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Asymptotic  Behavior of the Extended  Kalman 
Filter as a Parameter  Estimator 

for Linear Systems 

Absrmcr-me extended galman filter is an approximate Nter for 
nonlinear  systems, based on first-order linearization. Its rrse for the wit 
parameter and state estimation problem for linear systems with uuknom 
parameters is well known and widely spread. H q e  a convergence 
of this method is given.  It is shown that in general, the estimates may be 
biased or divergent and the caw for this are displayed. Some common 
special cases where convergence is gnaranteed are also given. The analysis 
gives insight in@ the convergence  mechanisms and it is shown that with a 
modification of the algorithm, global convergence results can be obtained 
for a general case. The scheme can then be mterpreted as mrudmization of 
the likelihood function for the estimation problem, or as a  reun-sive 
prediction  error algorithm. 

I. INTRODUCTION 

N ONLINEAR filtering is an important and well- 
studied field of estimation and control theory. Many 

different approaches have  been  taken, among which  per- 
haps the extended Kalman filter (EKF) is the best-known 
one. It is based on linearization of the state equations at 
each  time step and  on the use of linear estimation theory 
(the Kalman filter). 

A description of the EKF is  given  in Jazwinski [ 1, 
Theorem 8.11, and for future reference we shall  im- 
mediately  give a brief account of the algorithm. Let the 
nonlinear, discrete-time  system be given  by 

5(t+l)=f(t,5(t))+w(t) 
A t ) =  h( t , t ( t ) )  + 4f). (1.1) 

The EKF estimate of the state E(t +!), based upon 
observations y(0); ' ,y(t) is denoted by ((I+ 1) and ob- 
tained recursively by 

io+ l)=f(t,i(t))+N(t)[y(t)-h(t,i(r))] (1.2) 

where N ( t )  is  given  by 
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In [l] this algorithm is given for a continuous-time 
system with discrete-time measurements. Different 
variants with  relinearizations made iteratively  within each 
recursion are also discussed. A very  simple and  natural 
feature is to make the recursion  (1.2) in two steps as a 
measurement update and a time update  and  to make a 
relinearization in between.  While  such features may have 
a major influence on transient behavior and effective 
convergence rate of the algorithm, they  will not effect the 
convergence  results to be discussed here, and hence we 
shall not have to go into detail with  them. 

Recursive identification algorithms for dynamic systems 
is another topic of considerable current interest, cf. 121- 
[4]. Most  suggested algorithms of this kind  seem to have 
their  origins in some  off-line identification procedure or to 
be  based on stochastic approximation considerations. The 
joint state and parameter estimation problem can of 
course be understood as a state estimation problem for a 
nonlinear system. In general there is not much to  be 
gained from such an approach, since then much of the 
structure of the identification problem  is  lost.  However, ff 
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the EKF is applied to this particular problem, interesting 
algorithms are obtained. 

The EKF approach to the estimation of parameters in 
dynamical systems has a rather long history, and a consid- 
erable number of applications of this method has been 
reported. The approach seems to have been first suggested 
and discussed in [5]  and [6] and among the many papers 
dealing with  various aspects we may mention [7]-[12]. 

There are several reasons for the popularity of this 
method. It is a fairly natural thing to include the unknown 
parameters in the state vector, and once this  is done, 
standard Kalman filter programs can be applied for the 
estimation. The algorithm is  consequently not very  com- 
plex. A nice and natural approach to the joint state and 
parameter estimation problem is also obtained. 

In view  of this, and of the number of applications 
made,  amazingly little analysis of the method has been 
performed. The author is not aware of any systematic 
convergence  analysis of the EKF for this application. 
Instead, the collected  experiences  from simulations and 
applications to real data seem to have been condensed 
into “rumors” about the convergence properties. It is thus 
known that the method may  give  biased  estimates,  e.g., 
[ll], and  that it does not seldom  diverge if the initial 
estimates are not sufficiently  good, e.g.,  [9]. 

The objective of the present paper is to give a fairly 
systematic and comprehensive treatment of the EKF, 
when applied to parameter estimation for linear stochastic 
systems. The analysis is  based on the methods of  [13]. It 
will lead to a certain understanding of the causes of bias 
and divergence. The mechanisms for parameter adjust- 
ments  will be exposed and in that way the relationship 
between the EKF  and other recursive parameter estima- 
tion methods is  clarified. A fairly general convergence 
result for deterministic models  will be shown. Perhaps the 
most important feature is that the insight gained into the 
convergence  mechanism  directly leads to a slightly mod- 
ified  version for models of innovation representation char- 
acter, which has excellent  global  convergence properties. 

The measured 

will throughout 
from the system 

11. THE SYSTEM 

input-output data 

u(O),Y(o),u(l),Y(l),. * 

this paper be assumed to  be obtained 

x ( t + l ) = A + ( t ) + B , u ( t ) + ~ ( t )  

Y ( f )  = CdcW + (2.1 ) 

where u(t), y(t) ,  and x ( t )  are vectors of dimensions nu,  nu, 
and n,, respectively. The sequences {u( t ) }  and {e(t)} 
consist of independent random vectors with zero-means 
and covariances 
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Eu(r)u(s)T= e;at3 
Ee(r)e(s)*= ~ $ 8 , ~  (2.2) 

Eu(t)e(s)T= ~ 6 8 ~ ~ .  

Furthermore, it is  assumed that the initial state x(0) is a 
random vector with  zero-mean and covariance matrix I&. 
It is independent of future values of { u(f)}  and { e( t ) }  
r > 0. All the matrices A,, Bo, C,, Ql, Ql, Q$ are assumed 
to be time invariant. 

In some  cases we shall consider a time  series,  i.e., the 
input signal  is absent, corresponding to Bo = 0. If an input 
is present we shall, for technical reasons,  assume that  it is 
a weakly stationary stochastic process with rational 
spectral density, and hence can  be understood as obtained 
from white noise  by linear, exponentially stable filtering. 
Furthermore, we shall, again for technical reasons, assume 
that all absolute moments of the stochastic processes 
{u ( t ) } ,  { ~ ( t ) } ,  and {e(t)} exist and are bounded. 

Remark: These assumptions on the stochastic processes 
are introduced in order to be able to apply the “B-condi- 
tions” of  [13]. With a similar technique, using instead the 
“C-conditions” of [ 131, less  restrictive assumptions about 
these  processes  may  be introduced. This is treated in [21]. 

The system  (2.1)  with  (2.2)  is  assumed to  be (partly) 
unknown to the user. The problem he  is faced with  is to 
determine the matrices A,, Bo, C, and possibly  also Ql, 
Qt, and Ql together with the state estimates, based on 
measurements of input-output data. 

