
02433 - Hidden Markov Models

Chapter 8 - Solutions to exercises
Exercises: 3, 5, 9

Exercise 3

We have that

νt(i, j; x
(t)) = Pr(X(t) = x(t), Ct−1 = i, Ct = j),

for i, j ∈ {1, . . . ,m} and t ≥ 2, which are the forward probabilities for a
second-order HMM. We also use the following short-hand notation

u(i, j) = Pr(Ct−1 = i, Ct = j)

pi(xt) = Pr(Xt = xt|Ct = i)

γ(i, j, k) = Pr(Ct = k|Ct−1 = j, Ct−2 = i).

Then

ν2(i, j; x
(t)) = u(i, j)pi(x1)pj(x2).

a)

Using the above we get for t ≥ 3:

(
m∑
i=1

νt−1(i, j; x
(t−1))γ(i, j, k)

)
pk(xt)

=

(
m∑
i=1

Pr(X(t−1) = x(t−1), Ct−2 = i, Ct−1 = j)Pr(Ct = k|Ct−1 = j, Ct−2 = i)

)
Pr(Xt = xt|Ct = k)

=

(
m∑
i=1

Pr(X(t−1) = x(t−1), Ct−2 = i, Ct−1 = j, Ct = k)

)
Pr(Xt = xt|Ct = k)

=Pr(X(t−1) = x(t−1), Ct−1 = j, Ct = k)Pr(Xt = xt|Ct = k)

=Pr(X(t) = x(t), Ct−1 = j, Ct = k)

=νt(j, k; x(t))

b)

We have that

νT (i, j; x(T )) = Pr(X(T ) = x(T ), CT−1 = i, CT = j),
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thus

LT = Pr(X(T ) = x(T )) =
m∑
i=1

m∑
j=1

νT (i, j; x(T )).

c)

Calculating the likelihood involves calculating νT (i, j; x(T )) for all combina-
tions of i and j, i.e. m2 times. Calculating νT (i, j; x(T )) requires a recursion
with T steps where each step is a sum of m terms. So, the total computa-
tional effort for calculating the likelihood is proportional to m2Tm = Tm3.
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Exercise 5

Assuming stationarity of the underlying Markov chain the following ingre-
dients are required to calculate the auto-correlation function

E(Xt) =
m∑

i=m

δiE(Xt|Ct = i)

E(X2
t ) =

m∑
i=m

δiE(X2
t |Ct = i) =

m∑
i=m

δi(Var(Xt|Ct = i) + E(Xt|Ct = i)2)

Var(Xt) = E(X2
t )− (E(Xt))

2

E(XtXt+k) =

m∑
i=m

m∑
j=m

δiγij(k)E(Xt|Ct = i)E(Xt+k|Ct+k = j)

a)

We consider the case where the state dependent distributions are normal,
i.e.

Xt|Ct = i ∼ N(µi, σ
2
i ).

The auto-covariance function is

Cov(Xt, Xt+k) = E(XtXt+k)− E(Xt)E(Xt+k)

=

 m∑
i=m

m∑
j=m

δiγij(k)µiµj

−( m∑
i=1

δiµi

)2

= δΛΓkµ′ − (δµ′)2,

where δ = (δ1, . . . , δm), µ = (µ1, . . . , µm), Λ = diag(µ1, . . . , µm), and Γk is
the k-step transition probability matrix.

The auto-correlation function is then

Corr(Xt, Xt+k) =
Cov(Xt, Xt+k)

Var(Xt)

=
δΛΓkµ′ − (δµ′)2

δΛµ′ + δσ′ − (δµ′)2
,

where σ = (σ21, . . . , σ
2
m).
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b)

Now consider the case where the state dependent distributions are binomial,
i.e.

Xt|Ct = i ∼ Bin(n, pi).

Note that the number of trials n is assumed to be known and constant over
i and t.

The auto-covariance function is

Cov(Xt, Xt+k) = E(XtXt+k)− E(Xt)E(Xt+k)

=

 m∑
i=m

m∑
j=m

δiγij(k)npinpj

−( m∑
i=1

δinpi

)2

= n2[δΛΓkp′ − (δp′)2],

where p = (p1, . . . , pm), Λ = diag(p1, . . . , pm). So, the auto-correlation
function is

Corr(Xt, Xt+k) =
Cov(Xt, Xt+k)

Var(Xt)

=
n2[δΛΓkp′ − (δp′)2]

n[δΛp′(n− 1) + δp′ − n(δp′)2]

=
n[δΛΓkp′ − (δp′)2]

δΛp′(n− 1) + δp′ − n(δp′)2
.
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Exercise 9

A Binomial-HMM {Xt} has transition probability matrix

Γ =

1/3 1/3 1/3
2/3 0 1/3
1/2 1/2 0

 .

The state dependent distributions are Binomial with parameters 2 and
0/0.5/1 in the three states respectively.

To show that {Xt} is an irreversible process we calculate Pr(Xt = 0, Xt+1 =
1) and Pr(Xt = 0, Xt+1 = 1). First recall from page 18 in Zucchini09 that
δ = 1

32(15, 9, 8). Then

Pr(Xt = 0, Xt+1 = 1) = δP(0)ΓP(1)1′ = 0.078125,

Pr(Xt = 1, Xt+1 = 0) = δP(1)ΓP(0)1′ = 0.09375.

Since the two probabilities are not equal the HMM is irreversible.

R-code:

G = rbind(c(1/3,1/3,1/3),c(2/3,0,1/3),c(1/2,1/2,0))

del = c(15,9,8)/32

n = 2

P0 = diag(c(dbinom(0,n,0),dbinom(0,n,0.5),dbinom(0,n,1)))

P1 = diag(c(dbinom(1,n,0),dbinom(1,n,0.5),dbinom(1,n,1)))

sum(del %*% P0 %*% G %*% P1)

sum(del %*% P1 %*% G %*% P0)
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