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Lecture notes

HMM analysis of general state-space models

Martin W. Pedersen

Abstract

These notes explain how to use a hidden Markov model (HMM)
approach for analysing possibly highly nonlinear time series data in a
state-space formulation. The text introduces the general state-space
model and gives an overview of other methods for filtering and smooth-
ing ranging from the simple linear and Gaussian case to the fully gen-
eral case. A discretization of the state-space is instrumental to the
HMM approach and the choice of discretization is therefore discussed.
The filter and smoothing recursions for the hidden Markov model are
presented and applied to the standard benchmark model known from
the literature on nonlinear time series. Finally, as an example, the pa-
rameters of a stochastic volatility model are estimated with maximum
likelihood and the results are compared with an Monte Carlo based
estimation procedure.

1 Introduction

State-space models (SSMs) cover the broad range of time series models where
the aim is to estimate the state of an unobservable (and in our case) random
process {Ct} with t ∈ {1, 2, . . . , T} from an observed data set {Xt}. In the
general state-space formulation, the dynamics of the state, Ct, are governed
by the system (or process) equation

Ct = a(Ct−1, t, ut) (1)

and the link from the unobserved state to the observed data xt is described
by the observation equation

Xt = b(Ct, t, vt), (2)

where ut and vt are random disturbances (or errors) with known probability
density functions (pdfs) p(ct|ct−1) and p(xt|ct). This formulation implies
that Ct is a Markov process since future values only depend on the current
state and are independent of the past.

The filtering steps related to this SSM are the state update (time update)

p(ct|Xt−1) =

∫
p(ct−1|Xt−1)p(ct|ct−1) dct−1, (3)
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and the Bayes’ update (data update)

p(ct|Xt) = p(ct|Xt−1)
p(xt|ct)
p(xt|Xt−1)

(4)

where Xt = X(t) = x(t). Equation (3) marginalizes the joint density p(ct, ct−1|Xt−1)
using the relation p(ct|ct−1,Xt−1) = p(ct|ct−1) by an argument of conditional
independence between ct and Xt−1 given ct−1. The data update in (4) ap-
plies Bayes’ rule.

The main challenge of the recursions is to compute the integral (3) which
rarely has a closed form expression for nonlinear pdf’s and must therefore be
approximated either numerically (deterministically) or empirically (stochas-
tically).

1.1 Previous filtering approaches

The integral (3) occurs in some variant in any filtering problem and ways to
obtain its solution (or some sort of approximation thereof) is therefore an
often studied topic in modern time series analysis.

Kalman derived the analytical solution for the case where p(ct|Xt) and
p(ct|ct−1) are Gaussian and the system and observation dynamics are linear
(Kalman, 1960). In this case the filtered and smoothed densities are Gaus-
sian as well and therefore fully represented by their mean and variance.

Much work has focused on extending the ordinary Kalman filter to deal
with nonlinear (but unimodal) distributions resulting in the development of
the extended Kalman filter (first order Taylor accuracy) (Jazwinski, 1970;
Welch and Bishop, 1995), a third-order moment filter (Wiberg and DeWolf,
1993) and the unscented Kalman filter (third order Taylor accuracy) (Julier
and Uhlmann, 1997). These methods, however, are stil limited to para-
metric representations of the probability densities and are for this reason
mostly appropriate for mild nonlinearities. Another variant is the ensem-
ble Kalman filter (Evensen, 2003) which by analysing randomly perturbed
versions of the data generates an ensemble of possible filter solutions. The
ensemble Kalman filter is often used for very complex systems where the
cost of computing the system dynamics can be considerable e.g. ocean mod-
elling, meteorology etc.

The Gaussian sum filter (Alspach and Sorenson, 1972) represents the poste-
rior distribution as a sum of multiple Gaussian distributions and therefore
enables closed form expressions of (3) to be obtained even for multimodal
distributions. This approach applies a Kalman filter for each term in the
Gaussian sum. As expected, for highly nonlinear models, this filter performs
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well when compared to the extended Kalman filter, but like many other non-
linear filtering approaches it is computationally demanding and may even
diverge if the number of Gaussian terms is too small.