If these matrices are all known, then the linear least- 
squares state estimate for (2.1)  is obtained from the 
familiar Kalman filter: 

2,( t + 1) = A,$,( t )  + B,u( t)+ KO( f )  [ y( t )  - C,2,( t ) ]  (2.3) 

a,(o) = 0 

where 

Ko(t)= [AoPo(t)CoT+ Q;] [ CoPo(t)C,T+ e:]-’ (2.4) 

P,(t+ l)=A,P,(t)A~+ Q; 

- Ko(f) [ CoP(t)C,T+ el] KoT(t) (2.5) 
P,(O) =no. 

Let 

KO= lim K,(t). (2.6) 
t-+m 

111. THE ALGORITHM FOR A GENERAL LINEAR STATE 
MODEL 

A.  n e  Model 

In order to determine the system that has generated the 
observed input-output data, we assume the following 
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where 

The matrices 
Ex(0)x T(0) = lI(6). (3.2) where 

in an  arbitrary way. It is  assumed, though, that the  matrix 
elements are differentiable with  respect to 6.  Usually, the 
noise characteristics matrices Q', Qe,  and Q c  do not 
depend on 8, but are chosen  fixed in some ad hoc way, 
most often with Q'=O. This corresponds to the fact that 
in (1.1),  the  noise characteristics are independent of the 
state. 

We shall in the remainder of this section  assume that 
{ ee(t)} and { U e ( t ) }  are independent of 6 (and  drop this 
index). This is of no importance as such; the reader may 
easily append this dependence. It, however,  touches a 
fundamental issue, that of how  the linearization should be 
done, and we shall return to this question in Sections  VI1 
and VIII. 

It could be remarked that the converse situation is also 
widely  discussed in the literature; that of known dynamics 
and unknown noise statistics in (3.1), (3.2). This case  may 
also cover the approach  to describe modeling errors in  the 
dynamics as additive disturbances. It is usually  referred to 
as "adaptive  filtering," and among many papers dealing 
with different aspects of this  problem, [14]-[ 171 could be 
mentioned. 

B. The  Algorithm 

The EKF approach to determine the  unknown parame- 
ter  vector 0 now  is obtained by extending the state vector 
x with the parameter vector 8 = 8(t) .  

We  then  have the following state equation 

z ( t  + 1) =f(z ( t ) ,u( t ) )  + ( v t ' )  

(3.3) 

(3.4) 

where 

h(z( t ) )=   C(O)x( t ) .  (3.6) 

We are consequently faced with a nonlinear filtering prob- 
lem and if this is attacked by the EKF (1.2)-( 1.5) we 
obtain 

Here 

D(d,2)=  %(C(B)Z)( a .(a n,,ln, matrix). (3.13) 
e=e 

These functions are of course linear in 2;- and u, and 
depend in an essential way on the parametrization. 
io and 2, represent some a priori information about the 

parameter vector 8. Common choices are 8,=0 and X,= 
100. (variance of y )  if no a priori information is available. 

Introduce for short 

Introduce also the natural block structure 
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IV. THE METHOD OF ANALYSIS-AN ASSOCIATED 
DIFFERENTIAL EQUATION 

Convergence of the algorithm (3.14)-(3.20') will here be 
analyzed using the theory of  1131. In that reference it is 
shown  how  convergence of recursive, stochastic algo- 
rithms can be analyzed in terms of the stability properties 

Equations (3.7)-(3.9) can now be rewritten explicitly as of an associated differential equation. 
We  shall in this  section determine the differential equa- 

a ( t + l ) = A , 2 ( t ) + B , u ( t ) + K ( t ) [ y ( t ) - C , a ( t ) ]  tion that is associated with the algorithm (3.14)-(3.20') 
and show that the regularity conditions of [13] are satis- 

(3.14)  fied. 
Z(0) =o The differential equation is defined in terms of the 

B(0) = Bo would  be replaced by 6( t )  = 8. Consequently, in the &de- 

K ( t ) =  [ A , P , ( t ) C , T + M f P ~ ( f ) C , T + A , P 2 ( t ) D ~  should be replaced by 8. It is  easy to see (and  it will be 

s, = C,P,(t)C:+ CtP2(t)D,T @e), respectively,  which are given as the solutions of 

+D2pzT(t)CtT+D~P3(t>D~+ee (3.16b) Fl(8)=A(8)Fl(e)A ' ( e ) +  Q o - K ( e ) g ( 8 ) K T ( 8 )  
L(t)=[P,T(t)CtT+P,(t)D,T]S,-' (3.17)  (4.1 a) 

processes that (3.14)-(3.20')  would produce if the model 
B ( t + l ) = B ( t ) + L ( t ) [ y ( t ) - C r a ( t ) l  (3*15) parameter were kept constant= 8. This means that (3.15) 

pendent matrices [A,,  B,, C,, MI,  and D,] the estimate d(t)  

+ M 1 P 2 ( t ) D 1 ~ +  ec]s,-~ (3.16a)  shown later) that then P2 and P3 would tend to zero and 
that P,(t), St., and K(t )  would tend to Fl(8), S(B), and 

P,(t+ l>=A,P,(t)A,T+A,P,(t)M,T S(e)= c(e)Fl(e)cT(e)+ ee (4.1 b) + M,P,T(t)A,T+  M,P,(t)M,T K ( e ) = [ A ( e ) ~ l ( e ) c T ( e ) +  p]s-l(e). (4.1~) 

PI(0) =&(&) {A(B),B(B), C(@, Q', Q c }  satisfies certain detectability 

P2(0) = 0 would be obtained with this constant model; correspond- 

- K(t )StKT( t )+  Qu (3.18) 
Existence of these solutions follows, provided the model 

P2(f+ 1)=ArP2( t )+M,P3( t ) -K( t )S ,L7( t )  (3.19) and stabilkability conditions* 
Then define the process ?(I ;  8 )  as the estimates that 

~ ~ ( t + l ) = ~ ~ ( t ) - ~ ( t ) ~ , ~ ~ ( t )  (3.20)  ing to the parameter value 8:  
P3(0) = 2,. a ( t + i ; e ) = ~ ( e ) a ( t ; e ) + ~ ( e ) ~ ( t ) + K ( e ) ~ ( t ; e )  

Note that (3.19)  with the aid of (3.17) also can be written 
as where 

not a full rank stochastic process  (i.e.,  its- covariake 
matrix  is  singular). This is a question associated with the + [ ~ ( e , Z ( t ; 8 ) , u ( t ) ) - K ( e ) ~ ( e , A ( t ; 8 ) ) ] .  (4.4) 

parameterization of the model (3.1). In such a  case, there 
are also certain technical problems in the analytic treat- Recall that  and D were defined in (3.12) and (3.13), 
ment. Therefore, we shall in the sequel  assume that some respectively.  We  see bY comparing (3-19') and (4.4) that 
measures are taken to come around these  numerical prob- @ ( f , @ 3  is the P2-Process  (3.19')  would Produce for given 
lems. A simple way is to replace (3.20)  by constant 8 and F3. Let the n&,, matrix F(t ,8)  be given by 

P 3 ( t + l ) = [ { P 3 ( t ) - L ( t ) S 2 L T ( t ) } - 1 + 6 ~ ] - 1 ,  q ( t ; s ) = [  c ( e ) w ( f ; e ) + ~ ( e , ~ ( t ; e ) ) ] ' .  (4.5) 

(3*20) Again,  by comparing (4.5)  with  (3.17),  having  in mind that 
for Some small positive 6. Notice that for small 8 (3.20') is P 2 ~ F ( t ~ 8 ) F 3 9  we see that the L-PrOcess that (3.17) 

approximately given  by produce for constant 8 and F3 would be F3F(t,8)9-'(8).  
Equations (4.1)-(4.5)  now define the processes J( t ; f?)  

