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tIn 1996, Propp and Wilson introdu
ed Coupling from the Past(CFTP), an algorithm for generating a sample from the exa
t stationarydistribution of a Markov 
hain. In 1998, Fill proposed another so{
alled perfe
t sampling algorithm. These algorithms have enormouspotential in Markov Chain Monte Carlo (MCMC) problems be
ause theyeliminate the need to monitor 
onvergen
e and mixing of the 
hain.This arti
le provides a brief introdu
tion to the algorithms, with anemphasis on understanding rather than te
hni
al detail.1 SettingA Markov 
hain is a sequen
e of random variables fXtg that 
an be thoughtof as evolving over time, and where the distribution of Xt+1 depends on Xt,but not onXt�1;Xt�2; : : : . When used in Markov 
hain Monte Carlo (MCMC)algorithms, Markov 
hains are usually 
onstru
ted from a Markov transi-tion kernel K, a 
onditional probability density on X su
h that Xt+1jXt �K(Xt;Xt+1). Interest is usually in the stationary distribution of the 
hain,the distribution � that satis�esZX K(x;B) d�(x) = �(B) for any B � X :
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Thus, if Xt � � then Xt+1 � �. In a 
ommon appli
ation � is the pos-terior distribution from a Bayesian analysis and K is 
onstru
ted to havestationary distribution �.Here is an example that we follow throughout the arti
le.Beta-Binomial Following Casella and George (1992), and forsome suitable parameters n, � and �, let � � Beta(�; �) andXj� � Bin(n; �), leading to the joint density�(x; �) / �nx��x+��1(1� �)n�x+��1and the 
onditional density �jx � Beta(� + x; � + n� x).We 
an 
onstru
t a Markov 
hain, in fa
t a Gibbs sampler,having � as its stationary distribution by using the followingtransition rule for (Xt; �t) 7! (Xt+1; �t+1):1. 
hoose �t+1 � Beta(�+ xt; � + n� xt), and2. 
hoose Xt+1 � Bin(n; �t+1).This transition rule has transition kernelK((xt; �t); (xt+1; �t+1)) = f((xt+1; �t+1)j(xt; �t))/ � nxt+1��xt+1+�+xt�1(1� �)�+2n�xt�xt+1�1:For future referen
e we note that the sub
hain : : : ;Xt;Xt+1; : : :is a Markov 
hain with Xt+1jxt � BetaBin(n; �+ xt; � +n� xt)and transition kernelK(xt; xt+1) = f(xt+1jxt) /� nxt+1��(�+ � + n)�(�+ xt + xt+1)�(� + 2n� xt � xt+1)�(�+ xt)�(� + n� xt)�(�+ � + 2n) :
Theorems about stationary distributions and ergodi
ity apply when theMarkov 
hain satis�es the three properties of irredu
ibility, reversibilityand aperiodi
ity, de�ned in Appendix 6.1. See Robert and Casella (1999,Chap. 4) for a brief des
ription or Meyn and Tweedie (1993) and Resni
k(1992) among others for book-length treatments. These properties are as-sumed true for the rest of this arti
le.2



