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Hidden Markov Models (HMMs)

Informal Definition: Models in which the distribution generating observations
depends on an unobserved Markov process.

Common applications:

I Speech recognition (Rabiner, 1989).

I Bioinformatics (Krogh and Brown, 1994).

I Environmental processes (Lu and Berliner, 1999).

I Econometrics (Rydén et al., 1998).

I Image processing and computer vision (Li et al., 2002).

I Animal behaviour (Patterson et al., 2009; Zucchini et al., 2008).

I Wind power forecasting (Pinson and Madsen, accepted).
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Available HMM books

General textbooks:
I Zucchini, W. and I. MacDonald. 2009. Hidden Markov Models for Time Series. Chapman & Hall/CRC,

London.

I MacDonald, I. and W. Zucchini. 1997. Hidden Markov and other models for discrete-valued time series.
CRC Press.

I Cappe, O., E. Moulines, and T. Ryden. 2005. Inference in hidden Markov models. Springer Verlag.

Specialised textbooks:
I Elliott, R., L. Aggoun, and J. Moore. 1995. Hidden Markov models: estimation and control. Springer.

I Li, J. and R. Gray. 2000. Image segmentation and compression using hidden Markov models. Kluwer
Academic Publishers.

I Koski, T. 2001. Hidden Markov models for bioinformatics. Springer Netherlands.

I Durbin, R. 1998. Biological sequence analysis: probabilistic models of proteins and nucleic acids.
Cambridge Univ Pr.

I Bunke, H. and T. Caelli, 2001. Hidden Markov Models Applications in Computer Vision, Series in Machine
Perception and Artificial Intelligence, vol. 45.

I Bhar, R. and S. Hamori. 2004. Hidden Markov models: applications to financial economics. Kluwer
Academic Pub.
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Example: US major earthquake count

Possible assumption: Earthquake counts (X ) within a year are Poisson
distributed.
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From data we observe:

I Overdispersion: E(X ) = 19.36 6= Var(X ) = 51.57, i.e. the property of the
Poisson distribution that the mean equals the variance is not fulfilled.

I Serial dependence (nonzero autocorrelation): ρ(Xt ,Xt−1) = 0.57.

HMMs can account for these features (and more).
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Independent Mixture Models

An independent mixture model consists of m <∞ component distributions
with probability functions pi for i ∈ {1, . . . ,m} and a “mixing distribution”.
The mixing is performed by a discrete random variable C :

C =



1 with probability δ1

...
...

i with probability δi
...

...

m with probability δm = 1−
∑m−1

i=1 δi

,

Thus Pr(C = i) = δi must obey 0 < δi < 1 and that
∑m

i=1 δi = 1.
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Moments of Mixture Models

For a discrete random variable X described by a mixture model consisting of m
components it holds that:

p(X ) =
m∑
i=1

δipi (X ) =⇒ Pr(X = x) =
m∑
i=1

Pr(X = x |C = i)Pr(C = i).

Hence, letting Yi denote the random variable with probability function pi

E(X ) =
m∑
i=1

Pr(C = i)E(X |C = i) =
m∑
i=1

δiE(Yi )

and

Var(X ) =
m∑
i=1

δi [Var(Yi ) +
m∑

j=i+1

δj(E(Yi )− E(Yj))2].
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Parameter estimation

ML estimation of mixture distribution is done my maximizing the combined
likelihood of the components:

L(θ1, . . . , θm, δ1, . . . , δm|x1, . . . , xn) =
n∏

j=1

m∑
i=1

δipi (xj , θi ),

where θ1, . . . , θm are the parameter vectors of the component distributions, and
x1, . . . , xn are the n observations from the system. Difficult to find the
maximum analytically. Instead maximize numerically, e.g. using the flexmix

package in R.
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Parameter estimation of a Poisson mixture

Consider a mixture of m Poisson components. Independent parameters are
λ1, . . . , λm and δ1, . . . , δm−1 leading to the likelihood function:

L(λ1, . . . , λm, δ1, . . . , δm−1|x1, . . . , xn)

=
n∏

j=1

[
m−1∑
i=1

(
δi
λ
xj
i e
−λi

xj !

)
+ (1−

m−1∑
i=1

δi )
λ
xj
me
−λm

xj !

]
.

Since the parameters have to fulfill
∑

i δi = 1, δi > 0 and λi > 0 for all i we
reparameterize (or transform) by

Log-transformation ηi = log λi , i = 1, . . . ,m

Logit-transformation τi = log

(
δi

1−
∑m

j=2 δj

)
i = 2, . . . ,m

Then the likelihood can be maximized using the transformed parameters.
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Parameter estimation of a Poisson mixture

Once the likelihood is maximized the original parameters can be recovered by a
back transformation:

exp-transformation λi = eηi , i = 1, . . . ,m

inverse logit δi =
eτi

1 +
∑m

j=2 e
τj
, i = 2, . . . ,m

and finally δ1 = 1−
∑m

j=2 δj .
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Example: US major earthquake count

Recall the earthquake data from slide 4. Four Poisson mixture models are fitted
to the data for m = 1, . . . , 4. The resulting mixture distributions (with
maximum likelihood values) are shown below. It is evident from the graphs
(and from the likelihoods) that the difference between the m = 3 and m = 4
models is minimal.