P 3 ( t + 1 ) = ~ 3 ( t ) - ~ ( t ) S 1 ~ T ( t ) - 6 ~ 3 ( t ) ~ 3 ( t ) .  and Z(t; 8 )  uniquely, for the given 8, from y(s),  u(s); s Q t .  
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(Take the initial conditions z(0; 8), F(O,f?) such that the 
processes  become stationary.) Since, according to (3.15), 
L_(t)[y(t)_- C,i(t)]  updates 6 and since L,  - 
P3+(t,8)S - I ( @ ,  it seems reasonable that this update, 
asymptotically should be related to  the vector 

f ( e ) = E ~ ( t ; B ) S - ’ ( e ) E ( f ; 8 )  (%I1 matrix) (4.6) 

where “E” denotes expectation with  respect to the 
stochastic processes y(s) and u(s). Define also 

G ( e ) = E ~ ( t ; e ) S - 1 ( 8 ) ~ T ( t ; 8 )  (%Ins matrix). (4.7) 

We  may thus interpret f(8) as the direction (modified by 
R - I  =j3; see  below) in which the estimates asymptoti- 
cally are adjusted. 

Thus  far, what we have  done  is  given a formal defini- 
tion of the functions f(8) and G(8) via  (4.1)-(4.7). We 
have also given intuitive arguments as to why the function 
f(8) should be related to the asymptotic properties of the 
B(t)-sequence. The latter result  indeed holds, which  is 
proved in the following  lemma,  which  is the basic result 
for the convergence  analysis. 

Lemma 4.1: Consider the differential equation given 
bY 

d 
dr 

(4.8a) 

- R ( T )  = G ( ~ ( T ) ) +  81- R ( T ) .  d 
dT 

(4.8b) 

Let 0, = { 8 I(A(8), Q ” )  stabilizable and ( A ( @ ,  C(8)) de- 
tectable}. Let { B(t), i( t)} be  given  by algorithm (3.14)- 
(3.20). 

1) Suppose that the differential equation (4.8) has an 
invariant set 0, with  domain of attraction 8 E DA (which 
will be a subset of 0,). Suppose further  that $(r)  belongs 
to a compact subset of DA and 2(t) is bounded infinitely 
often with probability one (with probability 1).  Then 

- - @ ( ~ ) = R - ~ ( ~ ) f ( b ’ ( r ) )  

$(r)+D, with probability 1 as t+m. (4.9) 

2) Suppose that 8(t)+8* with probability greater than 
zero. Then 8* must  be  a stable stationary point of the 
differential equation (4.8). 

3)  Let 5 be a compact subset of D, such that the 
trajectories of (4.8) that  start  in  do not leave 0. 
Suppose that the estimates 8(t) are projected into 5 and 
that (4.8) has an invariant set D, with a domain of 
attraction DA ZI 5. Then $(t)+D, with probability 1 as 
t+m. 

Remark: An invariant set of a differential equation is  a 
set, such that the trajectories remain in there for - co <r 
< m. The domain of attraction of an invariant set D, 
consists of those points from  which the trajectories con- 
verge into 0, as T tends to infinity. For further comments 
on the formulation of the lemma,  see  [13]. 

Proo$ The lemma  follows directly from [13, Theo- 
rems 1, 2, 41, once  it is  verified that  the algorithm (3.14)- 
(3.20) satisfies the regularity conditions of these theorems. 
This is  verified in Appendix I. 

With the  aid of this  lemma the convergence analysis is 

effectively  reduced to stability analysis of the differential 
equation (4.8). The next section is  devoted to such analy- 
Isis. 

V. COWERGENCE ANALYSIS 

A .  Stafionaly Points of the Differential  Equation and the 
Question of Bias 

In the differential equation (4.8) 

- 8 ( T ) = R  d - ‘ ( T ) f ( f ? ( T ) )  

dr 
(5. la) 

- R ( T ) = G ( ~ ( T ) ) + ~ Z - R ( T )  d dT (5.lb) 

the function f(.) represents the “corrective force.” The 
positive definite matrix R - ‘ (7)  only  modifies the direction 
of correction. We shall later interpret (5.1) as a descent 
algorithm, and then R - I  yields a modification from a 
negative gradient direction f(-) to an approximate  Newton 
direction. 

It can also be  seen that if 8 ( ~ )  converges to 8* then R(T)  
tends to G(8*) + SI. 

Now, as seen  from the definition of f(8) in (4.9, this 
function is the correlation between the residuals (innova- 
tions) E ( t ;  e )  obtained from  model 8 and  the variable 
T(t ;8) .  This random variable is according to (4.4) and 
(4.5) obtained  by linear filtering of the state estimates 
corresponding to this  same  model 8. Therefore, f(8) is a 
measure of the correlation between the current innovation 
and previous state estimates.  These in turn can  be ob- 
tained from the previous residuals; see (4.2). Therefore, it 
is clear that f(8) measures the correlation of the sequence 

If this  sequence is uncorrelated for some @=e* (which 
means that O* gives a “good” model), then f(8*)=0 and 
8 = 8*, R = G(O*)+ 61 is a stationary point of (5.1). The 
EKF therefore has certain relations to adaptive filtering 
techniques, for which  monitoring the correlation of the 
innovations often is the chief tool, see,  e.g., [ 1.51-[17]. 
Notice, however, that the converse is not necessarily true, 
i.e., f(8*) =O does not in general imply that { C ( t ;  8*)} is a 
sequence of uncorrelated random vectors. It merely im- 
plies that E(t;8*) is orthogonal to certain sets of linear 
combinations of E(s;B*), s< t .  If model orders and struc- 
tures are chosen suitably, this in turn may  imply ortho- 
gonality of {C((t; @*)}, and some  such  choices wdl be 
discussed  below. 

{ m e ) } .  

Now, suppose that for some do, 

Ao=A(Oo) 
Bo = B( 00) 

co = C ( ~ 0 )  (5.2) 

that is the true system matrices (2.1) are obtained for a 
certain parameter vector. Then { Z(t; 8,)) will in general be 
an orthogonal sequence  only if in addition 
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K, = K( eo) (5.3) 

where KO is defined by (2.6), and E(@,) by (4.1). The 
condition (5.3) holds  only if the assumptions (3.2) about 
the noise structure of the  model (3.1) are in accordance 
with those of the true system (2.2). Consequently, a value 
8, corresponding to the true system, i.e., satisfying (5.2) 
will in general be a stationary point of (5.1) and hence a 
possible  convergence point only if the assumed  noise 
structure coincides  with the true one. Otherwise the esti- 
mates  will be biased. 