The stationary distribution of the Markov 
hain is also a limiting dis-tribution: Xt 
onverges in distribution to X � �. For MCMC purposes twouseful 
onsequen
es of our assumptions are that 1M PMj=1 h(Xj)! E�[h(X)℄(sometimes 
alled the ergodi
 theorem) and that a 
entral limit theoremholds.It is typi
al in pra
ti
e to have MCMC algorithms begin from an arbitrar-ily 
hosen state at time t = 0, say, and run for a long time T , say, in thehope that XT is a draw from �. One typi
ally dis
ards X0; : : : ;XT�1 andestimates E�[h(X)℄ as 1M PT+M�1j=T h(Xj). A serious pra
ti
al problem is de-termining the \burn-in" time T . A se
ond pra
ti
al problem is determiningthe 
orrelation between Xt and Xt+1, whi
h is used to 
al
ulate the varian
eof the estimate. Perfe
t sampling avoids both problems be
ause it produ
esindependent draws having distribution � pre
isely.Indeed, the major drawba
k with using MCMC methods is that theirvalidity is only asymptoti
: if we run the sampler kernel until the end oftime, we are bound to explore the entire distribution of interest; but, sin
e
omputing and storage resour
es are not in�nite, we are bound to stop theMCMC sampler at some point. The in
uen
e of this stopping time on thedistribution of the 
hain is not harmless and in some 
ases may indu
eserious biases (Roberts and Rosenthal, 1998). Perfe
t sampling alleviatesthis diÆ
ulty by produ
ing exa
tly the same 
hain as one running an in�nitenumber of steps, by simply repla
ing the starting time with �1 and1 with0. And, at no additional 
ost, it also removes the dependen
e on the startingvalue! In other words, the burn-in time be
omes in�nite and the 
hain isindeed in the stationary distribution at time 0.2 Coales
en
eThe �rst step in obtaining a perfe
t sample is to �nd a way to make Xtindependent of the starting value. The answer is to work with 
oupledparallel 
hains.Suppose there are k states in X , and we start a Markov 
hain in ea
hstate at time t = 0. These are parallel 
hains. Parallel 
hains 
an be 
oupledthrough a transition rule � and random numbers Ut. A transition rule de-termines Xt+1 as a fun
tion of Xt and Ut+1. Note that the same � and same: : : ; Ut; Ut+1; : : : are used for ea
h 
hain. A 
ommon and 
onvenient 
hoi
eis to let Ut+1 � Uniform(0; 1) and take Xt+1 = �(xt; ut+1) = F�1Xt+1jxt(ut+1),the inverse-
df fun
tion of Xt+1jxt determined by the kernel K. For illus-tration we return to the Beta-Binomial example.3



012 -QQsSSSw 012ut+1 < :278 012 -QQsQQs 012ut+1 2 (:278; :417)012 --QQs 012ut+1 2 (:417; :583) 012��3-QQs 012ut+1 2 (:583; :722)012��3-- 012ut+1 2 (:722; :833) 012��3��3- 012ut+1 2 (:833; :917) 012 ���7��3- 012ut+1 > :917Figure 1: All possible transitions for the Beta-Binomial(2,2,4) exampleBeta-binomial, 
ontinued. Consider the fXtg sub
hain fromthe previous example, and let n = 2, � = 2 and � = 4. Thestate spa
e is X = f0; 1; 2g. The transition probabilities arePr(0 7! 0) = :583; Pr(0 7! 1) = :333; Pr(0 7! 2) = :083;Pr(1 7! 0) = :417; Pr(1 7! 1) = :417; Pr(1 7! 2) = :167;Pr(2 7! 0) = :278; Pr(2 7! 1) = :444; Pr(2 7! 2) = :278Thus we 
an draw Ut+1 � Uniform(0; 1) and make the transitionsillustrated by Figure 1.Figure 1 shows that 
oupled 
hains will all go to the same state, or
oales
e if there is ever a time t su
h that either Ut < :278 or Ut > :917.On
e 
oupled 
hains 
oales
e at time t, they remain 
oales
ed at all timesgreater than t. And be
ause the Ut's are mutually independent 
oales
en
eis guaranteed to happen eventually. The next theorem gives some generalresults about 
oales
en
e.Theorem 1 Suppose we have k 
oupled Markov 
hains, X(1);X(2); : : : ;X(k),where 4



(i). X(j) starts in state j (so one 
hain starts in ea
h state of X )(ii). updating is performed a