0 10 20 30 40

0
.0

0
0

.0
2

0
.0

4
0

.0
6

0
.0

8
0

.1
0

Count

D
e

n
s
it
y

m= 1 L= 391.9

m= 2 L= 360.4

m= 3 L= 356.8

m= 4 L= 356.7
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Estimation of mixtures of continuous distributions
Issue with unbounded likelihood

In estimation of mixtures of continuous distributions the likelihood is calculated
from probability density functions instead of probability distributions. Thus, the
likelihood can become unbounded in the vicinity of certain parameter
combinations. For example in mixtures of normal distributions, if a variance
parameter in the maximization process shrinks toward zero the density value at
the mean goes to infinity thus ruining the estimation. This can be prevented by
discretisizing the density (or equivalently the likelihood) and integrating over
the small intervals [aj , bj ]:

L =
n∏

j=1

m∑
i=1

δi

∫ bj

aj

pi (x , θi )dx

where aj and bj are the upper and lower bounds respectively of the jth interval
out of n intervals in total.
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Markov Chains

Definition: A sequence of discrete random variables {Ct : t ∈ N} is said to be a
(discrete time) Markov chain (MC) if for all t ∈ N it satisfies the Markov
property: Pr(Ct+1|Ct , . . . ,C1) = Pr(Ct+1|Ct), i.e. that the future of the chain is
independent of the past conditional on the present.

Important quantities and aspects related to MCs:

I Transition probabilities: γij(t) = Pr(Cs+t = j |Cs = i)

I Homogeneity: γij(t) = Pr(Cs+t = j |Cs = i) is independent of s

I Transition probability matrix: Γ(t) =

 γ11(t) · · · γ1m(t)
...

. . .
...

γm1(t) · · · γmm(t)


I Chapman-Kolmogorov equations: Γ(t + u) = Γ(t)Γ(u)

I Short-hand for the one-step transition probability matrix: Γ = Γ(1).
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Markov Chains

More definitions related to MCs:

I The distribution of Ct at index t (where t typically is time) is contained
in the row vector: u(t) = (Pr(Ct = 1), . . . ,Pr(Ct = m)).

I The evolution in time of u(t) is described by Γ(t) in that
u(t + s) = u(t)Γ(s).

I The stationary distribution of a Markov chain is δ if δΓ(s) = δ for all
s ≤ 0, and δ1′ = 1. The stationary distribution can be found either by
solving δ(Im − Γ + U) = 1, where U is a m ×m matrix of ones, or by
substituting one of the equations in δΓ = δ with

∑
i δi = 1.

I Reversibility: A random process is said to be reversible if its
finite-dimensional distributions are invariant under reversal of time. A
stationary irreducible Markov chain satisfying the “detailed balance”
equations, δiγij = δjγji is reversible. ∀i , j
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Autocorrelation function of an MC

Define the vector v = (1, 2, . . . ,m) and the matrix V = diag(1, 2, . . . ,m).
Then for all integers k > 0

Cov(Ct ,Ct+k) = δVΓkv′ − (δv′)2.

Now, Γ = UΩU−1, where Ω = diag(1, ω2, ω3, . . . , ωm) and the columns of U
are corresponding right eigenvectors of Γ. Then

Cov(Ct ,Ct+k) = δVU︸ ︷︷ ︸
a

Ωk U−1v′︸ ︷︷ ︸
b

−(δv′)2 = aΩkb′ − a1b1 =
m∑
i=2

aibiω
k
i .

This implies that Var(Ct) =
∑m

i=2 aibi , and therefore that the autocorrelation
function is:

ρ(k) = Corr(Ct ,Ct+k) =

∑m
i=2 aibiω

k
i∑m

i=2 aibi
.

Note that the ρ(k) is calculated only based on Γ and known quantities.
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Estimating transition probabilities

A realization of a Markov chain with three state could read:

2332111112 3132332122 3232332222 3132332212 3232132232
3132332223 3232331232 3232331222 3232132123 3132332121

A matrix F of transition counts is

F =

 4 7 6
8 10 24
6 24 10


where fij denotes the number of transitions from i to j .
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Estimating transition probabilities

An estimate of Γ intuitively found to be

Γ =

 4/17 7/17 6/17
8/42 10/42 24/42
6/40 24/40 10/40


by letting

γii =
fii∑m
j=1 fij

and γij =
fijγii
fii

=
fij∑m
j=1 fij

It can be shown that this is equivalent to the maximum likelihood estimate of
the transition probability matrix (see p. 21 in Zucchini09 for the proof).
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Probability rules important for this course (1/2)

Joint probability

Pr(A,B) = Pr(A|B)Pr(B) = Pr(B|A)Pr(A).

Bayes’ rule

Pr(A|B) = Pr(B|A)
Pr(A)

Pr(B)
.

For disjoint events B1, . . . ,Bm then

Pr(A) =
m∑
i=1

Pr(A,Bi ) =
m∑
i=1

Pr(A|Bi )Pr(Bi ). (marginalization)

If A and C are conditional independent given B then

Pr(A|B) = Pr(A|B,C).
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Probability rules important for this course (2/2)

Define A ∈ {1, . . . , i , . . . ,m} and B ∈ {1, . . . , j , . . . , n}.
Expectations

E(A) =
m∑
i=1

iPr(A = i)

E(Ak) =
m∑
i=1

ikPr(A = i),

E(AB) =
m∑
i=1

n∑
j=1

ijPr(A = i ,B = j) =
m∑
i=1

n∑
j=1

ijPr(A = i |B = j)Pr(B = j).

Variance

Var(A) = E(A2)− [E(A)2].

Covariance

Cov(A,B) = E(AB)− E(A)E(B)
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Exercises

3,6,8,10,(12,15)
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