Markov chain Monte Carlo (MCMC) (Gilks and Spiegelhalter, 1996) is
a method for simulating random numbers from a probability distribution
and is particularly useful for high-dimensional distributions. Simulating
the high-dimensional posterior distribution of an SSM, p(c1, . . . , cT |XT ), is
therefore a task well suited for MCMC. By generating multiple outcomes
the posterior distribution can be approximated empirically arbitrarily well
without applying any restrictions to the general model (1) and (2). For
strongly nonlinear distributions such as multimodal distributions the per-
formance of the MCMC routine may depend on the initialization and the
number of MCMC iterations. A major issue with MCMC is deciding when
to stop further simulation i.e. to assess the time when the chain has con-
verged. Diagnostics can be obtained regarding the quality of the estimation,
but for highly nonlinear models reliable diagnostics are not always available.

Another simulation based method is the sequential Monte Carlo (SMC) ap-
proach (or more popularly the “particle filter”). The method approximates
the densities p(ct|Xt) empirically by sequential simulation of outcomes (par-
ticles) from a proposal density weighted by taking the observation yt into
account. The initial attempts to apply this scheme in practice failed because
the weights of the particles degenerated rapidly i.e. the weights became very
small for all but a few particles. Gordon et al. (1993) resolved this problem
by introducing a resampling step in the iterations such that all resampled
particles had equal weights. Now, a method for filtering general nonlinear
time series was available that was claimed to avoid the curse of dimension-
ality. This claim, however, does not hold in general as pointed out by Daum
and Co (2005).

Kitagawa (1996) presented the theory of parameter estimation and smooth-
ing for SMC methods. For estimation quality and reliability, the most
important aspect of the SMC method is the proposal distribution which
propagates the particles from one time step to the next. The most natu-
ral choice of proposal distribution is to use the process model itself i.e. the
density p(ct|ct−1). At times where the behaviour of the next observation
departs from what is predicted by the proposal distribution (i.e. an outlier)
the number of useful particles may be reduced and the density approxima-
tion which holds asymptotically may be invalid. Even when the number of
effective particles is replenished in the resampling step, all the remaining
particles may stem from only a few “mother” particles and are therefore
unlikely to meaningfully approximate the true density. Owing to this fact
much work has been invested to develop better proposal distributions which,
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among many other approaches, has resulted in the auxiliary particle filter
Pitt and Shephard (1999). A broad overview of SMC methods can be found
in the review paper Cappé et al. (2007).

Another general approach to nonlinear filtering is the one initially described
by Bucy and Senne (1971) which uses a point mass representation of the
probability densities. The integration problem is viewed as a problem of
solving the partial differential equation that describes the time evolution of
the state probability density (Kolmogorov’s forward equation). At the time
of publication, however, the computational requirements of the approach
severely limited the practical use of the method, but in turn required the
authors to discuss ways of mitigating this difficulty. They considered “float-
ing” or adaptive finite difference grids which improved performance signifi-
cantly although not to the extent that the curse of dimensionality could be
overcome.

The method was “reinvented” by Kitagawa (1987) in a modern version
which, in addition to filtering, also presented smoothing, parameter esti-
mation and model selection via Akaike’s Information Criterion (AIC). In
Kitagawa’s approach the probability densities were represented by piece-
wise linear functions on a finite number of intervals thus approximating
(3) by a sum of a finite number of integrals. The results of the Kitagawa
(1987) publication lead to a supplementary discussion (see Journal of the
American Statistical Association, vol. 82, no. 400, 1987, p. 1041-1063) where
many questions and much criticism were raised about the method. The ma-
jority of the critique was directed towards the computational requirements
(and thereby limited practical use) of the method as compared to existing
methods for nonlinear time series analysis in particular for high dimensional
state-spaces. Kitagawa’s reply to this was that the specialized nature of the
alternative methods prohibited model selection thus leading to less flexible
methods as compared to the more general nonlinear modelling framework
he presented. Many authors have recognized that for state-spaces of dimen-
sion higher than four, point mass approaches (or similar discretization based
approaches) become impractical.