ording to X(j)t+1 = �(x(j)t ; ut+1), where the Uiare mutually independent.Then(a). The time T to 
oales
en
e is a random variable that depends only onU1; U2; : : : .(b). The random variable XT , the 
ommon value at 
oales
en
e, is inde-pendent of any starting values.Proof: Part (a) is immediate by 
onstru
tion, and part (b) follows sin
e XTis a fun
tion only of U1; : : : ; UT and not of X0.Con
lusion (b) of Theorem 1 says that T is a time at whi
h the initialstate of the 
hain has \worn o�". One might therefore hope that XT isa draw from the stationary distribution �. This hope is false. It is truethat if T � is a �xed time, and XT � is independent of X0, then XT � � �.Unfortunately, T is a random time and in general, XT 6� �, as the followingexample illustrates.Two-state Consider the Markov 
hain with state spa
e f1; 2gand transition kernel K(1; 1) = K(1; 2) = :5; K(2; 1) = 1;K(2; 2) = 0. The stationary distribution is �(1) = 2=3; �(2) =1=3. A little thought shows that parallel 
hains 
an 
oales
e onlyin XT = 1 and therefore XT 6� �.3 Propp and WilsonPropp and Wilson (1996) dis
overed how to take advantage of 
oales
en
ewhile sampling the 
hain at a �xed time, thereby produ
ing a random vari-able having distribution �, exa
tly. Their algorithm is 
alled Coupling fromthe Past (CFTP), and is based on the idea that if a 
hain were started attime t = �1 in any state X�1, it would be in equilibrium by time t = 0,so X0 would be a draw from �. This would happen sin
e the 
hain wouldhave run for an in�nite length of time.5



To implement this idea in an algorithm, we use the 
oales
en
e strategy.We �rst �nd a time �T su
h that X0 does not depend on X�T (
oales
en
eo

urs between time �T and time 0), and then we determine X0 by starting
hains from all states at time t = �T and following them to time t = 0.CFTP is an algorithm for �nding �T and X0, and goes as follows.(1). Start 
hains X(1);X(2); : : : ;X(k) at time t = �1 from every state ofX . Generate U0.(2). Update ea
h 
hain to time t = 0 by applying the transition rule X(j)0 =�(x(j)�1; u0). If the 
hains have 
oales
ed at time t = 0, then �T = �1and the 
ommon value X0 is a draw from �.(3). Otherwise, move ba
k to time t = �2, generate U�1, and update ea
h
hain using X(j)�1 = �(x(j)�2; u�1) and X(j)0 = �(x(j)�1; u0). If the 
hainshave 
oales
ed at time t = 0, then �T = �2 and the 
ommon valueX0 is a draw from �.(4). Otherwise, move ba
k to time t = �3 and 
ontinue.It is 
ru
ial, when going ba
k to t = �2, to use the same U0 that wasalready drawn. Spe
i�
ally, we start 
hains at time t = �2 from every state;draw U�1; use U�1 to update all the 
hains to time t = �1; use the U0 frombefore to update all the 
hains to time t = 0; 
he
k for 
oales
en
e; andeither a

ept T = �2 and X0 if the 
hains have 
oales
ed or go ba
k to timet = �3 if they haven't. The algorithm 
ontinues ba
king through time until
oales
en
e o

urs.Theorem 2 The CFTP algorithm returns a random variable distributed ex-a
tly a

ording to the stationary distribution of the Markov 
hain.Proof: The proof is based on establishing the following three fa
ts:(1). The k Markov 
hains will 
oales
e at some �nite time into one 
hain,
all it X�t .(2). For ea
h j = 1; 2; : : : ; k, X(j)�t ! X � � as t!1(3). For ea
h j = 1; 2; : : : ; k, X(j)�t ! X�0 as t!1It then follows that X�0 and X have the same distribution and, in par-ti
ular, X�0 � �. See Appendix 6.2 for details.6



We use the Beta-Binomial example for illustration.Beta-Binomial, 
ontinued. Begin at time t = �1 and drawU0. Suppose U0 2 (:833; :917). The next pi
ture shows the resultof updating all 
hains. 012t = �1��3��3- 012t = 0The 
hains have not 
oales
ed, so we go to time t = �2 anddraw U�1. Suppose U�1 2 (:278; 417). The next pi
ture showsthe result of updating all 
hains.012t = �2 -QQsQQs 012t = �1��3��3 012t = 0The 
hains have still not 
oales
ed so we go to time t = �3.Suppose U�2 2 (:278; :417). The next pi
ture shows the resultof updating all 
hains.012t = �3-QQsQQs 012t = �2 -QQs 012t = �1��3 012t = 0All 
hains have 
oales
ed into X0 = 1. We a

ept X0 as adraw from � . Note: even though the 
hains have 
oales
ed att = �1, we do not a