It is of course somewhat unrealistic to assume that the 
noise structure of the system is known,  while the dynamics 
are unknown. Therefore, if the noise characteristics of the 
model  (3.1)  is  chosen ad hoc (as, apparently, is usually 
done) then the system parameter estimates will  in general 
be  biased.  We  have consequently arrived at the perhaps 
trivial observation that the cause of the bias does not lie in 
the EKF-method itself, but comes from incorrect noise 
assumptions associated with the model. 

B. Local Stability Anabsis 

The local  convergence properties of the algorithm are 
according to  Lemma 4.1  :2) associated  with stability of the 
linearized differential equation (4.8) around the stationary 
point in  question. In [ 181 the linearization is carried out. 
There does not seem to be any guarantee that the lin- 
earized equation should be stable for all systems. There- 
fore, the possible lack of convergence of the EKF method 
does not necessarily  have to be caused by large parameter 
deviations from the true values, as is  sometimes  claimed. 

C. Global  Convergence  Analysis-Simple  Example 

Let the true system be given  by 

x(t+  l)=aox(t)+uo(t) 

A t )  = 40 + eo(0 

where x and y are scalars and 

(5.4) 

Let the model be given by 

where we assume that 

Eu(t)u(s) = 8, 
Ee(t)e(s) = 8, 
Ev(t)e(s) = 0. 

To determine the differential equation associated with this 
problem we first note that, in obvious notation, cf.  Section 
IV: 

S ( . ) = l + ~ + ~ ; + l  2 . 

With the backward shift operator q-'(q-'x(t)=x(t- l)), 
we obtain 

w(t;u)=(l-q-'(a-K(a))) K(a)q-zy( t )  
-2 - 

E ( t ; a ) = l - ( l - q - ' ( a - K ( a ) ) )  K(a)q-L(r )  
- 1  - 

- - 1 - q-la Y ( t )  
1-q-'(a-K(a)) 

and, evaluating the expected  value  using  complex integrals 

E Z ( ~ ;  a)c( t ;  a)  f(a) 

1 -a /z  
l-(u-K(u))/z 

Here O,,,,(z) is the spectrum of the signal y :  

The integral (5.8) with (5.9) is  easy to evaluate using 
residue calculus which  gives 

where 

1 +@+a:- 1)/2+$h+ag- 1)2/4+h 

f =  a - @a) 

fo= a,- K,. 
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The differential equation (5.la) is  now 

-a ( r )=R- l ( r )S - ’ (a ( r ) )~ (a (T ) ) .  (5.11) d 
dr 

However,  since a(r) is scalar and R - ’ ( T ) S - ’ ( ~ ( T ) )  is a 
positive scalar, the stability properties of  (5.1  1) are en- 
tirely  determined  by the sign  changes of Ria). Sketches of 
this function are shown  in  Fig. 1 for some  choices of a, 
and A. 

Several conclusions can  be  drawn  from  this figure. 
Remember that the convergence properties of the EKF- 
algorithm are determined  by the stability properties of 
(5.1  1). A sign  change of f (a )  from plus to minus for 
increasing a corresponds to a stable stationary point of 
(5.1  1) and the domain of attraction extends to the nearest 
neighboring sign  changes.  We  see that for ao=O we  have 
global convergence to this  value  even  when A =  10 (wrong 
noise  assumptions  in the model). For a, larger than zero 
and A =  1 (correct noise assumption) the true value  is 
always a stable stationary point with  domain of attraction 
equal to all  positive a. There  exist,  however, other attrac- 
tion points for negative  values of a, to which  we  may 
converge  with a nonzero probability. Also, for a,= 0.4, 
0.6, and 0.8 (in fact also for a,=0.2) the estimate may 
with a nonzero probability tend to minus infinity. If the 
system  is  known to have  been obtained from a continu- 
ous-time system  by sampling, it is natural  to exclude 
negative a, e.g., using a projection facility. Then we have 
guaranteed convergence, with probability 1 to a, accord- 
ing  to  Lemma  4.1. 

Notice also that for the case A =  10  we obtain biased 
estimates of a,, even if  we converge to the “best” 
stationary point. 

VI. DETERMINISTIC MODELS (OUTPUT ERROR 
METHODS) 

The results of the previous section showed that in 
general the convergence properties of the EKF are  not 
satisfactory. It turns out that in the special case where 
K(6) defined by  (4.1)  happens  to  be  independent of 0, the 
convergence properties are much better. The reason for 
this  will  become quite clear in the next two sections. Let 
us first, however,  give a result for an interesting special 
case of this sort. 

If, in the model (3.1), ue(t) is  assumed to be absent, i.e., 
Q’(6) = 0, and A ( 8 )  is stable for 8 E 0, then, as seen from 
(4.1), the stationary solution E(@) = O  for 8 E D,, and in 
particular it will not depend  on 8. The case Q‘ (B)=  0 (all 
6 )  will here be called the case of a deterministic model, but 
it should be  noted that we assume a nonzero  measurement 
noise ee(r). In  fact, for systems operating in open loop this 
measurement  noise  is  allowed to be colored, so the model 
is quite a general one. However, only the  input-output 
dynamics will  be  modeled, and  no information about the 
noise structure is gained. It is clear that such a model 
makes  sense only if an input u(t)  indeed is present. In the 

t K,OJ 

t t <OJ 

T 
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Fig. 1 .  Sketches of the functionf(a) for different q,. Only sign changes 
are  shown.  Numbers in parenthesis correspond to A =  10, others to 
A =  I .  

case K(B)=O the state estimate $(r;8) is  given  by  (see 
(4.2)) 

~ ( ~ + ~ ; B ) = A ( B > S ( ~ ; ~ ) + B ( B ) ~ ( ~ ) .  (6.1) 

Therefore C(B)j( t ;B)  is the output of model correspond- 
ing to_ the parameter value 6 and  the difference y(t)-  
C(8)2(t;  6 )  on which the correction of B is based, is then 
the discrepancy between  measured output and model out- 
put. Such  methods are usually called output error method 
or model  reference  identification  techniques. Consequently, 
the EKF-approach with Q”(B)=O yields a particular out- 
put error method that apparently has not been  discussed 
previously. In order to make the “boundedness” condition 
[the condition preceding (4.9)] satisfied, we assume that 
the estimates are projected into the set 0, = {OlA(B) sta- 
ble} as described, e.g., in [13, Section VI.] We  now  have 
the following result: 

Theorem 6.1: Consider  input-output data generated by 
the system (2.1), (2.2).  Let the “deterministic” model be 
given  by 