1.2 This text

The method presented in the present text is fundamentally very similar to
the point-mass approach (Kitagawa, 1987), but formulated in the frame-
work of hidden Markov models (HMMs) (Zucchini and MacDonald, 2009).
HMMs require that the state-space is finite and discrete. The SSM is defined
on a continuous infinite state-space and does therefore not fit immediately
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into the HMM framework, however in most cases a solution on a discretized
version of the continuous state-space will suffice as an approximation. The
advantage of this approach is that complex models become very easy to han-
dle with respect to filtering, smoothing, parameter estimation and optimal
state estimation (MAP estimation of the state). As with other discretization
methods it is limited to low-dimensional state-vectors.

The text is constructed as follows: Section 2 explains the method and
presents the equations regarding filtering, smoothing and parameter esti-
mation. Section 3 illustrates the method by considering a few examples
that are classical nonlinear problems in time series analysis. Section 4 dis-
cusses the presented method as compared to existing techniques and with
respect to computational requirements.

2 Method

Assume that the state-space is partitioned (typically uniformly) into m parts
such that {Ωi : i ∈ I}, where I = {1, 2, . . . ,m}. The probability distribution
of the state given the observations Xt is Pr(Ct ∈ Ωi|Xt) = φt(i) which are
collected in the row vector φt (see p. 46 in Zucchini and MacDonald (2009)).
The transition probability of jumping from Ωi to Ωj is

γij(t) = Pr(Ct+1 ∈ Ωj |Ct ∈ Ωi) =

∫
Ωj

pCt+1|Ct
(ct+1|Ct ∈ Ωi) dct+1. (5)

For a one-dimensional problem Ωi is an interval on the line, in two dimen-
sions Ωi is an area and analogously for higher dimensions. Note that the
m×m probability transition matrix Γt = {γij(t)} is not homogeneous, i.e.
the transition probabilities may change as a function of t as indicated by
(1).

2.1 Choosing the discretization

It is not immediately obvious how the discretization of the state-space should
be constructed as it depends on the problem at hand. However, some guide
lines can be given at least for simple problems. We have two different cases:
online analysis and offline analysis.

For online analysis we are interested in estimating the present and sometimes
also in predicting the future, but we are less interested in the past. For this
reason it usually advantageous to apply adaptive gridding of the state-space
that follows the data such that computational resources are focused in ares
of interest (this is not possible for offline analysis since adaptive gridding
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Figure 1: Probability of a jump (transition) from the state Ωi to the state Ωj

in the time interval from t to t+1 in an HMM. The shaded area corresponds
to the integral in (5).

complicates matters of smoothing, parameter estimation and MAP state es-
timation). Previous work concerning adaptive gridding includes Bucy and
Senne (1971); Challa and Bar-Shalom (2000); Šimandl et al. (2006). We will
not consider online analysis further in this text.

For offline analysis the whole data series is available before the analysis
is started, and we can define the grid using information from the data. In
the offline case we are typically interested in smoothing and MAP estimation
which prohibit the utility of adaptive gridding routines. The link between
ct and yt is established via the function b in (2) so we should inspect b−1

to find information about ct. In this respect we do not require that b is
a monotone function since we are only interested in assessing the domain
of c from the range of y. There exist unfortunate cases where b includes a
multiplicative noise term for which Pr(vt = 0) 6= 0, leading to the inverse
mapping ct = b−1(yt) being undefined (divide by zero) or the case where b
is periodic. For many practical cases b will, however, have a physical inter-
pretation where natural bounds on ct exist.