ept X�1 = 0 as a draw from �.
In CFTP, T and X0 are dependent random variables. Therefore, a userwho gets impatient or whose 
omputer 
rashes and who therefore restarts7



runs when T gets too large will generate biased samples. Another algorithm,due to Fill (1998), generates samples from � in a way that is independentof the number of steps.4 Fill's algorithmA simple version of Fill's algorithm (Fill) is:1. Arbitrarily 
hoose a time T and state xT = z.2. Generate XT�1jxT , XT�2jxT�1, : : : , X0jx1.3. Generate [U1jx0; x1℄, [U2jx1; x2℄, : : : , [UT jxT�1; xT ℄4. Begin 
hains in all states at time T = 0 and use the 
ommon U1, : : : ,UT to update all 
hains5. If the 
hains have 
oales
ed by time T (and are in state z at time T ),then a

ept x0 as a draw from �6. Otherwise begin again, possibly with a new T and z.We note that the U1, : : : , UT used for the 
oales
ing 
hains are generatedin su
h a way to insure that x ! z. (We write x ! z to denote that the
hain goes from state x to state z in T steps.) So, for example, generate U1to be uniform on the set fu : x1 = �(x0; u)g, U2 to be uniform on the setfu : x2 = �(x1; u)g et
. See the example for a further illustration.There are two ways to prove that Fill is 
orre
t. We present one hereand one in the appendix. Let CT (z) be the event that all 
hains have
oales
ed and are in state z at time T .First proof: Fill delivers a value only if CT (z) o

urs, so we need toprove Pr[X0 = xjCT (z)℄ = �(x). This probability isPr[X0 = xjCT (z)℄ = Pr[z ! x℄ Pr[CT (z)jx! z℄Px0 Pr[z ! x0℄ Pr[CT (z)jx0 ! z℄ :Now be
ause the 
oales
en
e event entails ea
h x0 ! z, we have for every x0Pr[CT (z)jx0 ! z℄ = Pr[CT (z) and x0 ! z℄Pr[x0 ! z℄ = Pr[CT (z)℄Pr[x0 ! z℄ ; (1)
8



and writing Pr[x0 ! z℄ = KT (x0; z) the probability be
omesPr[X0 = xjCT (z)℄ = KT (z; x) Pr[CT (z)℄=KT (x; z)Px0 KT (z; x0) Pr[CT (z)℄=KT (x0; z)= KT (z; x)=KT (x; z)Px0 KT (z; x0)=KT (x0; z) ;Using the detailed balan
e 
ondition we haveKT (z; x)=KT (x; z) = �(x)=�(z),and thus, Pr[X0 = xjCT (z)℄ = �(x)=�(z)Px0 �(x0)=�(z) = �(x):
We follow the Beta-binomial (2,2,4) example through the steps in Fill.Beta-Binomial, 
ontinued.1. We arbitrarily 
hoose T = 3 and XT = 2.2. Our 
hain is reversible, so [X2jX3 = 2℄ = [X3jX2 = 2℄ =BetaBin(2; 4; 4). The probabilities are given on page 4. Wegenerate X2. Suppose it turns out to equal 1. Similarly,X1jX2 = 1 � BetaBin(2; 3; 5); suppose we get X1 = 2;X0jX1 = 2 � BetaBin(2; 4; 4); suppose we get X0 = 1.The next pi
ture shows the transitions we've generated.012t = 0QQs 012t = 1��3 012t = 2��3 012t = 33. X0 = 1, X1 = 0, X2 = 1 and X3 = 2 imply U1 � U(0; :417);U2 � U(:583; :917); and U3 � U(:833; 1). (See Figure 1.)Suppose we generate U1 2 (:278; :417), U2 2 (:833; :917)and U3 > :917.4. Begin 
hains in states 0, 1 and 2.5. The next pi
ture follows the 
hains through time t = 3.012t = 0 -QQsQQs 012t = 1��3��3 012t = 2��3- 012t = 39



