

Chapter 8 - Solutions to exercises

Exercises: 3, 5, 9

Exercise 3

We have that

$$\nu_t(i, j; \mathbf{x}^{(t)}) = \Pr(\mathbf{X}^{(t)} = \mathbf{x}^{(t)}, C_{t-1} = i, C_t = j),$$

for $i, j \in \{1, ..., m\}$ and $t \geq 2$, which are the forward probabilities for a second-order HMM. We also use the following short-hand notation

$$u(i,j) = \Pr(C_{t-1} = i, C_t = j)$$

$$p_i(x_t) = \Pr(X_t = x_t | C_t = i)$$

$$\gamma(i,j,k) = \Pr(C_t = k | C_{t-1} = j, C_{t-2} = i).$$

Then

$$\nu_2(i, j; \mathbf{x}^{(t)}) = u(i, j)p_i(x_1)p_j(x_2).$$

a)

Using the above we get for $t \geq 3$:

$$\left(\sum_{i=1}^{m} \nu_{t-1}(i, j; \mathbf{x}^{(t-1)}) \gamma(i, j, k)\right) p_{k}(x_{t})$$

$$= \left(\sum_{i=1}^{m} \Pr(\mathbf{X}^{(t-1)} = \mathbf{x}^{(t-1)}, C_{t-2} = i, C_{t-1} = j) \Pr(C_{t} = k | C_{t-1} = j, C_{t-2} = i)\right) \Pr(X_{t} = x_{t} | C_{t} = k)$$

$$= \left(\sum_{i=1}^{m} \Pr(\mathbf{X}^{(t-1)} = \mathbf{x}^{(t-1)}, C_{t-2} = i, C_{t-1} = j, C_{t} = k)\right) \Pr(X_{t} = x_{t} | C_{t} = k)$$

$$= \Pr(\mathbf{X}^{(t-1)} = \mathbf{x}^{(t-1)}, C_{t-1} = j, C_{t} = k) \Pr(X_{t} = x_{t} | C_{t} = k)$$

$$= \Pr(\mathbf{X}^{(t)} = \mathbf{x}^{(t)}, C_{t-1} = j, C_{t} = k)$$

$$= \nu_{t}(j, k; \mathbf{x}^{(t)})$$

b)

We have that

$$\nu_T(i, j; \mathbf{x}^{(T)}) = \Pr(\mathbf{X}^{(T)} = \mathbf{x}^{(T)}, C_{T-1} = i, C_T = j),$$

thus

$$L_T = \Pr(\mathbf{X}^{(T)} = \mathbf{x}^{(T)}) = \sum_{i=1}^m \sum_{j=1}^m \nu_T(i, j; \mathbf{x}^{(T)}).$$

c)

Calculating the likelihood involves calculating $\nu_T(i,j;\mathbf{x}^{(T)})$ for all combinations of i and j, i.e. m^2 times. Calculating $\nu_T(i,j;\mathbf{x}^{(T)})$ requires a recursion with T steps where each step is a sum of m terms. So, the total computational effort for calculating the likelihood is proportional to $m^2Tm = Tm^3$.

Exercise 5

Assuming stationarity of the underlying Markov chain the following ingredients are required to calculate the auto-correlation function

$$E(X_t) = \sum_{i=m}^{m} \delta_i E(X_t | C_t = i)$$

$$E(X_t^2) = \sum_{i=m}^{m} \delta_i E(X_t^2 | C_t = i) = \sum_{i=m}^{m} \delta_i (Var(X_t | C_t = i) + E(X_t | C_t = i)^2)$$

$$Var(X_t) = E(X_t^2) - (E(X_t))^2$$

$$E(X_t | X_{t+k}) = \sum_{i=m}^{m} \sum_{j=m}^{m} \delta_i \gamma_{ij}(k) E(X_t | C_t = i) E(X_{t+k} | C_{t+k} = j)$$

a)

We consider the case where the state dependent distributions are normal, i.e.

$$X_t|C_t = i \sim N(\mu_i, \sigma_i^2).$$

The auto-covariance function is

$$Cov(X_t, X_{t+k}) = E(X_t X_{t+k}) - E(X_t) E(X_{t+k})$$

$$= \left(\sum_{i=m}^m \sum_{j=m}^m \delta_i \gamma_{ij}(k) \mu_i \mu_j\right) - \left(\sum_{i=1}^m \delta_i \mu_i\right)^2$$

$$= \delta \Lambda \Gamma^k \mu' - (\delta \mu')^2,$$

where $\boldsymbol{\delta} = (\delta_1, \dots, \delta_m)$, $\boldsymbol{\mu} = (\mu_1, \dots, \mu_m)$, $\boldsymbol{\Lambda} = \operatorname{diag}(\mu_1, \dots, \mu_m)$, and $\boldsymbol{\Gamma}^k$ is the k-step transition probability matrix.

