if one startswith x00 generated uniformly on X , a �nite sequene x00; : : : ; x0T anbe used instead of the ontinuum of possible starting values, with x0ibeing generated from a uniform distribution on fx; �(x) � �(x0i�1)g,and T being suh that �(x0T ) � � sup�(x). Moreover, slie samplingexhibits natural monotoniity strutures whih an be exploited tofurther redue the number of hains. The pratial diÆulty of thisapproah is that uniform distributions on fx; �(x) � ��(x0)g may behard to simulate, as shown in Casella et al. (1999) in the setup ofmixtures.� Perfet sampling is urrently an ative area of researh. David Wilsonmaintains a web site of papers on perfet sampling athttp://dimas.rutgers.edu:80/~dbwilson/exat.html. The in-terested reader an �nd links to artiles ranging from introdutoryto the latest researh.ReferenesG. Casella and E. I. George. Explaining the Gibbs sampler. The AmerianStatistiian, 46:167{174, 1992.G. Casella, K.L. Mengersen, C.P. Robert, and D.M. Titterington. Perfetsampling for mixtures. Tehnial report, CREST, Insee, 1999.J. A. Fill. An interruptible algorithm for perfet sampling via Markov hains.Annals of Applied Probability, 8:131{162, 1998.James Allen Fill, Motoya Mahida, Dunan J. Murdoh, and Je�rey S.Rosenthal. Extension of Fill's perfet rejetion sampling algorithm togeneral hains. Tehnial report, The Johns Hopkins University, Dept. ofMathematial Sienes, 1999.P. J. Green and D. J. Murdoh. Exat sampling for Bayesian inferene:towards general purpose algorithms. In J. M. Bernardo, J. O. Berger,13



A. P. Dawid, and A. F. M. Smith, editors, Bayesian Statistis 6, Oxford,1999. Clarendon Press.J.P. Hobert, C.P. Robert, and D.M. Titterington. On perfet simulationfor some mixtures of distributions. Statistis and Computing, 9:287{298,1999.S. P. Meyn and R. L. Tweedie. Markov Chains and Stohasti Stability.Springer-Verlag, New York, 1993.A. Mira, J. M�ller, and G. O. Roberts. Perfet slie sampler. TehnialReport R-99-2020, Dept. of Mathematial Siene, Aalborg University,1999.J. G. Propp and D. B. Wilson. Exat sampling with oupled Markov hainsand appliations to statistial mehanis. Random Strutures and Algo-rithms, 9:223{252, 1996.S. I. Resnik. Adventures in Stohasti Proesses. Birkhaeuser, Boston,1992.C. P. Robert and G. Casella. Monte Carlo Statistial Methods. Springer-Verlag, New York, 1999.G.O. Roberts and J.S. Rosenthal. Markov hain monte arlo: Some pratialimpliations of theoretial results (with disussion). Canadian Journal ofStatistis, 26:5{32, 1998.E. Th�onnes. A primer on perfet sampling. Tehnial report, Departmentof Mathematial Statistis, Chalmers University of Tehnology, 1999.6 Appendix6.1 A Markov Chain GlossaryWe will work with disrete state spae Markov hains. The following def-initions an be extended to ontinuous state spaes as long as the usualmeasurability ompliations are arefully dealt with.A Markov hain X1;X2; : : : ; is irreduible if the hain an move freelythroughout the state spae; that is, for any two states x and x0 with �(x0) >0, there exists an n suh that Pr[Xn = x0jX0 = x℄ > 0. Moreover, as thehains we are onsidering are all positive, that is, the stationary distribution14



is a probability distribution, irreduibility also implies that the hain isreurrent. A reurrent hain is one in whih the average number of visits toan arbitrary state is in�nite.A state x has period d if P (Xn+t = xjXt = x) = 0 if n is not divisibleby d, d being the largest integer with this property. For example, if a hainstarts (t = 0) in a state with period 3, the hain an only return to thatstate at times t = 3; 6; 9; : : : . If a state has period d = 1, it is aperiodi. Inan irreduible Markov hain, all states have the same period. If that periodis d = 1, the Markov hain is aperiodi.We then have the following theorems.Theorem 3 Convergene to the stationary distribution If the ount-able state spae Markov hain X1;X2; : : : ; is positive, reurrent and aperi-odi with stationary distribution �, then from every initial stateXn ! X � �:A positive, reurrent and aperiodi Markov hain is often alled ergodi,a name also given to the following theorem, a ousin of the Law of LargeNumbers.Theorem 4 Convergene of Sums If the ountable state spae Markovhain X1;X2; : : : ; is ergodi with stationary distribution �, then from everyinitial state 1n nXi=1 h(Xi)! E�h(X)provided E�jh(X)j <1Adding the property of reversibility will get us a Central Limit Theo-rem. A Markov hain is reversible if the distribution of Xt+1 onditional onXt+2 = x is the same as the distribution of Xt+1 onditional on Xt = x. Forany set B we have Xy2XXx2BK(y; x) =Xy2XXx2BK(x; y)so the transition probabilities are the same whether we go forward or bak-ward along the hain. 15