~ ( t + l ) = ~ ( e ) x ( t ) + ~ ( e ) u ( t )  

Y ( f )  = C ( @ ) x ( t )  + e ( t )  (6.2) 
where { e ( t ) }  is supposed to be whte noise  with covari- 
ance matrix Qe.  Suppose that the parameter vector 8 is 
estimated by the extended Kalman filter scheme described 
in Section I11  [(3.14)-(3.20)].  Assume further that the 
algorithm is complemented  with a projection facility to 
keep 8( t )  in a compact subset of { 8 ] A ( @  stable}. Then 
the estimate &r) converges with probability 1 to a 
stationary point of the function 



v ( e ) = E ~ T ( t ; e ) ( Q e ) - l ~ ( t ; e )  the EKF is given byf(0).  The similarity  between (4.6) and 
(7.3)  is striking. The relationship between $(t; 0 )  (given  by 

and  among isolated stationary points only  local  minima  (4.5)) and S j ( t ;B)  (given  by  (7.2))  clearly  should  be in- 
are possible  convergence  points. If there exists a value  vestigated. 
Bo€ D, such that Differentiating (4.2) and (4.3)  gives 

holds, and the system operates in open loop, then 0, will 
yield a global  minimum of V(0). If the system operates in 
closed  loop, this last conclusion  holds  only if in addition 
Q$ = 0 (Qt  defined in (2.2).) 0 

Remark: Since we have not specified  how  the  projec- 
tion into the compact subset of D, is to be implemented, 
there ma  be a possibility that the  estimates are "caught" 
at a d ndary point of this compact subset.  With a 
sensible projection mechanism  this can, however,  always 
be avoided. This remark  will apply also to Theorems 7.1 
and 8.1  below. 0 

The objective of the  modeling procedure is to reduce 
"the unexplained" and V(0)  clearly  is a measure of how 
much  is left unexplained  by the model 8. Therefore, 
Theorem 6.1 must  be  considered as a good  result for this 
particular case of the EKF-approach. 

Proof: The proof  is  given in Appendix 11. 
and 

(7.5) 
Let w(r;B) be the nxlnO matrix d/dO$(t; e). Then, with M 
and D defined  by (3.12) and (3.13), respectively, (7.4) and 
(7.5) can be rewritten as 

VII. A MODIFIED ALGORITHM F V ( t + i ; e ) = [ ~ ( e ) - K ( e ) c ( e ) ] W ( t ; e )  

Guided by the results of the  previous  section, it is 
natural to interpret the EKF as an attempt  to minimize 
the expected  value of the  squared  residuals associated 
with  model 0. Let  us pursue this idea further. Let @e), 
g(e), f ( t ;  e), and Z(t; 0 )  be given  by  (4.1)-(4.3). A suitable 
criterion to  seek  to  minimize  would be 

v(e)=slc(t,e)12. (7.1) 

[Expectation  is here over {e(t) ,u(t) ,  ~ ( t ) } ] .  
A reasonable adjustment scheme to achieve  minimiza- 

tion of (7.1)  should be related to the gradient of V(0). We 
have,  allowing  ourselves to interchange differentiation and 
mathematical expectation, 

Denote the ne)ny matrix 

d -  
dB (7.2) 

Then the negative gradient of V(0)  (a column  vector) can 
be  written 

---cT(t;e)=q(t;e).  

+M(e,z( t ;e) ,u( t ) )+[ d B ~ ( e ) ] q t ; e )  d -  

-K(e)D(e,Z(t;  e)) ;  (7.6) 

q( t ; e )=[  c(e)~~(t;e>+o(e,l(t;e))]'. (7.7) 

Compare  with (4.4),  (4.5)!  We  see that q(t; 0 )  is  "al- 
most"  equal to A t ;  e). It is just a term [d/dOK(O)]c(t; 0 )  
that should  be included in M(O,$(t;B),u(t)) in order  to 
make  the EKF-algorithm a (stochastic)  descent-algorithm. 
Furthermore the T-'(O)-term in (4.6) should be deleted. 

As a result of this heuristic discussion we might  expect 
improved  asymptotic  convergence properties of the EKF 
if (an approximation of) [ d / d e K ( ( 8 ) ] , = ~ ~ O ~ ( t ) ,  where E ( ? )  is 
the current residual,  is added to the Mf matrix in the 
scheme  (3.14)-(3.20). 

There are several  ways  to  achieve  this. One that is quite 
well-suited for practical computations is treated in the 
next  section. Another would  be to calculate the derivative 
d/deiE((e) from (4.1) and evaluate it at d(t). Since the gain 
K(t )  is calculated by  means of the Riccati equation (3.16), 
(3.18), it is natural  to find an expression for the  derivative 
from  the  sensitivity equations. Let K? be  defined  by 

One would  prefer that, asymptotically, the parameter a a 
values 8 be corrected in this direction, or in a modified + A P l ( t ) -  C'(e> + - Q'(@)],_L, 
(e.g.,  "Newton")  negative gradient direction. Compare 
with  (4.6)! The asymptotic direction of modification for .sr-'-K(t)S,-'Uj')Sr-'; (7.8a) 
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Here, Pl ( t ) ,  K(t) ,  St, A,,  and C, are defined as in Section 
111. 

If & ( I )  is  fixed to a given  value = 8, then the algorithm 
(7.8)  will  obviously  yield a sequence ~,(i) that  tends to 
a/8OiK(8) as t tends to infinity. 

We  may  now state the following result. 
Theorem 7.1: Consider the algorithm (3.14)-(3.20) 

with M, replaced by M,?, whose ith column is  given  by 

~ ; ( i )  = M,CO + .(i) r ( ~ ( t )  - cra(t)) (7.9) 
where %('I is  given  by  (7.8). Let also St- in (3.17) (but  not 
elsewhere)  be replaced by I .  Assume that the algorithm is 
complemented  with a projection facility to  keep d(t)  in a 
compact  subset of 

Os= {OJ(A(B),C(O))  detectable and 
(A(B) ,  Q c )  stabilizable}. (7.10) 

Let the  input-output  data  be generated by the system 
(2.1), (2.2). Then the estimate d(t) converges  with  proba- 
bility 1 to a stationary point of the function V(8)  given  by 
(7.1)  (where Z is  given  by  (4.1)-(4.3)), and among isolated 
stationary points only local minima are possible conver- 
gence points. 

Prooj The proof is analogous to that of Theorem 
6.1. The essential point is that the modification (7.9) has 
the effect that the associated differential equation (4.8) is 
replaced by 

d -8(r>=R-'(r)f*(8(7)) dr 
(7.1 la) 

- R ( T ) = G * ( ~ ( T ) ) + ~ I - R ( ~ )  (7.11b) d 
dr 

where 

f*(8) = Eq(t;e)c(t;  e)( = - V ( 8 ) )  (7.12a) 

G*(8)=Eq(t;8) i jT(r;8) .  (7.12b) 

0 
As a final remark on the descent character of the 

algorithm, we may note  that 

1 d2  
2 de2 
-. - V(8)=Ei j ( t ;8)qT( t ;8)  

Now, at the true value 8, (if this  exists), F(t;8,) are  the 
true innovations, which are independent of what has 
happened before time t .  Therefore, the last term in (7.13) 
is zero at 8,. We thus find that close to 8, 

1 d2  -. - 
2 de2 

V(B)=G*(8) 

and the interpretation of the R -'(r)-term in  (7.1 la) is that 
it changes the gradient step to a "Newton" step. 