6. The 
hains 
oales
e in X3 = 2; so we a

ept X0 = 1 as adraw from �.
Fill depends on an arbitrary 
hoi
e of T and XT . To get some feelingfor how big T needs to be and whether the 
hoi
e of XT is important, we ranFill on a Beta-binomial(16; 2; 4) example. For ea
h of XT = 0; 2; : : : ; 16,we ran Fill in a loop with T = 1; 3; : : : su

essively until the algorithmreturned a value. The whole simulation was repeated 50 times. Figure 2 isa boxplot, sorted by XT , of the T for whi
h 
oales
en
e was a
hieved. Thehorizontal axis is the value of XT whi
h we �xed in advan
e. The verti
alaxis is the value of T for whi
h 
oales
en
e o

urred. The �gure shows that
oales
en
e o

urred mu
h more qui
kly when we 
hose either XT = 0 orXT = 16 than any other value of XT .5 Dis
ussion� A potentially troublesome point is dete
ting whether 
oales
en
e haso

urred. In general, starting and keeping tra
k of 
hains from everystate is 
omputationally infeasible. In (partially) ordered state spa
eswith a monotone transition rule it is only ne
essary to keep tra
k of
hains started from the maximal and minimal members. A monotonetransition rule is one in whi
hXt � Yt ) Xt+1 = �(Xt; ut+1) � Yt+1 =�(Yt; ut+1). If our transition fun
tion is an inverse-
df fun
tion that issto
hasti
ally ordered, then the transition rule will be monotone.This is the 
ase in our example, where a 
hain started from state 1 issandwi
hed between 
hains started from states 0 and 2. Therefore it isonly ne
essary to keep tra
k of 
hains started from 0 and 2 to determinewhether 
oales
en
e has o

urred. In fa
t, if there exist maximal andminimal elements, 
oales
en
e is dete
table even with a 
ontinuousstate spa
e. Non-monotone transition rules or state spa
es withoutminimal and maximal elements require more sophisti
ated methods.See Fill et al. (1999) or Green and Murdo
h (1999) for details andextensions.� In des
ribing CFTP we set T su

essively equal to -1, -2, : : : . In fa
t,any de
reasing sequen
e would do as well. Propp and Wilson (1996)argue that T = �1;�2;�4;�8; : : : is near optimal. In Fill, if X0 is10
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reje
ted, or if one is generating many realizations, one may wish to
hoose new values of T and z for the next proposal. Figure 2 showsthat some 
ombinations of (T; z) are more likely to lead to 
oales
en
ethan others. There is no general theory at present to guide the 
hoi
eof (T; z). In pra
ti
e the results of early iterations may guide the 
hoi
eof (T; z) in later iterations.� In his original algorithm des
ribed here, when running the k 
hains for
oales
en
e, Fill used 
onstrained uniform variables U1; : : : ; UT 
ondi-tional onX0; : : : ;XT , generating [U1jx0; x1℄, [U2jx1; x2℄, : : : , [UT jxT�1; xT ℄.This insures that the 
hain starting in x will end up in z. This is pra
-ti
al as long as the 
onditional distribution of the Ui's given the Xi'sis not too diÆ
ult.An alternative to the algorithm des
ribed in Fill is to generate theUi's un
onditionally. (Typi
ally Ui � U(0; 1).) Using these Ui's, 
he
kwhether x0 ! z. If yes, then also 
he
k for CT (z) and either a

eptor reje
t X0 a

ordingly. Otherwise, dis
ard the Ui's and generateanother set until �nding one su
h that x0 ! z. Ultimately we willa

