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Lecture notes

Modelling DNA Copy Number Data using HMMs 1

Susann Stjernqvist, Lund University

1 Introduction to DNA copy number data

The genetic material in human cells is formed in 23 pairs of chromosomes. In
each pair, one chromosome is inherited from the mother and the other from
the father. The chromosomes consists of DNA, which carries information
coded by sequences of pairs of the nucleotide bases A, C, G and T. At each
position there are one base pair, either A-T or C-G, and in total we have
about 3 · 109 base pairs (bp) in 23 chromosomes. As stated before there are
two copies of each chromosome, and thereby also two variants of DNA at
each base pair position (except in the sex chromosomes). DNA in cancer
cells could however exist in a different number of copies than two. These
aberrations usually occur in segments, either short or longer, up to an entire
chromosome in length. If the copy number is smaller than two it implies
that one or both copies are lost. Similarly if the copy number is larger than
two, there are one or several extra copies. By finding the regions with copy
number aberrations one can increase the knowledge about the disease, and
thereby make better diagnoses and improve treatments. Examples of copy
number aberrations are shown in Figure 1- 2.

Figure 1: An example of when a short segment of one chromosome is lost.

One technique used to measure the number of copies of DNA is array
comparative genomic hybridisation (aCGH). Briefly, the idea of aCGH is to

1Since these notes are written independent of the book, the notation deviates somewhat
from the rest of the course material.
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Figure 2: An example of when a short segment of one chromosome is gained.

label many short sequences (denoted probes) of sample DNA and reference
DNA with two different fluorescenting dyes, and then measure the intensity
ratio between them, when irradiating with a laser. This provides one inten-
sity ratio for each probe. Since the copy number of the reference sample is
2, it follows that when the ratio is 2/2 there are no abberations, i.e. two
copies of the sample DNA as well. Further on, the ratio is 1/2 if one copy is
lost, 3/2 if one copy is gained and so on. The ratios are translated into log2-
scale putting the normal level at zero. The aCGH method however provides
measurement errors to the log2-ratios, which can be seen in Figure 3 where
an example of the data used in Stjernqvist et al. (2007) is shown.

2 Discrete-index hidden Markov models

aCGH data has been analysed using several different models and methods,
among which various kinds of hidden Markov models are frequently used.
Studying Figure 3 it is visible that probes located near each other often tend
to have the same copy number, which makes a Markov approach natural.
In addition there are a countable number of copy numbers, well suited to be
represented by the states of the Markov process. Due to different measure-
ment errors we observe the log2-ratios in noise, which corresponds to the
theory of hidden Markov models.

The model and method described below was originally introduced in Fridlyand
et al. (2004). Each chromosome is modelled separately and the measure-
ments are ordered in the same order as the probes occur in the chromo-
somes. Let yk denote the observed log2-ratio of probe number k, with
k = 1, . . . , N , and N is the total number of probes in that chromosome.
In addition let X = {Xk}Nk=1 be a Markov process which corresponds to
the hidden copy numbers, with transition probability matrix A, such that
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Figure 3: Measured log2-ratios in chromosome 17 in a cancer cell. Each red
dot corresponds to one probe.

aij = P (Xk = j|Xk−1 = i). The state space of the Markov chain is
{1, . . . ,m} and represents the copy numbers of the test sample. The noise
is assumed to be Normally distributed such that Yk|Xk = i ∼ N(µi, σ

2).
Ideally the mean values µi of the states would be equal to log2(i/2),

where i is an integer, but the data have different sorts of systematic errors
causing deviations from this. Instead we choose to estimate the means along
with the other parameters. So, in total we wish to estimate the means µi,
the variance σ2, the initial probability ρi, and the transition probabilities
aij . In addition we would like to reconstruct the Markov process X. For
the parameter estimations we use the EM algorithm along with the forward-
backward algorithm. Let θ = {µi, σ2, pij , ρi for i, j = 1, . . . ,m} and denote
by gxk(yk; θ) the conditional density of Yk|Xk = xk. The complete likelihood
is then

fX1,...,XN ,Y1,...,YN (x1, . . . , xN , y1, . . . , yN ; θ)

= pX1,...,XN
(x1, . . . , xN ; θ)fY1,...,YN |X1,...,XN

(y1, . . . , yN |x1, . . . , xN ; θ)

= ρx1

N∏
k=2

axk−1xk

N∏
k=1

gxk(yk; θ).
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Following the theory of the EM algorithm the expectation step is

Q(θ, θ′) = Eθ[log fX1,...,XN ,Y1,...,YN (x1, . . . , xN , y1, . . . , yN ; θ′)|y1, . . . , yN ]

=
m∑
i=1

log ρ′iPθ(X1 = i|y1, y2, . . . , yN )

+

m∑
i=1

m∑
j=1

log a′ij

N∑
k=2

Pθ(Xk−1 = i,Xk = j|y1, . . . , yN )

+
m∑
i=1

N∑
k=1

(
−1

2
log(2πσ′2)− (yk − µ′i)2

2σ′2

)
Pθ(Xk = i|y1, y2, . . . , yN ).