The resolution of the discretization (as determined by m) is another im-
portant issue that needs to be addressed before the HMM filter can be
applied. The value of m obviously influences the accuracy of the end result
and the choice of m therefore depends on the demanded accuracy. A rather
ad hoc but straightforward approach is to make an initial analysis using a
coarse grid and then gradually refine the grid until the required accuracy of
the results is attained. The upper limit of the resolution is usually defined
by the maximum allowed computing time of the problem which for high-
dimensional (> 4) state vector can be reached even for coarse grids and thus
render the HMM approach impractical.
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2.2 Approximating the integral

The integral in (5) can be readily calculated if a functional expression is
available for the cumulative distribution function of the transitions. If this
is not the case, (5) must be approximated numerically. To this end any
quadrature procedure as known from the literature can be employed. Speed,
however, must be prioritized since the integral must be computed m2 times
to construct Γt and for inhomogeneous models Γt must be reconstructed at
each time step. Typically for relatively fine grids a first order approximation
to the integral using the trapeziodal rule provides a sufficiently accurate
solution. We then get the following expression for the integral

∫
Ωj

pCt+1|Ct
(ct+1|Ct ∈ Ωi) dct+1 =

∆j

d

∑
c∈Sj

pCt+1|Ct
(c|Ct ∈ Ωi), (6)

where Sj is a set containing the edges of Ωj , d is the number of terms in
Sj and ∆j is the size of Ωj (i.e. interval length in 1D, area in 2D etc.). As
an example, in the case where the state is one-dimensional, Sj contains the
two end-points of the interval and thus d = 2.

2.3 The HMM filter

The filter iterates between time and data-update steps in a way similar to
the Kalman filter. The time-update and data-update step together become

φt =
φt−1ΓP(xt)

ψt
, where (7)

ψt = φt−1ΓP(xt)1
′. (8)

This step propagates the state probabilities forward in time (as in 3) and uses
Bayes’ rule to condition on the next observation, xt (as in 4). The state-
dependent distribution matrix (or equivalently the matrix containing the
likelihood of the observations) P(xt) is a diagonal matrix with the elements
pi(xt) in the diagonal (see p. 31 in Zucchini and MacDonald (2009)).

2.3.1 Initial distribution

Often when analysing SSMs it is unknown if it is reasonable to assume that
the underlying Markov chain is stationary. If stationarity cannot be assumed
the distribution at time t = 0 can be omitted. Instead, the first data point
can be used to calculate an estimate at t = 1:

φ1 =
1P(x1)

ψ1
.
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2.4 Likelihood estimation

The parameters of the SSM are gathered in the vector θ. The likelihood of
θ is the joint density of the observations

LT (θ) = p(XT |θ). (9)

Using Bayes’ rule it can be shown that ψt = p(xt|Xt−1,θ) and therefore it
follows that

LT (θ) =

T∏
t=1

ψt. (10)

The maximum likelihood parameter estimate of the model is

θ̂ = arg max
θ

L(θ), (11)

which can be found with numerical optimization as described in Chapter 3
in Zucchini and MacDonald (2009).

2.5 HMM smoother (local decoding)

To incorporate all observations in each state estimate, i.e. local decoding the
procedure using backward probabilities as described in Chapter 5 in Zuc-
chini and MacDonald (2009) can be followed.

An alternative way to calculate the state probabilities %t(i) = Pr(Ct =
i|X(T ) = x(T )) is termed the smoothing step in Kalman filtering terminology.
The smoothed state estimates are not only conditioned on data observed by
t but also on future measurements. The terms %t(i) are collected in the row
vector %t = (%t(1), . . . , %t(m)).

The smoothing procedure is as follows:

1. Compute the vector

ηt+1 = %t+1Υt+1, (12)

where Υt+1 is a diagonal matrix of size m × m with the following
elements in the diagonal 1/Pr(Ct+1 = i|Xt). These terms are known
from the HMM filter.

2. Multiply ηt+1 with the transposed transition matrix to step backwards
in time

ξt = ηt+1Γ
T
t . (13)
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3. Get the smoothed state estimate at t with the m × m matrix Ξ =
diag(ξt):

%t = φtΞt. (14)

The recursion is initiated with the last estimated distribution from the final
iteration of the forward filter, %T = φT which is also a smoothed estimate.