ept x0 with probability Pr[CT (z)jx0 ! z℄, as required.� Some pra
ti
al appli
ations of Markov 
hains iterate between a dis
reteX and a parameter � whi
h might be either dis
rete or 
ontinuous. Insu
h 
ases we 
an obtain perfe
t samples from the joint distribution ofbothX and �. For example, 
onsider modeling the data Y as a mixtureof Normal distributions. The model is usually extended to in
ludeindi
ator variablesX, whi
h are not observed but whi
h indi
ate whi
hY 's 
ome from the same mixture 
omponents. Conditional on X, themodel is a straightforward 
olle
tion of Normals. Let � denote allunknown parameters other thanX. The posterior is typi
ally analyzedthrough a Gibbs sampler that iterates between [Xj�℄ and [�jX℄. Theiterates of X form a sub
hain on a �nite state spa
e and are amenableto perfe
t sampling. Given a perfe
t sample of X, one 
an simulatefrom [�jX℄ to obtain a perfe
t sample of �.This remark extends to other latent variable models, but one must keepin mind that the size of the �nite parameter spa
e of X in the mixtureexample is kn, whi
h rapidly gets unmanageable unless monotoni
ityfeatures 
an be exhibited, as in Hobert et al. (1999).� To remove the diÆ
ulty with 
ontinuous state spa
e 
hains, anotherpromising dire
tion relies on sli
e sampling. This te
hnique is a spe
ial12




ase of Gibbs sampling (See Robert and Casella 1999, Se
t. 7.1.2) andtakes advantage of the fa
t that the marginal (in x) of the uniformdistribution on f(x; u); u � �(x)g is �(x). The idea, detailed in Miraet al. (1999), is that, if x00 is a variable generated from the uniformdistribution on fx; �(x) � ��(x0)g, it 
an also be taken as a variablegenerated from the uniform distribution on fx; �(x) � ��(x1)g forall x1's su
h that ��(x0) � ��(x1) � �(x00) by a simple a

ept{reje
targument. Therefore, assuming a bounded state spa
e X , if one startswith x00 generated uniformly on X , a �nite sequen
e x00; : : : ; x0T 
anbe used instead of the 
ontinuum of possible starting values, with x0ibeing generated from a uniform distribution on fx; �(x) � �(x0i�1)g,and T being su
h that �(x0T ) � � sup�(x). Moreover, sli
e samplingexhibits natural monotoni
ity stru
tures whi
h 
an be exploited tofurther redu
e the number of 
hains. The pra
ti
al diÆ
ulty of thisapproa
h is that uniform distributions on fx; �(x) � ��(x0)g may behard to simulate, as shown in Casella et al. (1999) in the setup ofmixtures.� Perfe
t sampling is 
urrently an a
tive area of resear
h. David Wilsonmaintains a web site of papers on perfe
t sampling athttp://dima
s.rutgers.edu:80/~dbwilson/exa
t.html. The in-terested reader 
an �nd links to arti
les ranging from introdu
toryto the latest resear
h.Referen
esG. Casella and E. I. George. Explaining the Gibbs sampler. The Ameri
anStatisti
ian, 46:167{174, 1992.G. Casella, K.L. Mengersen, C.P. Robert, and D.M. Titterington. Perfe
tsampling for mixtures. Te
hni
al report, CREST, Insee, 1999.J. A. Fill. An interruptible algorithm for perfe
t sampling via Markov 
hains.Annals of Applied Probability, 8:131{162, 1998.James Allen Fill, Motoya Ma
hida, Dun
an J. Murdo
h, and Je�rey S.Rosenthal. Extension of Fill's perfe
t reje
tion sampling algorithm togeneral 
hains. Te
hni
al report, The Johns Hopkins University, Dept. ofMathemati
al S
ien
es, 1999.P. J. Green and D. J. Murdo
h. Exa
t sampling for Bayesian inferen
e:towards general purpose algorithms. In J. M. Bernardo, J. O. Berger,13