The value of θ′ that maximises Q is given by

ρ′i = Pθ(X1 = i|y1, . . . , yN ),

p′ij = n̂ij/n̂i,

µ′i =

∑N
k=1 ykPθ(Xk = i|y1, . . . , yN )∑N
k=1 Pθ(Xk = i|y1, . . . , yN )

,

σ′2 =
1

N

m∑
i=1

N∑
k=1

(yk − µ′i)2Pθ(Xk = i|y1, . . . , yN ),

where

n̂ij =
N∑
k=2

Pθ(Xk−1 = i,Xk = j|y1, . . . , yN )

=

N∑
k=2

αk−1(i)pijgj(yk)βk(j)∑m
s=1

∑m
t=1 αk−1(s)pstgt(yk)βk(t)

,

and n̂i =
∑m

j=1 n̂ij .
Then by including the forward variables (αk(i)) and backward variables

(βk(i)), the parameters can be estimated. Finally we wish to reconstruct the
Markov process. This is performed using the Viterbi algorithm and some
results can be found in Figure 4- 5.

3 A continuous-index HMM

As mentioned before there are several other HMMs used to model aCGH
data. One example is the method in Stjernqvist et al. (2007), which is
designed for aCGH data from what is called tiling BAC arrays. Features
of such data is that the probes are unevenly spread over the genome, have
different lengths and could overlap, i.e one probe starts before the previous
probe has ended. The discrete index hidden Markov process described above
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Figure 4: Measured log2-ratios in chromosome 17 in a cancer cell (red dots)
and the Markov process reconstructed using the Viterbi algorithm (black
line).

does not include those features so instead a continuous-index hidden Markov
process is used. Denote the process X = (X(t))0≤t≤T , where T is the
length of the chromosome, and let it take values in a similar state space
as the discrete index process, i.e. {1, . . . ,m}. The dynamics of the Markov
process are given by transition rates qij for j 6= i—rather than transition
probabilities—where qij is the rate with which the chain moves from state i
to state j; its unit here is bp−1. In addition we let qi be the total rate out
of state i, such that qi =

∑
i 6=j qij . The parameters ρi, µi, σ

2 are defined
similarly as in the discrete index model, as well as yk, which is the log2-ratio
of probe k. Here however, we note that probe k have a length and is located
with start and stop positions denoted tstartk and tstopk respectively. We also
keep the assumption of Normally distributed noise, but includes the length
of the probe into the model such that

Yk ∼ N

(
1

tstopk − tstartk

∫ tstopk

tstartk

µX(t) dt, σ
2

)
. (1)

Due to the overlapping probes it is no longer possible to use the standard
EM algorithm and instead an MCEM algorithm is applied. The difference
with MCEM is that the E-step is replaced by Monte Carlo simulations of
the hidden process. This will not be explained any further here, but those
who are interested can read more in Stjernqvist et al. (2007). Instead we
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Figure 5: Measured log2-ratios in chromosome 19 in a cancer cell (red dots)
and the Markov process reconstructed using the Viterbi algorithm (black
line).

move on to some results, showing one advantage using a probabilistic model
like HMM.

It is often interesting to find the positions where the copy number changes
state. For example in Figure 6 it is clear that a part of the data is in
a different state than the rest. Using the continuous-index model we can
estimate the position of the jump. One alternative is to use the Monte Carlo
simulations, but we will here focus on a more theoretical alternative. Assume
that [T1, T2] is an interval such that we know that X(T1) = i, X(T2) = j and
that there is exactly one jump in the interval; assume also that the model
parameters are given. Then the conditional density of the jump location, t
say, is proportional to

qij exp(−qi(t− T1)) exp(−qj(T2 − t))
∏
k

g(yk|x) (2)

for T1 < t < T2, and the product is taken over probes k that overlap with the
interval [T1, T2]. This quantity is computed twice using the data in Figure 6
using first T1 = 10 Mbp and T2 = 11 Mbp, and then using T1 = 11.5Mbp
and T2 = 12.5 Mbp.
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Figure 6: Part of data of chromosome 4 with measured log2-ratios (short
blue lines with dots at the ends) and estimated means of the two states
(red lines). The solid lines are jump location estimations from Monte Carlo
simulations and the dashed black lines are estimated using Equation 2.
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