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Recall: US major earthquake count
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We observe:

I Left figure: Data show overdispersion, which can be captured by an
independent mixture model.

I Right figure: Autocorrelation function for earth quake data shows serial
dependence between observations. This dependence can be modelled
with a Markov process.

An HMM is a dependent mixture model where the dependence between the
mixtures is modelled by a Markov process.
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Hidden Markov model: Definition

A hidden Markov model {Xt : t ∈ N} is a dependent mixture where

Pr(Ct = i |C(t−1)) = Pr(Ct = i |Ct−1), t = 2, 3, . . .

Pr(Xt = x |X(t−1),C(t)) = Pr(Xt = x |Ct), t ∈ N,

where {Ct : t = 1, 2, . . .} is the unobserved (hidden) parameter process, and
{Xt : t = 1, 2, . . .} is the state-dependent process. When Ct is known the
distribution of Xt only depends on Ct as shown in the directed graph above.
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Hidden Markov model: Notation

{Xt} is an m-state HMM if the Markov chain {Ct} has m states.

When dealing with discrete observations, we define

pi (x) = Pr(Xt = x |Ct = i), i = 1, 2, . . . ,m,

as the state-dependent distributions, which is interpreted as the probability of
the observation at time t conditional on the state Ct .

In the continuous case pi is a probability density function instead of probability
distribution function.

Also define
ui (t) = Pr(Ct = i), t = 1, . . . ,T ,

which is simply the probability of the state being in i at time t.
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Marginal distributions (I)

The marginal distribution Pr(Xt = x) of the observation Xt is often of interest.
This can be calculated from the distribution of the hidden state and the
state-dependent distribution:

Pr(Xt = x) =
m∑
i=1

Pr(Ct = i)Pr(Xt = x |Ct = i) =
m∑
i=1

ui (t)pi (x)

= (u1(t), . . . , um(t))

 p1(x) 0
. . .

0 pm(x)


 1

...
1


= u(t)P(x)1′

The result is written in a compact matrix-vector notation which will be used
heavily throughout the course. Still u(t) is the distribution of the hidden state,
and P(x) is the state-dependent distribution of the observation.
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Marginal distributions (II)

Using the properties of the probability transition matrix Γ we have
u(t) = u(1)Γt−1. It therefore follows that

Pr(Xt = x) = u(1)Γt−1P(x)1′,

which holds if the Markov chain is homogeneous, but not necessarily stationary.

For a stationary Markov chain with stationary distribution δ we get

Pr(Xt = x) = δP(x)1′,

since δΓt−1 = δ for all t ∈ n.
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Parents and Conditional independence

In any directed graphical model the joint distribution of a set of random
variables Vi is

Pr(V1,V2, . . . ,Vn) =
n∏

i=1

Pr(Vi |pa(Vi )),

where pa(Vi ) are the “parents” of Vi . For the directed graph on page 3 we
have e.g. that pa(C2) = {C1} and that pa(X2) = {C2}. Thus, that parents of a
random variable A, say, are the variables that influence the distribution of A.

Conditional independence
Definition: If for a random variable A it holds that
Pr(A = a|B,C) = Pr(A = a|B), then A is said to be conditional independent of
C given B. This is an important property influencing the random variables in a
directed graph. For example in the figure on page 3 it holds that Xt are
conditional independent of X1, . . . ,Xt−1,Xt+1, . . . given Ct for all t. For the
hidden state it holds that Ct+1 is conditional independent of C1, . . . ,Ct−1 given
Ct . So, by conditioning on the parents of a random variable it is independent of
everything else.
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Marginal multivariate distributions (I)

Consider the four random variables Xt , Xt+k , Ct , and Ct+k with dependency
relations as specified by the directed graph on page 3. Using conditional
independence we have

Pr(Xt = v ,Xt+k = w) =
m∑
i=1

m∑
j=1

Pr(Xt = v ,Xt+k = w ,Ct = i ,Ct+k = j)

=
m∑
i=1

m∑
j=1

Pr(Ct = i)pi (v)Pr(Ct+k = j |Ct = i)pj(w)

=
m∑
i=1

m∑
j=1

ui (t)pi (v)γij(k)pj(w),

recall that γij(k) are the elements of the transition probability matrix Γ(k).
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Marginal multivariate distributions (II)

The expression on the previous page can be formulated using matrix notation

Pr(Xt = v ,Xt+k = w) = u(t)P(v)ΓkP(w)1′.

If the chain is stationary, this reduces to

Pr(Xt = v ,Xt+k = w) = δP(v)ΓkP(w)1′.

The above can be generalised to higher order distributions. For example a
trivariate distribution

Pr(Xt = v ,Xt+k = w ,Xt+k+l = z) = δP(v)ΓkP(w)ΓlP(z)1′.

This generalisation is an important property of HMMs.
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The likelihood in general

The likelihood of a set of observations X(T ) = (X1,X2, . . . ,XT ) given the
parameters of an HMM is

LT = Pr(X(T ) = x(T )|model)

= δP(x1)ΓP(x2) · · ·ΓP(xT )1′.

The proof is shown on page 37-38 in Zucchini09. The expression is derived
using the conditional independence of the HMM, which allows a recursive
calculation of the joint probability of the observations.

Note that since this is a joint probability calculated by multiplying a (possibly)
large number of terms, there is a risk that the likelihood value will lead to
numerical over- or underflow (a remedy for this is considered in chapter 3).
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Recursive algorithm for the likelihood

Define the forward probability vector

αt = δP(x1)ΓP(x2) · · ·ΓP(xt).

We will elaborate further on the function of αt in chapter 4.

Using αt the likelihood can be calculated recursively:

α1 = δP(x1)

αt = αt−1ΓP(xt) for t = 2, 3, . . . ,T

LT = αT1
′

The complexity of the calculation is Tm2 since it consists of T vector-matrix
multiplications each having complexity m2.
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Likelihood with missing data

In practice it is often the case that data do not arrive at uniform intervals in
time. This case we say we have missing data. For example, the dataset
(x1, x2, x4, x7, x8, . . . , xT ) has data missing at times t = 3, 5, 6.

Fortunately it is straightforward to compute the likelihood under missing data.
For example consider the dataset (x1, x3) where the second observation is
missing:

Pr(X1 = x1,X3 = x3) =
∑

δC1pC1(x1)γC1,C3(2)pC3(x3),

where γij(k) is a k-step transition probability, and the sum is taken over c1 and
c3.

In the other case where x3, x5 and x6 are missing the likelihood is in matrix
form written as

L
−(3,5,6)
T = δP(x1)ΓP(x2)Γ2P(x4)Γ3P(x7) . . .ΓP(xT )1′.
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Exercises

1,2,6,9,11
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