Theorem 5 Central Limit Theorem If the ountable state spae Markovhain X1;X2; : : : ; is ergodi and reversible with stationary distribution �,then from every initial state1pn nXi=1 [h(Xi)�E�h(X)℄! N (0; �2);provided 0 < �2 = Var h(X0) +P1i=1Cov�(h(X0); h(Xi)) <16.2 Proof of Theorem 2We will establish the three fats stated in the outline of the proof of Theorem2, and �ll in the gaps in the arguments. First, we show that the k Markovhains will oalese at some �nite time with probability 1. We adapt theproof presented in Th�onnes (1999).Reall that we have k oupled Markov hains, X(1);X(2); : : : ;X(k), whereX(j) starts in state j (so one hain starts in eah state of X ). As eah hainis irreduible, we an �nd Nj suh thatP (X(j)Nj = xjX(j)0 = j) > 0; for all x 2 X :Set N = maxfN1; N2; : : : ; Nkg. It then follows that eah hain has positiveprobability of being in any state at time N , and that for some " > 0P (X(1)N = X(2)N = � � � = X(k)N ) > ":Now run the CFTP algorithm in bloks of size N as follows.(i). Starting at time �N , run the k oupled hains to time 0. If they havenot oalesed(ii). Starting at time �2N , run the k oupled hains to time 0. If theyhave not oalesed(iii). ...De�ne the eventCi = f The k hains oalese in (�iN;�(i � 1)N)g:From the above argument we have that P (Ci) > ". Moreover, the Ciare independent beause oalesene in (�iN;�(i � 1)N) only depends onU�iN ; U�iN�1; : : : ; U�(i�1)N (whih are independent of all of the other Us)16



and does not depend on the initial states. This is beause we restart eahiteration from all states, allowing us to rereate the hains using only theUs. (This last point is ruial, and shows why we must run the hains fromthe past to the present. If we went forward, we ould not restart in ev-ery state, so oalesene might depend on the initial onditions. Only byrunning the hains from the past to the present, starting one hain in eahstate, an we guarantee independene from the initial onditions, and henethe independene of the Cis.)Finally, we observe thatP ( No oalesene after I iterations) = 1� IYi=1[1� P (Ci)℄< (1� ")I! 0 as I !1;showing that the probability of oalesene is 1. We an, in fat, makethe stronger onlusion that the oalesene time is almost surely �nite bynoting that 1Xi=1 P (Ci) =1) P (Ci in�nitely often ) = 1;from the Borel-Cantelli Lemma.We next show that for j = 1; 2; : : : ; k,X(j)�t ! X � � as t!1 (2)and X(j)�t ! X�0 as t!1: (3)Sine X(j)t is a Markov hain with a limiting distribution, X(j)t ! X � �as t ! 1. Now (2) follows by reversibility, that is, the forward hain andthe bakward hain have the same transitions.Result (3) is a onsequene of the fat that the CFTP algorithm startswith a Markov hain in every state. This means that the realization of anyMarkov hain starting at �1 will, at some time �t, ouple with one of theCFTP hains and thereafter be equal to X�t . Therefore X�0 and X have thesame distribution and, in partiular, X�0 � �.17



6.3 Alternate Proof of FillWe an view Fill as a rejetion algorithm: generate and propose X0 = x;then aept x as a draw from � if CT (z) has ourred. The proposal dis-tribution is the T -step transition density KT (z; �). Fill is a valid rejetionalgorithm if we aept X0 = x with probability1M �(x)KT (z; x) where M � supx �(x)KT (z; x) :From detailed balane we an write �(x)=KT (z; x) = �(z)=KT (x; z) and,sine Pr[CT (z)℄ � KT (x0; z) for any x0, and hene Pr[CT (z)℄ � minx0 KT (x0; z),we have the bound�(x)KT (z; x) = �(z)KT (x; z) � �(z)minx0 KT (x0; z) � �(z)Pr[CT (z)℄ =M:So we aept X0 = x with probability 1M �(x)KT (z;x) , whih is quite diÆult toompute. However,1M �(x)KT (z; x) = Pr[CT (z)℄�(z) �(x)KT (z; x) = Pr[CT (z)℄�(z) �(z)KT (x; z) = Pr[CT (z)℄KT (x; z) ;where we have again used detailed balane. But now, from (1), we have thatPr[CT (z)℄KT (x;z) = Pr[CT (z)jx! z℄, exatly the event that Fill simulates.Finally, note that the algorithm is more eÆient if M is as small aspossible, so hoosing z to be the state that minimizes �(z)=Pr[CT (z)℄ is agood hoie. This, also, will be a diÆult alulation, but in running thealgorithm, these probabilities an be estimated.
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