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Chapter 8 - Solutions to exercises

Exercises: 3, 5, 9

Exercise 3

We have that

vi(i, i xW) = Pr(X® =x, Gy =0,Cy = j),

for i,7 € {1,...,m} and t > 2, which are the forward probabilities for a
second-order HMM. We also use the following short-hand notation

u(i, j) = Pr(Cr—1 = i,Cy = j)
pz(l’t) = PI'(Xt = [L‘t|Ct = Z)
7(7;7.7.7 k) = Pr(Ct = k‘ct—l = j7 Ct—2 = Z)

Then
va(i, ;%W = (i, 5)pi(x1)p;(2).

a)

Using the above we get for ¢t > 3:

(Z thl(ia j; X(t_l))’Y(A j’ k)) pk($t)
i=1

= (Z PI‘(X(t_l) = X(t_l)7 Ct_g = i, Ct—l = ])Pr(Ct = k’Ct_l = j, Ct_Q = ’L)) PI“(Xt = xt\Ct = k‘)
=1

= (Z Pr(X(tfl) = X(t71)7 Cio=1,Ci_1 =j,C; = k)) Pr(X; = 2¢|Cy = k)
i=1

:PI‘(X(t_l) == X(t_l), Ct,1 == j, Ct == k?)PI‘(Xt == xt]C't == k‘)
=Pr(X" =x" ¢,y = j,Cr = k)
= (j, k;x)

b)
We have that

vr(i, 7;x1) = Pr(XT) = xD Cp_y = i,Cr = 7),

MWP, Compiled March 31, 2011 1



DTU
Interreg IVA
02433 - Hidden Markov Models § f(S). 72;

thus

c)

Calculating the likelihood involves calculating vp (i, j; X(T)) for all combina-
tions of i and j, i.e. m? times. Calculating v (i, 5; X(T)) requires a recursion
with T steps where each step is a sum of m terms. So, the total computa-
tional effort for calculating the likelihood is proportional to m?Tm = T'm3.
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Exercise 5

Assuming stationarity of the underlying Markov chain the following ingre-
dients are required to calculate the auto-correlation function

E(X) =) GE(X|Cr =)
B(X7?) =Y GE(X7|Cr =) =Y 6:;(Var(X|C, = i) + E(X|C, = i)?)

a)
We consider the case where the state dependent distributions are normal,
ie.

Xi|Cy =i ~ N(pi, 07).

The auto-covariance function is

Cov(Xt, Xitr) = E(Xe Xiyr) — E(X)E(X41)

m m m 2
= Z Z 0ivij (k) pips | — (Z 5mi>
=1

i=m j=m
= SAT* ' — (6p/)?,

where 8 = (61,...,0m), o = (11, .., i), A = diag(p1, ..., i), and T* is
the k-step transition probability matrix.

The auto-correlation function is then

COV(Xt, Xt+k)
Var(X;)

_ OATFY — (dp')?

C SAp + 80’ — (62

COI'I'(Xt, Xt+k) =

where o = (0%, ...,02,).
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b)
Now consider the case where the state dependent distributions are binomial,
i.e.

X¢|Cy =i ~ Bin(n, p;).

Note that the number of trials n is assumed to be known and constant over
7 and t.

The auto-covariance function is

COV(Xt, Xt+k) = E(XtXt—l—k) - E(Xt)E(Xt+k)

m m m 2
= Z Z 0ivij (k)npinp; | — (Z 5z‘npi>
i=1

i=m j=m

= n’[SAT"p' — (6p')?],

where p = (p1,...,pm), A = diag(p1,...,pm). So, the auto-correlation
function is

Cov(Xy, Xik)
Var(Xy)
B n?[6AT*p' — (6p)?)
~ n[dAp'(n —1) + &p' — n(dp')?]
B n[6AT*p' — (6p')?]
~ OAP'(n— 1)+ 6p —n(6p)?

Corr( Xy, X¢k) =
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Exercise 9
A Binomial-HMM {X;} has transition probability matrix

1/3 1/3 1/3
r=1{2/3 0 1/3
1/2 1/2 0

The state dependent distributions are Binomial with parameters 2 and
0/0.5/1 in the three states respectively.

To show that {X;} is an irreversible process we calculate Pr(X; = 0, Xy =
1) and Pr(X; = 0, X;41 = 1). First recall from page 18 in Zucchini09 that
8 = 35(15,9,8). Then

Pr(X; =0, X1 = 1) = §P(0)I'P(1)1’ = 0.078125,
Pr(X; =1, X,11 = 0) = §P(1)I'P(0)1’ = 0.09375.

Since the two probabilities are not equal the HMM is irreversible.

R-code:

G = rbind(c(1/3,1/3,1/3),c(2/3,0,1/3),c(1/2,1/2,0))
del = c(15,9,8)/32

n=2

PO
P1

diag(c(dbinom(0,n,0) ,dbinom(0,n,0.5) ,dbinom(0,n,1)))
diag(c(dbinom(1,n,0),dbinom(1,n,0.5),dbinom(1,n,1)))

sum(del %*% PO %x*% G %x*% P1)

sum(del %% P1 %x% G %x% PO)
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