
02433 - Hidden Markov Models

Chapter 5 - Solutions to exercises
Exercises: 1,4,6

Exercise 1

For t = 2, 3, . . . , T , i = 1, 2, . . . ,m we have the following recursion

ξtj = {max
i

(ξt−1,i γij)}pj(xt).

For t = 1:
ξ1i = Pr(C1 = i,X1 = x1) = δipi(x1).

For t = 2:

ξ2j = max
i

Pr(C1 = i, C2 = j,X1 = x1, X2 = x2)

= max
i

Pr(C2 = j,X2 = x2|C1 = i,X1 = x1)Pr(C1 = i,X1 = x1)

= max
i

Pr(C2 = j,X2 = x2|C1 = i)ξ1i

= max
i

Pr(X2 = x2|C2 = j, C1 = i)Pr(C2 = j|C1 = i)ξ1i

= {max
i
ξ1iPr(C2 = j|C1 = i)}Pr(X2 = x2|C2 = j)

= {max
i

(ξ1i γij)}pj(x2).

Following this principle this can be analogously extended to hold for all
t ∈ {1, . . . , T}.
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Exercise 4

We have two Poisson-HMMs with equal probability transition matrix

Γ =

 0.8 0.1 0.1
0.1 0.8 0.1
0.1 0.1 0.8

 ,

and λ1 = (10, 20, 30) and λ2 = (15, 20, 25) respectively. Generate two se-
quences of length 1000 (with same seed) and estimate the underlying state
sequence for both sequences with the Viterbi algorithm.

a)

Note that there is an error in pois.HMM.local decoding in A2.txt in Zuc-
chini09. For a function that works see the final page of the supplementary
slides for chapter 5.

# Chapter 5, R-code for exercise 4, mwp 1/2-2011

source("A2.txt")

statdist <- function(gamma){

m = dim(gamma)[1]

matrix(1,1,m) %*% solve(diag(1,m) - gamma + matrix(1,m,m))

}

m = 3

gamma = rbind(c(0.8,0.1,0.1),c(0.1,0.8,0.1),c(0.1,0.1,0.8))

delta = statdist(gamma)

lambda1 = c(10,20,30)

lambda2 = c(15,20,25)

n = 1000

# Generate hidden state sequence

mvect <- 1:m

state <- numeric(n)

state[1] <- sample(mvect,1,prob=delta)

for (i in 2:n){

state[i]<-sample(mvect,1,prob=gamma[state[i-1],])

}

r <- .Random.seed # Store the random seed

x1 <- rpois(n,lambda=lambda1[state]) # Generate data for lambda1

.Random.seed <- r # Restore the random seed to make data comparable

x2 <- rpois(n,lambda=lambda2[state]) # Generate data for lambda2

# Calculate the most probable state sequences for lambda1 and lambda2

global1 <- pois.HMM.viterbi(x1,m,lambda1,gamma,delta)

global2 <- pois.HMM.viterbi(x1,m,lambda2,gamma,delta)
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b)

Comparing the decoded states with the true states we observe the following
number of wrongly classified states:

> n-sum(state == global1)

[1] 72

> n-sum(state == global2)

[1] 173

c)

From the above results we conclude that it is easier for the Viterbi algorithm
to distinguish between states the more different the parameter values are in
the states. In case 1 there is a larger difference between the λ’s than in case
2, and therefore did we see fewer wrongly classified states in case 1. This is
also intuitively clear from the below figure.
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Exercise 6

We have that

Γh(j, i) = Pr(Ct+h = i|Ct = j),

and that

αT (j) = Pr(X(T ) = x(T ), CT = j).

Then

αTΓh(, i)

LT
=

1

LT

∑
j

αT (j)Γh(j, i)

=
1

Pr(X(T ) = x(T ))

∑
j

Pr(X(T ) = x(T ), CT = j)Pr(CT+h = i|CT = j)

=
1

Pr(X(T ) = x(T ))

∑
j

Pr(X(T ) = x(T ), CT = j, CT+h = i)

=
Pr(X(T ) = x(T ), CT+h = i)

Pr(X(T ) = x(T ))

= Pr(CT+h = i|X(T ) = x(T )).
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