Note  that R - ' corresponds to P3 in the algorithm. 
Clearly, the same effect could be obtained by replacing 
P,( t )  by  some other approximation of the inverse of the 
second derivative matrix. 

Instead of minimizing V(8)  given  by  (7.1) it may  some- 
times  be of interest of minimize 

where S(8) is the assumed covariance matrix for the 
innovations E( t ,@) ,  given  by  (4.1). If the noise is supposed 
to be Gaussian, then (7.14)  is the expected  value of the 
negative  log likelihood function. 

Straightforward calculations give 

S-I(e)%s(e)  . 
d -  1 

[Note  that the two last terms  would cancel if indeed g(8) 
were the covariance matrix of E(t; e)!] From this  expres- 
sion we see, as before, what modifications of the EKF are 
necessary  in order to minimize Vl(8). Hence, we have  the 
following corollary to Theorem 7.1. 

Corollary 7.1: Consider the algorithm (3.14)-(3.20) 
with M, replaced by M: as in  (7.9) and with the parame- 
ter updating algorithm (3.15) replaced by 

where the ith component of {(t)  is 

Here oyl is  given  by  (7.8) and 

€ ( t ) = y ( t ) -  C,i(t). (7.17) 

Assume further the same projection facility as in Theorem 
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7.1. Then the conclusion of this Theorem holds  with the K ,  = K( e( t)). 
function V(8)  replaced  by V,(d)  defined by  (7.14). 

From (3.14)-(3.20')  we  now obtain the  algorithm 

VIII. AN ALGORITHM BASED ON INNOVATIONS a ( t + l ) = A , a ( t ) + B , u ( t ) + R & )  (8.5) 
MODELS €(t)=y(t)-  c,a(t) (8.6) 

One disadvantage with  the modification (7.9)  of the 
EKF is that (7.8)  will require an amount of computing 
that may be forbidding for higher order systems. 

In the model there are certain assumptions  associated 
with the noise covariance matrices,  whether parameterized 
or not. It should be noted that the  effect of these  assump- 
tions  is  in fact only to provide  the Kalman filter gain. It is 
this gain that has the algorithmic importance and the 
noise assumptions are only  vehicles to amve  at it. There- 
fore, it should in most  cases be a good idea to para- 
meterize  the steady-state Kalman gain rather than the 
covariance matrices. This will normally  involve  fewer 
parameters (which  means that usually  the  individual  noise 
covariances are not identifiable-only  the Kalman gain 
and the innovations covariance matrix are). The only 
cases,  when this may be undesirable is  when important a 
priori information of the noise structure in the form (3.1) 
is available or when it is important  to have a time-varying 
Kalman gain for the initial part of the recorded data. 

What has  been said is that it is often a good  idea to 
start with an innovations model 

e ( t + l ) = e ( t ) + L ( t ) € ( t )  (8-7) 

L(t)=[ P;(t)C,'+P,(t)D,T]h-' (8.8) 

P2(t+ l ) = A , P 2 ( t ) + M , P 3 ( t ) - ~ A L T ( t )  (8.9) 

P3( t+  1)=P3(t)-L(t)RLT(t)-6P3(t)P3(t). (8.10) 

For this  algorithm we have  the  following  convergence 
result. 

Theorem 8.1: Consider input-output data generated by 
the  system  (2.1),  (2.2).  Let the model be given  by  (8.1), 
(8.2).  Suppose that the parameter vector 8 is estimated by 
the algorithm (8.5)-(8.10).  Assume further that the algo- 
rithm  is  complemented  with a projection facility to keep 
B(t) in a compact subset of the  set 

Ds={8(thematrixA(8)-K(8)C(8)is 

exponentially stable}. (8.1 1) 

Then  the estimate e(t) converges  with probability 1 to a 
stationary point of the function 

with 
q t ; e ) =  [ c o ( ~ ~ - ~ o + ~ o c o ) - l ~ ,  

Ee( t )~~(s)=A6, ,  x(O)=O (8.2) 

instead of  (3.1),  (3.2). [In  fact (8.1),  (8.2)  is just a special 
- C ( B ) ( ~ ~ - A ( B ) + ~ ( B ) C ( ~ ) ) - ' B ( B ) ] ~ ( ~ )  

case of  (3.1),  (3.2)  with 

Q'(8) = F(8)AKT(8);  

Qc(8 )  = K(8)Ay 
Qye) = A  

and II(8) = 0.1 
If  we are going to apply the EKF-idea to 

(8.1), where E(8) is explicitly parameterized, it 
include 

the  model 
is easy to 

+ [ co(q~-Ao+Koco)-~Ko 

- c(e)(4r-A(s)+a(e)c(e))- 'K(e)]Y(t)  
+ (8.13) 

[ q  is  the  forward shift operator]. 
Furthermore, among isolated stationary points of V(8) 

only  local  minima are possible  convergence points. 0 
Proofi The proof  is entirely analogous to  that of 

Theorem 6.1. 
a -  If  we would  derive a Newton-type stochastic gradient 

j J K ( W  algorithm for the minimization of V3(8) without  relying 
upon  the EKF, we would  get an algorithm of the  follow- 

in  the  cross-coupling  term M as discussed in Section  VII. ing  type, cf. [191-[221: 
Hence, define 

a ( r + l ) = A , ~ ( t ) + B , u ( t ) + K , € ( t )  

M ( B , ~ , ~ , ~ ) =  - (A(e )a+B(e )u+K(B)r ) l  a6 a e=e . (8.3) E(t)=y(t)-  C,2(t) 
e ( t + l ) = e ( t ) + R - ' ( t ) + ( t ) A - L ( t )  

Introduce  for short +(t)=wT(r)C:+DT (8.14) 

M,=~(e(t),a(t),u(f),€(f)) (8.4) w(t+l)=(A,-~C,)w(t)+M,-K,D, 

and R ( t + l ) = R ( t ) + + ( t ) R - ' $ ~ ~ ( t ) + 6 1 .  
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This could be called a recursive prediction error algo- for (8.17) we find 
rithm. It is easy to see that the differential equation 
associated with  (8.14)  is the same as the  one associated F= - 1 E d [ ( = ( t ; 6 ) A - ' ~ ( t ; 6 ) ] R - t f ( 6 , A )  
with  (8.5)-(8.10).  These  two algorithms therefore have the 2 d6 
same asymptotic convergence properties. They differ in - - E ~ T ( t ; 8 ) A - ' ( H ( 6 ) - A ) A - ' r ( t ; e )  1 
fact only in the manner R -'(t)+(t) is calculated, and this 2 
difference is  of a transient character. A further discussion 1 
of this point can  be  found in [18],  [21],  [22]. The question + 2 tr[A-'(H(B)-A)] 
of which of the two algorithms exhibits the best transient 
convergence behavior must  be  left to simulation studies. 