The auto-correlation function is then

$$Corr(X_t, X_{t+k}) = \frac{Cov(X_t, X_{t+k})}{Var(X_t)}$$
$$= \frac{\delta \Lambda \Gamma^k \mu' - (\delta \mu')^2}{\delta \Lambda \mu' + \delta \sigma' - (\delta \mu')^2},$$

where $\boldsymbol{\sigma} = (\sigma_1^2, \dots, \sigma_m^2)$.

b)

Now consider the case where the state dependent distributions are binomial,

$$X_t|C_t = i \sim \text{Bin}(n, p_i).$$

Note that the number of trials n is assumed to be known and constant over i and t.

The auto-covariance function is

$$Cov(X_t, X_{t+k}) = E(X_t X_{t+k}) - E(X_t) E(X_{t+k})$$

$$= \left(\sum_{i=m}^m \sum_{j=m}^m \delta_i \gamma_{ij}(k) n p_i n p_j\right) - \left(\sum_{i=1}^m \delta_i n p_i\right)^2$$

$$= n^2 [\delta \Lambda \Gamma^k p' - (\delta p')^2],$$

where $\mathbf{p} = (p_1, \dots, p_m)$, $\mathbf{\Lambda} = \operatorname{diag}(p_1, \dots, p_m)$. So, the auto-correlation function is

$$\operatorname{Corr}(X_t, X_{t+k}) = \frac{\operatorname{Cov}(X_t, X_{t+k})}{\operatorname{Var}(X_t)}$$

$$= \frac{n^2 [\boldsymbol{\delta} \boldsymbol{\Lambda} \boldsymbol{\Gamma}^k \boldsymbol{p}' - (\boldsymbol{\delta} \boldsymbol{p}')^2]}{n[\boldsymbol{\delta} \boldsymbol{\Lambda} \boldsymbol{p}'(n-1) + \boldsymbol{\delta} \boldsymbol{p}' - n(\boldsymbol{\delta} \boldsymbol{p}')^2]}$$

$$= \frac{n[\boldsymbol{\delta} \boldsymbol{\Lambda} \boldsymbol{\Gamma}^k \boldsymbol{p}' - (\boldsymbol{\delta} \boldsymbol{p}')^2]}{\boldsymbol{\delta} \boldsymbol{\Lambda} \boldsymbol{p}'(n-1) + \boldsymbol{\delta} \boldsymbol{p}' - n(\boldsymbol{\delta} \boldsymbol{p}')^2}.$$

Exercise 9

A Binomial-HMM $\{X_t\}$ has transition probability matrix

$$\mathbf{\Gamma} = \begin{pmatrix} 1/3 & 1/3 & 1/3 \\ 2/3 & 0 & 1/3 \\ 1/2 & 1/2 & 0 \end{pmatrix}.$$

The state dependent distributions are Binomial with parameters 2 and 0/0.5/1 in the three states respectively.

To show that $\{X_t\}$ is an irreversible process we calculate $\Pr(X_t = 0, X_{t+1} = 1)$ and $\Pr(X_t = 0, X_{t+1} = 1)$. First recall from page 18 in Zucchini09 that $\delta = \frac{1}{32}(15, 9, 8)$. Then

$$\Pr(X_t = 0, X_{t+1} = 1) = \delta \mathbf{P}(0) \Gamma \mathbf{P}(1) \mathbf{1}' = 0.078125,$$

 $\Pr(X_t = 1, X_{t+1} = 0) = \delta \mathbf{P}(1) \Gamma \mathbf{P}(0) \mathbf{1}' = 0.09375.$

Since the two probabilities are not equal the HMM is irreversible.

R-code:

```
G = rbind(c(1/3,1/3,1/3),c(2/3,0,1/3),c(1/2,1/2,0))
del = c(15,9,8)/32

n = 2

P0 = diag(c(dbinom(0,n,0),dbinom(0,n,0.5),dbinom(0,n,1)))
P1 = diag(c(dbinom(1,n,0),dbinom(1,n,0.5),dbinom(1,n,1)))
sum(del %*% P0 %*% G %*% P1)
sum(del %*% P1 %*% G %*% P0)
```