The proof of the above recursion is omitted here, but see Kitagawa (1987)
for a derivation of the general smoothing recursion.

2.6 Global decoding

Global decoding will not be covered in this text as the algorithm is described
in detail in Section 5.3.2 in Zucchini and MacDonald (2009). An alternative
reference is Viterbi (2006), which also provides some background for the
development of the algorithm.

2.7 Pseudo code

Here is pseudo code describing the structure of an implementation of the
HMM method for analysing state-space models. First for likelihood estima-
tion of parameters:

LOAD data

# Discretization of state-space (gridding)

DEFINE grid resolution

COMPUTE extent of grid

# Parameter estimation

likfun <- FUNCTION

{

INITIALIZE state vector

for t in 1:T

{

COMPUTE state-dependent distribution

COMPUTE transition matrix (eq. 5)

UPDATE state vector (eq. 7)

STORE normalisation constant (eq. 8)

}

COMPUTE likelihood value (eq. 10)

RETURN likelihood value

}

MAXIMISE likfun OVER parameters

With the estimated parameters then run the filter and the smoother.
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# Filter

INITIALIZE state vector

for t in 1:T

{

COMPUTE state-dependent distribution

COMPUTE transition matrix (eq. 5)

UPDATE state vector (eq. 7)

}

# Smoother

INITIALIZE smoothed state vector

for t in T:1

{

COMPUTE Upsilon

COMPUTE eta (eq. 12)

COMPUTE transition matrix (eq. 5)

COMPUTE xi (eq. 13)

UPDATE smoothed state vector (eq. 14)

}

Note that the filter uses the same procedure as was used in calculating the
likelihood function. Pseudo code using the forward and backward proba-
bilities is not shown here. Instead refer to the R scripts in Zucchini and
MacDonald (2009).

3 Examples

Here we present two examples: the benchmark example known from the
nonlinear time series literature and an ARCH (autoregressive conditional
heteroskedasticity) model which is essentially an example of a stochastic
volatility model.

3.1 A nonlinear time series model - state estimation

First we analyze a simple nonlinear time series model which is widespread
as a benchmark example in the SMC literature Kitagawa (1987); Gordon
et al. (1993); Cappé et al. (2007). The system and observation equations
are

Ct =
1

2
Ct−1 + 25

Ct−1

1 + C2
t−1

+ 8 cos(1.2t) + ut, (15)

Yt =
1

20
C2
t + vt (16)
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Figure 2: Simulated data from the nonlinear time series model. ct is the
unobserved state and yt is the observed data.

where ut and vt are Gaussian white noise processes with variances σ2
u = 10

and σ2
v = 1. This model is difficult to filter with ordinary methods because

the observation likelihood is bimodal owing to the squared term in the ob-
servation equation. For t = 1, . . . , T , T = 100 we simulated ct and generated
the observed yt with noise, see Figure 2.

In determining the domain of ct we considered

ct = b−1(xt, vt) = ±
√

20(xt − vt). (17)

We need to evaluate this expression for the values of xt and vt that result
in the extreme values of ct. For xt we define x̂t = max{x1, . . . , x100}. For vt
we choose the 99.99% quantile in the distribution of vt (in this case 3.719).
Inserting the extreme values of xt and vt in (17) we get

ct ∈ [−25.70; 25.70]. (18)

In this example we set m = 500 which is relatively fine, but not a problem
computationally since the state vector is one-dimensional.

The entries in the probability transition matrices are now easily computed
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Figure 3: Probability transition matrix for the nonlinear time series in ex-
ample 1, t = 100, m = 500.