be estimated it is natural to parameterize it independently 2 
and minimize < O  

= - fT(6 ,A)R  -'f(O,A) 

If also the covariance matrix A of the innovations is to - - 1 trA-'(H(e)-A)n-'(H(e)-A) 

with  respect to 6 and A. This is, in fact (see,  e.g.,  [23]), the 
same as minimizing 

W(6)=detEr( t ;Q)~~(t ; f?)  

with  respect to 8, giving 8* and then taking 

A* = ~ q t ;  e * ) q t ;  e*). 
Therefore, an obvious scheme to minimize  (8.15)  is to 
replace A in (6.8)-(6.10)  by 

- 2 E ( k ) P ( k )  f i i ( t ) .  
1 '  

t l  

CoroZZary 8.1: Consider the algorithm _(8.5)-(8.10) [or 

~( r )=h( t - l )+ - [ t ( r )~~( r ) -& t -1 ) ] .  1 (8.16) 

Assume further  that the algorithm is complemented  with a 
projection facility as described in Theorem 8.1. Then 
( 8 ( t ) , i ( t ) )  converges  with probability 1 to a stationary 
point of the function V3(6,A) given  by  (8.15). Further- 
more,  among isolated stationary points of V3(6,A), only 
local minima are possible  convergence points. 

Prm$ The pro:f is analogous to those of Theorems 
6.1-8.1. This time A(t)  is included in the [( t )  vector and 
the associated differential equation becomes 

(8.14)]  with A in (8.8)-(8.10) replaced by h(t), where 

t 

Let  us  conclude  this section by applying the modified 

Example 8.1: Instead of  (5.6) the model will now be 
algorithm to the example of Section V-C. 

given  by 

and 6 = ( ;).The corresponding input-output  model  is 

i.e.,  a first-order ARMA process.  We estimate u and k 
with the scheme (8.5)-(8.10) in whch now 

D, =O 
B, = O  
A ,  = Li( t )  

K, = R( t )  

M, = [ ? ( r )  ~ ( r ) ] .  
Then,  according  to  Theorem 8.1, i ( t )  and i ( t )  will tend  to 
a stationary point of 

e= R-'f(B,A) 

A=H(6)-A (8.17) 

Er2( t, 6 )  

where 

k = G ( 6 ' ) - R + 8 1  

where 

and 
But it  is  proved in [24] that this function has  only one 

1 d  stationary point, namely a = a,, k = k,. Consequently, the 
2 d6 modified algorithm yields estimates that converge  with 

probability 1 to the  true values.  This holds irrespective of 
the value h in (5.5), and we have thus solve the bias 
problems  as  well as the convergence  problems of Section 

f(6,A)= - - E - [ C e T ( t ; 6 ) A - ' ~ ( t ; 6 ) ] .  

With the Lyapunov-function 

v,(e,A)=-E~'(r;B)A-'~(t;8)+;!iogdetA 2 1 1 v-c. 
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We  may also note that the same result  holds for a 
general AkMA-process 

y ( t ) + a l y ( t - l ) + . . -   + a J ( t - n )  

=e( t )+c ,E( t - I )+  - - e  +c,E(t-n) 

for which we use the state model 

- a l  1 0 0 

-a2 0 1 0 

where k, corresponds to c, - a, or 

x ( t +  1)= 

-a1 ..* 
1 0 ... 
0 1 

.. . 

... 

0 0 * . -  1 

+ 
1 
0 

0 

- an 
0 
0 

0 

(8.19) 

(8.20) 

Application of the modified EKF-algorithm (8.5)-(8.10) 
to (8.20) or (8.21) consequently  yields  convergence almost 
surely to the true parameter values of  (8.19). (The result of 
[24] shows that all stationary points of V,(8), for the 
model  (8.20) or (8.21)  give a correct description of (8.19).) 
This algorithm therefore is  very  powerful  for  modeling 
time  series. 

IX. CONCLUSIONS 

The recursive parameter estimation problem for linear 
systems  is inherently a nonlinear filtering problem, and as 
pointed out in [12] there are in principle no differences 
between parameter estimation and state estimation. For 
the nonlinear filtering problem, approximative techniques 
have to be used, and as remarked in [12], an essential 
difficulty  with all approximation techniques is to establish 
convergence. Indeed, much of the work  associated  with 
nonlinear filtering concerns divergence  problems. For the 
specific method under discussion here, the convergence 

analysis has illuminated, in an essential way, the possible 
causes of divergence and bias, 

In short, the reason for divergence can  be traced to the 
fact that the effect on the Kalman gain K of a change in 8 
is not taken care of. This lack of coupling between K(t) 
and 8 in the algorithm may, as demonstrated in Section V, 
lead to divergence of the estimates, even for simple  cases, 
where  only  system parameters are unknown. This inter- 
pretation is consistent with the observations in practical 
applications [25], that the behavior of the EKF often is 
worse  when the residuals are large and/or the inputs are 
small. In such cases the coupling term obviously  becomes 
more important. 

Also, for cases  where the steady-state Kalman gain does 
not depend on 8, like for deterministic models, we will 
have good convergence properties. This was demonstrated 
in  Section  VI. 

We have also found the remedy for the general case. If 
we include (an approximation of) a term 

in  the  coupling  term M, as described in Sections VI1 and 
VIII, global convergence  results are obtained, and the 
procedure can  be interpreted as a minimization of the 
prediction error associated with model 8;  I F ( t ;  @ I 2 .  Inclu- 
sion of a term like  (9.1) is of course particularly simple if 
the model is  given in the innovations form (8.1)  with K(8) 
explicitly parameterized. However, it could be done also 
for the general case (3.1),  (3.2) as shown in Section VII. In 
practical applications of the EKF, “manual” adjustments 
of the noise covariances are often used to make the 
algorithm work. This is the “tuning of the filter.” The 
inclusion of parameters associated with the Kalman gain 
can thus be interpreted as automatic tuning of the filter. 
Also, the analysis has shown that it is the innmatiom 
representation form rather  than  the  original state-space form 
that should be  the basis for the  linearization  procedure in the 
EKF. 