A. P. Dawid, and A. F. M. Smith, editors, Bayesian Statisti
s 6, Oxford,1999. Clarendon Press.J.P. Hobert, C.P. Robert, and D.M. Titterington. On perfe
t simulationfor some mixtures of distributions. Statisti
s and Computing, 9:287{298,1999.S. P. Meyn and R. L. Tweedie. Markov Chains and Sto
hasti
 Stability.Springer-Verlag, New York, 1993.A. Mira, J. M�ller, and G. O. Roberts. Perfe
t sli
e sampler. Te
hni
alReport R-99-2020, Dept. of Mathemati
al S
ien
e, Aalborg University,1999.J. G. Propp and D. B. Wilson. Exa
t sampling with 
oupled Markov 
hainsand appli
ations to statisti
al me
hani
s. Random Stru
tures and Algo-rithms, 9:223{252, 1996.S. I. Resni
k. Adventures in Sto
hasti
 Pro
esses. Birkhaeuser, Boston,1992.C. P. Robert and G. Casella. Monte Carlo Statisti
al Methods. Springer-Verlag, New York, 1999.G.O. Roberts and J.S. Rosenthal. Markov 
hain monte 
arlo: Some pra
ti
alimpli
ations of theoreti
al results (with dis
ussion). Canadian Journal ofStatisti
s, 26:5{32, 1998.E. Th�onnes. A primer on perfe
t sampling. Te
hni
al report, Departmentof Mathemati
al Statisti
s, Chalmers University of Te
hnology, 1999.6 Appendix6.1 A Markov Chain GlossaryWe will work with dis
rete state spa
e Markov 
hains. The following def-initions 
an be extended to 
ontinuous state spa
es as long as the usualmeasurability 
ompli
ations are 
arefully dealt with.A Markov 
hain X1;X2; : : : ; is irredu
ible if the 
hain 
an move freelythroughout the state spa
e; that is, for any two states x and x0 with �(x0) >0, there exists an n su
h that Pr[Xn = x0jX0 = x℄ > 0. Moreover, as the
hains we are 
onsidering are all positive, that is, the stationary distribution14



is a probability distribution, irredu
ibility also implies that the 
hain isre
urrent. A re
urrent 
hain is one in whi
h the average number of visits toan arbitrary state is in�nite.A state x has period d if P (Xn+t = xjXt = x) = 0 if n is not divisibleby d, d being the largest integer with this property. For example, if a 
hainstarts (t = 0) in a state with period 3, the 
hain 
an only return to thatstate at times t = 3; 6; 9; : : : . If a state has period d = 1, it is aperiodi
. Inan irredu
ible Markov 
hain, all states have the same period. If that periodis d = 1, the Markov 
hain is aperiodi
.We then have the following theorems.Theorem 3 Convergen
e to the stationary distribution If the 
ount-able state spa
e Markov 
hain X1;X2; : : : ; is positive, re
urrent and aperi-odi
 with stationary distribution �, then from every initial stateXn ! X � �:A positive, re
urrent and aperiodi
 Markov 
hain is often 
alled ergodi
,a name also given to the following theorem, a 
ousin of the Law of LargeNumbers.Theorem 4 Convergen
e of Sums If the 
ountable state spa
e Markov
hain X1;X2; : : : ; is ergodi
 with stationary distribution �, then from everyinitial state 1n nXi=1 h(Xi)! E�h(X)provided E�jh(X)j <1Adding the property of reversibility will get us a Central Limit Theo-rem. A Markov 
hain is reversible if the distribution of Xt+1 
onditional onXt+2 = x is the same as the distribution of Xt+1 
onditional on Xt = x. Forany set B we have Xy2XXx2BK(y; x) =Xy2XXx2BK(x; y)so the transition probabilities are the same whether we go forward or ba
k-ward along the 
hain. 15



Theorem 5 Central Limit Theorem If the 
ountable state spa
e Markov
hain X1;X2; : : : ; is ergodi
 and reversible with stationary distribution �,then from every initial state1pn nXi=1 [h(Xi)�E�h(X)℄! N (0; �2);provided 0 < �2 = Var h(X0) +P1i=1Cov�(h(X0); h(Xi)) <16.2 Proof of Theorem 2We will establish the three fa
ts stated in the outline of the proof of Theorem2, and �ll in the gaps in the arguments. First, we show that the k Markov
hains will 
oales
e at some �nite time with probability 1. We adapt theproof presented in Th�onnes (1999).Re
all that we have k 
oupled Markov 
hains, X(1);X(2); : : : ;X(k), whereX(j) starts in state j (so one 
hain starts in ea
h state of X ). As ea
h 
hainis irredu
ible, we 
an �nd Nj su
h thatP (X(j)Nj = xjX(j)0 = j) > 0; for all x 2 X :Set N = maxfN1; N2; : : : ; Nkg. It then follows that ea
h 
hain has positiveprobability of being in any state at time N , and that for some " > 0P (X(1)N = X(2)N = � � � = X(k)N ) > ":Now run the CFTP algorithm in blo
ks of size N as follows.(i). Starting at time �N , run the k 
oupled 
hains to time 0. If they havenot 
oales
ed(ii). Starting at time �2N , run the k 
oupled 
hains to time 0. If theyhave not 
oales
ed(iii). ...De�ne the eventCi = f The k 
hains 
oales
e in (�iN;�(i � 1)N)g:From the above argument we have that P (Ci) > ". Moreover, the Ciare independent be
ause 
oales
en
e in (�iN;�(i � 1)N) only depends onU�iN ; U�iN�1; : : : ; U�(i�1)N (whi
h are independent of all of the other Us)16