Pr (Ct ∈ Ωj |Ct−1 ∈ Ωi) =

∫
Ωj

Npdf

(
ct, µ

(i)
t−1, σ

2
u

)
dct,

where

µ
(i)
t−1 =

1

2
c(i) + 25

c(i)

1 +
(
c(i)
)2 + 8 cos(1.2t)

and c(i) is the midpoint of Ωi and therefore Ωi = [c(i)− 1
2∆, c(i) + 1

2∆]. Using
the trapezoidal rule for integration we get the approximation

Pr (Ct ∈ Ωj |Ct−1 ∈ Ωi) ≈
∆

2

(
Npdf

(
c(j) − 1

2
∆, µ

(i)
t−1, σ

2
u

)
+Npdf

(
c(j) +

1

2
, µ

(i)
t−1, σ

2
u

))
.

Calculating all entries in Γt requires m(m + 1) evaluations of a univariate
Gaussian pdf which means that the computing effort scales with the square
of the number of grid cells. See Figure 3 for an illustration of the transition
matrix for t = 100.

We assume all the parameters in the model are known and run the filter
and smoothing routines, see Figure 4 for a plot of the resulting probability
distributions. From the plot it is clear that the smoothed estimates have
much narrower confidence limits because the density estimates are condi-
tioned on all available observations. The estimates shown in Figure 4 are
optimal conditional on the discretization and the quadrature procedure (in
this case trapeziodal rule). As m→∞ the HMM smoothed estimates con-
verge to the optimal smoothed estimates.
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Figure 4: Top panel: filtered density estimates, bottom panel: smoothed
density estimates. Since the smoothed estimates are conditional on all avail-
able data (including future values) they are more accurate than the filtered
estimates.

In this example with m = 500 and T = 100 the total computing time
for both filter and smoother was 11.29 seconds on the hms2 high-memory
server at DTU Informatics using Matlab 7.7 and one core. The vast majority
of the computing time was spent on evaluating the normal density (6.85 sec-
onds) and calculating the integrals (5) (3.674 seconds) for constructing Γt.
This time would have doubled had we used the cumulated density function
(cdf) for calculating integrals, since the cdf is more expensive to evaluate for
the Gaussian case (but not necessarily in general). Less than half a second
was spent on the actual filtering and smoothing recursions.

3.2 Stochastic volatility model - parameter estimation

We now consider a model which is part of the ARCH (autoregressive condi-
tional heteroskedasticity) class of models which are often used within econo-
metrics for modelling stochastic volatility. The aim of this example is to
estimate the parameters of the model by maximizing the likelihood returned
by the HMM filter as described above. The likelihood is optimized using
Matlab’s build-in optimizer fmincon. The model has previously been anal-
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ysed by Pitt and Shephard (1999); Doucet and Tadić (2003). Doucet and
Tadić (2003) presented a recursive maximum likelihood (RML) using par-
ticle filters which gave nice estimation results. Specifically, the model we
analyse in this example has the system equation

Ct = φCt−1 + σVt, C0 ∼ N
(

0,
σ2

1− φ2

)
(19)

and observation equation

Xt = β exp

(
Ct

2

)
Wt, (20)

where Vt ∼ N(0, 1) and Wt ∼ N(0, 1) are independent white noise se-
quences. We therefore have the parameter vector θ = (φ, σ, β) on the domain
Θ = (−1, 1)× (0, 100)× (0, 100). The fixed parameters used for simulation
were θ∗ = (0.8, 0.5, 1).

For this example the observation model does not provide information about
ct through b−1 since the noise term is multiplicative and Pr(Wt = 0) 6= 0.
Instead we inspect the system model itself to find reasonable bounds on
ct. From (19) it is clear that Ct ∼ N [0, σ2/(1 − φ2)]. In practice this does
not help us, however, since we do not know the values of σ and φ and the
variance of Ct is unbounded for |φ| = 1. In such a case we need to use
physical knowledge about the system. That knowledge is not available here
since this is a theoretical example so we use θ∗ to determine the bounds of
the discretized state domain. The 99.99% bounds correspond to the domain
ct ∈ [−3.10, 3.10].

We estimate the parameters for different values of m (see verbatim below) to
investigate the performance of the method and its convergence and behavior
as the grid becomes finer.

