
02433 - Hidden Markov Models

Chapter 1 - Solutions to exercises
Exercises: 3,6,8,10,(12,15).

Exercise 3

# Chapter 1, R-code for exercise 3, mwp 21/1-2011

# Define model values for a 3-state mixture model

m = 3

la1 = 1

la2 = 3

la3 = 7

del = matrix(0,1,m-1)

del[1] = 0.5

del[2] = 0.2

del[3] = 1 - (del[1]+del[2])

cd = cumsum(del)

# Generate random data for a m mixture model

N = 100 # number of data points

unifvec = runif(N)

d1 = rpois(sum(unifvec < cd[1]),la1)

d2 = rpois(sum(unifvec > cd[1] & unifvec < cd[2]),la2)

d3 = rpois(sum(unifvec > cd[2]),la3)

data = c(d1,d2,d3) # Data vector

# Functions for parameter transformation

logit <- function(vec) log(vec/(1-sum(vec)))

invlogit <- function(vec) exp(vec)/(1+sum(exp(vec)))

# Make function for the negative log-likelihood

f <- function(PAR) {

M = length(PAR)

m = ceiling(M/2)

LA = exp(PAR[1:m]) # transform lambdas

DELs = invlogit(PAR[(m+1):M]) # transform deltas

DEL = c(DELs,1-sum(DELs))

# Equation (1.1) on p. 9

L = DEL[1]*dpois(data,LA[1])

for(i in 2:m){

L = L+DEL[i]*dpois(data,LA[i])

}

-sum(log(L))

}

# Define starting guess for optimization

par = c(2,4,7,0.5,0.2)

PAR = par

PAR[1:3] = log(par[1:3])

PAR[4:5] = logit(par[4:5])

# Optimize using nlm
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res = nlm(f,PAR)

# Back transform results

lambdas = exp(res$estimate[1:3])

deltas = invlogit(res$estimate[4:5])
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Exercise 6

Γ =

(
γ11 γ12
γ21 γ22

)
, δ = (δ1, δ2)

a)

Stationarity implies

δΓ = δ

⇔
δ1γ11 + δ2γ21 = δ1

δ1γ21 + δ2γ22 = δ2

The stationary distribution is found by replacing one of the equations in the
system with

∑
i δi = 1 and then solving for δ. So, we have

δ1γ11 + δ2γ21 = δ1,

δ1 + δ2 = 1,

and therefore

δ1 =
γ21

γ12 + γ21
,

δ2 =
γ12

γ12 + γ21
.

b)

Now consider

Γ =

(
0.9 0.1
0.2 0.8

)
.

The two sequences have the respective probabilities:

Pr(Seq 1) = γ11γ11γ12γ22γ21 = 0.01296

Pr(Seq 2) = γ21γ11γ12γ21γ11 = 0.0396

The sequences have different probabilities because they consist of differ-
ent transitions between the states of the Markov process. In other words:
the ordering of the sequences matters, i.e. the numbers in the sequences are
not independent!
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Exercise 8

a)

We have

δ(BIm − Γ + BU) = B1

δ − δΓ︸ ︷︷ ︸
A

+ δBU︸ ︷︷ ︸
B

= B1

Term A is zero if δ is invariant under multiplication with Γ, and term B
equals B1 if δ is a probability distribution (i.e. if the elements of δ sum
to one). So, if these two requirements are fulfilled then δ is the stationary
distribution related to Γ.

b)

# Chapter 1, R-code for exercise 8, mwp 21/1-2011

# Calculate the stationary distribution using formula on p. 19

statdist <- function(gamma){

m = dim(gamma)[1]

matrix(1,1,m) %*% solve(diag(1,m) - gamma + matrix(1,m,m))

}

c)

The results for the five cases are shown below:

# i

> statdist(i)

[,1] [,2] [,3]

[1,] 0.4761905 0.2380952 0.2857143

# ii

> statdist(ii)

[,1] [,2] [,3]

[1,] 0.1666667 0.5 0.3333333

# iii

> statdist(iii)

[,1] [,2] [,3] [,4]

[1,] 0.3235294 0.2941176 0.1764706 0.2058824

# iv

> statdist(iv)

[,1] [,2] [,3] [,4]
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[1,] 0 -5.551115e-17 0.4 0.6

# v

> statdist(v)

Error in solve.default(diag(1, m) - gamma + matrix(1, m, m)) :

Lapack routine dgesv: system is exactly singular

Note for case iv that state 1 and 2 are transient, i.e. they are assigned
zero probability in the stationary distribution. States that are not transient
are called persistent (or recurrent). No stationary distribution exists in case
v since the chain has two absorbing states (state 1 and state 4), i.e. states
that the chain can never leave.

MWP, Compiled February 10, 2011 5



02433 - Hidden Markov Models

Exercise 10

Define Bv = (1, 2, . . . ,m) and BV = diag(1, 2, . . . ,m). Recall that γij =
Pr(Ct+1|Ct), Γ = {γij}, and that δi = Pr(Ct = i) for all t if the Markov
chain is stationary. We have

Cov(Ct, Ct+k) = E[CtCt+k]− E[Ct]E[Ct+k].

The second term is

E[Ct]E[Ct+k] =

[
m∑
i=1

iPr(Ct = i)

] m∑
j=1

iPr(Ct+k = j)


= δBv′δBv′

= (δBv′)2.

The first term is

E[CtCt+k] =
m∑
i=1

m∑
j=1

ijPr(Ct = i, Ct+k = j)

=
m∑
i=1

m∑
j=1

ijPr(Ct+k = j|Ct = i)Pr(Ct = i)

=

m∑
i=1

iPr(Ct = i)

m∑
j=1

jPr(Ct+k = j|Ct = i)

=

m∑
i=1

iPr(Ct = i)ΓkBv′

= δBV ΓkBv′.

Thus

Cov(Ct, Ct+k) = δBV ΓkBv′ − (δBv′)2.
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