and does not depend on the initial states. This is be
ause we restart ea
hiteration from all states, allowing us to re
reate the 
hains using only theUs. (This last point is 
ru
ial, and shows why we must run the 
hains fromthe past to the present. If we went forward, we 
ould not restart in ev-ery state, so 
oales
en
e might depend on the initial 
onditions. Only byrunning the 
hains from the past to the present, starting one 
hain in ea
hstate, 
an we guarantee independen
e from the initial 
onditions, and hen
ethe independen
e of the Cis.)Finally, we observe thatP ( No 
oales
en
e after I iterations) = 1� IYi=1[1� P (Ci)℄< (1� ")I! 0 as I !1;showing that the probability of 
oales
en
e is 1. We 
an, in fa
t, makethe stronger 
on
lusion that the 
oales
en
e time is almost surely �nite bynoting that 1Xi=1 P (Ci) =1) P (Ci in�nitely often ) = 1;from the Borel-Cantelli Lemma.We next show that for j = 1; 2; : : : ; k,X(j)�t ! X � � as t!1 (2)and X(j)�t ! X�0 as t!1: (3)Sin
e X(j)t is a Markov 
hain with a limiting distribution, X(j)t ! X � �as t ! 1. Now (2) follows by reversibility, that is, the forward 
hain andthe ba
kward 
hain have the same transitions.Result (3) is a 
onsequen
e of the fa
t that the CFTP algorithm startswith a Markov 
hain in every state. This means that the realization of anyMarkov 
hain starting at �1 will, at some time �t, 
ouple with one of theCFTP 
hains and thereafter be equal to X�t . Therefore X�0 and X have thesame distribution and, in parti
ular, X�0 � �.17



6.3 Alternate Proof of FillWe 
an view Fill as a reje
tion algorithm: generate and propose X0 = x;then a

ept x as a draw from � if CT (z) has o

urred. The proposal dis-tribution is the T -step transition density KT (z; �). Fill is a valid reje
tionalgorithm if we a

ept X0 = x with probability1M �(x)KT (z; x) where M � supx �(x)KT (z; x) :From detailed balan
e we 
an write �(x)=KT (z; x) = �(z)=KT (x; z) and,sin
e Pr[CT (z)℄ � KT (x0; z) for any x0, and hen
e Pr[CT (z)℄ � minx0 KT (x0; z),we have the bound�(x)KT (z; x) = �(z)KT (x; z) � �(z)minx0 KT (x0; z) � �(z)Pr[CT (z)℄ =M:So we a

ept X0 = x with probability 1M �(x)KT (z;x) , whi
h is quite diÆ
ult to
ompute. However,1M �(x)KT (z; x) = Pr[CT (z)℄�(z) �(x)KT (z; x) = Pr[CT (z)℄�(z) �(z)KT (x; z) = Pr[CT (z)℄KT (x; z) ;where we have again used detailed balan
e. But now, from (1), we have thatPr[CT (z)℄KT (x;z) = Pr[CT (z)jx! z℄, exa
tly the event that Fill simulates.Finally, note that the algorithm is more eÆ
ient if M is as small aspossible, so 
hoosing z to be the state that minimizes �(z)=Pr[CT (z)℄ is agood 
hoi
e. This, also, will be a diÆ
ult 
al
ulation, but in running thealgorithm, these probabilities 
an be estimated.
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