CONVERGENCE FOR INCREASING m

m = 100, T = 300

esttime = 60.8008

phi: [ 0.4411 0.7815 0.9253] True: 0.8

sigma: [ 0.2898 0.5192 0.9301] True: 0.5

beta: [ 1.0420 1.0928 1.1460] True: 1.0

m = 150, T = 300

esttime = 147.6289

phi: [ 0.3581 0.7768 0.9354] True: 0.8

sigma: [ 0.2641 0.5241 1.0401] True: 0.5

beta: [ 0.9880 1.0873 1.1966] True: 1.0

m = 200, T = 300

esttime = 229.5432

phi: [ 0.3699 0.7762 0.9333] True: 0.8
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sigma: [ 0.2699 0.5247 1.0201] True: 0.5

beta: [ 0.9519 1.0867 1.2405] True: 1.0

m = 300, T = 300

esttime = 488.7552

phi: [ 0.5649 0.7800 0.8958] True: 0.8

sigma: [ 0.3434 0.5207 0.7895] True: 0.5

beta: [ 1.0476 1.0911 1.1365] True: 1.0

m = 500, T = 300

esttime = 1.2447e+03

phi: [ 0.4349 0.7763 0.9225] True: 0.8

sigma: [ 0.3025 0.5247 0.9100] True: 0.5

beta: [ 1.0464 1.0868 1.1288] True: 1.0

The results show that the HMM method is capable of estimating the
model parameters somewhat reliably (in this example the true value of β is
outside the confidence bounds, but not by much) for m = 100 and T = 300
spending only a minute of computing time. In contrast Doucet and Tadić
(2003) had to run their model for T = 20000 with N = 10000 particles to
obtain steady estimates. Surprisingly, the confidence bands do not change
significantly as m increases and there is not a big difference for m = 100 as
compared to the case where m = 500.

4 Discussion

What is also the conclusion from previous discussions of the HMM method
or similar (Kitagawa, 1987) its greatest disadvantage is the increase in com-
puter resources required as the dimension of the state-space increases, i.e.
the method suffers from the curse of dimensionality. This cannot be eas-
ily overcome if at all. Several attempts have been made (Bucy and Senne,
1971; Šimandl et al., 2006), but these are typically very involved and make
evaluation of the estimation performance difficult. It is hard to evaluate if
the benefits of an adaptive gridding procedure outweighs the increased im-
plementation effort required, but we conjecture it does reduce the flexibility
of the HMM method because smoothing and parameters estimation are no
longer possible in general.

A few things can be done to reduce the computational requirements of the
HMM method. For inhomogeneous time series constructing the probabil-
ity transition matrix dominates the CPU usage and quick computation of
(5) should therefore be prioritized. For high dimensional state-spaces many
state transitions might be improbable leading to Γt having a sparse struc-
ture. It may therefore be advantageous to use sparse matrix routines to
avoid spending CPU time on transitions with zero probability.
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Unfortunately the authors of Doucet and Tadić (2003) do not comment
on the computational requirements of their estimation method, but they
do mention that “...our algorithm requires a substantial amount of data to
converge” which is probably because the estimation is recursive and there-
fore the filter is only run once. Also, the implementational complexity of
the RML using a particle filter seems extensive as compared to the HMM
approach. Moreover, the HMM method also computes an estimate of the
Hessian of the likelihood function which can be translated into estimates of
the covariance matrix of the estimates. This is highly convenient and not a
feature of the particle RML.

It is commonly asserted that the particle filter avoids the curse of dimen-
sionality. This can be true if one is interested in estimating the conditional
mean, median, quantiles etc. of the posterior distribution. These statistics
can be estimated empirically with the particle filter with computing time
scaling linearly with the number of state dimensions. However, if one is
interested in the full posterior density the computation time of the parti-
cle filter estimate is no longer linear in the state dimension. In such case
a kernel density estimation is required to obtain the posterior distribution.
This adds parameters to the estimation procedure, increased complexity and
indeed the requirement of a discrete grid to represent the distribution.
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