The convergence  analysis of the EKF using the  dif- 
ferential equation approach has thus given two different 
contributions. Results about the asymptotic behavior of 
the usual EKF algorithm that appear to be new  have been 
obtained and discussed in Sections V and VI. In addition, 
a modification of the algorithm has been suggested that 
yields considerably improved  convergence  properties. The 
convergence properties of the modified algorithm are in 
fact equally good as those of off-line prediction error 
identification methods, e.g.  1261-[28] (and maximum  like- 
lihood methods). Notice that in the convergence  results of 
Theorems 6.1-8.1 it  is not necessary to assume that the 
true system can  be described within  the  model parameteri- 
zation. Convergence to a local minimum of the variance 
of the associated residuals is still obtained, and this result 
coincides  with the general results on prediction error 
methods, [27].  If an exact description is  possible, then it 
can always be checked  whether the local minimum  in 
which the algorithms stops is a global one (i.e.,  give the 



48 IEEE TRANSACTIONS ON AUTOMATIC CONTROL VOL. AC-24,  NO. 1, FEBRUARY 1979 

true description of the system)  by  performing a residual 
test. For some particular parameterizations it  is (z priori 
known that all stationary points indeed are global 
minima.  Among  these structures probably  ARMA-models 
of time  series are the most important ones. 

The  discussion has throughout  been for the case of 
estimating parameters that  are known to be constant. This 
is  of course inherent in  convergence  analysis. It is reason- 
able to assume that the analysis is relevant also for the 
case of slowly drifting parameters. Then some  small pro- 
cess  noise  would  be added to the extended half  of the 
state vector and the gain L(t)  would then not tend to zero 
but to a "small"  value. For the genuine nonlinear filtering 
problem  this situation corresponds to the case  where  some 
modes are considerably slower than the other ones. 

Finally, it is clear that the EKF and its  modified 
versions  have obvious relationships with other suggested 
recursive  parameter estimation schemes,  [4].  These con- 
nections are discussed  in [ 181 and [21]. In fact, the mod- 
ified algorithm of Section VI11 should be regarded as  a 
recursive prediction error (RPE) algorithm, where the way 
of calculating P3 is inspired by the EKF.  For practical 
implementations of the algorithms discussed  here,  it 
should be  noted that in order to achieve acceptable con- 
vergence rates some  mechanism that gives a somewhat 
slower decrease of the gain L(t)  must  be introduced. Some 
ways to do this are discussed in [4]. 

APPENDIX I 
PROOF OF LEMMA 4.1 

In  this  Appendix  we will have to make frequent refer- 
ences to [ 131, which  is  assumed to  be available. 

In order to verify that (3.14)-(3.20')  satisfies the condi- 
tions of Theorems 1 and  2 in [ 131,  we shall  first  give the 
algorithm in an asymptotic form, where certain terms 
tending to zero are sorted out. 

From the matrix inversion lemma (3.20) can  be  rewrit- 
ten as 

P;I(r+I)=P,-'(t)+P,'(t)L(t)S,-' 

We can  now rewrite (3.15) and  (3.20) as 

b(t + I )  = s(t> + f L(t) [ y ( t )  - c,a(t) 1 (A.3a) 

F;I(t+l)=F;I(t) 

+ - 1 [ P-;yt)L(t)q[ Q,+ C, 

1 

t+  1 

x ( p l ( t )  - f ~ ~ ( t ) ~ ; l ( r ) ~ - ~ ( t ) )  CT] - 1  

x S l L " ( t ) ~ ~ 1 ( t ) + 6 Z - ~ ~ ' ( t )  . (A.3b) 

These  two quantities correspond to the estimate vector 
in the general recursive algorithm of [ 131. Let this estimate 
vector ( ( t )  (in [ 131 called x ( t ) )  be 

and let the observation vector of [ 131 be 

where "Col" denotes some  way to convert a matrix to a 
column vector. The updating of the &vector is  given  by 
(A-3) 

E(t+l)=t( t )+ fQ(t'(t),rp(t),S,) (A.4) 

with a slightly  complex, but straightforward definition of 
Q ( - ,  -, -). Moreover,  from (3.19') and (3.14)  we have 

I A, - K(t)C,  i 0 q ( t  + 1) = - - - - - - - - - - + - - - - - - 
5(B(t),K(t),F3(t),t) ; A , - K ( t ) C ,  

where the matrix {(., -, 1, .) is obtained from (3.1Y). The 
relationship is linear since MI and Dl are linear functions 
of a(t)  and u(t). Denote the dynamics matrix of (A.5)  by 

xs , - 'L~(t)P;I( t )+8z.  

Since the expression  within brackets is  positive definite, 
we find that 

PC I (  t )  >&I. (A. 1) 

F3( t )  = t*P3( t ) .  (A.2a) 

Therefore, introduce 

From (3.19') it follows that P2(t) is  of the same order of 
magnitude as P3(t), as long as [ A ,  -K(t)C,] is stable. 
Therefore, introduce also 

F2( t )  = t*P2( t )  (A.2b) 

Its stability properties obviously coincide with those of 
A ( @ ) -  K(e)C(e) for a constant e. This matrix is stable if 

To verify the B-conditions of [13]  we note that the 
quadratic structure of Q( ., . , -) and the assumed differen- 
tiability of C(B), D(B,a), etc. assure that B.3 holds. As the 
Lipschitz constant we may take 

e E 0,. 

K,(~,cp,K,t')=CM(IeI+5)(1+Icpl+t')2(1+1P-331+5) 

where 

Z( t )  = t.L(t). (A.2c)  With K, as above, clearly also B.4 holds. Since all 
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moments of u(r), e(r), and u(t) are assumed to exist, so 
will also  all moments of Q, K,,  and K2, which  verifies 
condition B.7. Conditions B.8-B.11 are all satisfied for 
y( t )= l/r. 

The only problem in the application of the theorem is 
associated with condition B.5. As discussed in [13,  Appen- 
dix VI, (A.2)  is  more general than (1) and (2) of [ 131, since 
CY(., -, -, -) is a function of K(t), which  is not a direct 
function of 8. It will, however,  be  close to K(d(t)) for large 
t. In order to apply the results of [ 131,  we therefore have to 
consider 

I m - m J  
where K(B) is defined by (4.1). 

Now consider the situation when d(r) belongs to a  small 
enough neighborhood of e E Ds-agd K(t)  belongs to a 
small enough neighborhood of K(B) for n Q r Q j -  1 and 
IF(n)l <C,  IF2(n)I <C  (which is the situation from which 
the proofs in [13] are built up). Then [A,-K(t)C,] is 
exponentially stable for n Q r Q j and we find that 

1q(j)l <CP-n+u( j , i , c )  

as in (1.14) of [13]  with u ( - ,  e;) defined in [13]. From 
(3.16) and (4.1)  we find that 

I K ( ~ ) - K ( B ) I  < I ~ , P l ( j ) C , - A ( B ) P , ( B ) c ( B ) I  
1 

+ C.  7 I d j )  1, ( A 4  

Moreover, 

Ip,(j)  - Fl(B)l < C- max l ~ ( k )  - SI 
n < k $ j  

+ C- - max (1 + lq(k)13) 1 
fl n < k < j  

+ CA'-"IP,(n) - Fl(8)1 (A.7) 

which  follows from the fact that the Riccati equation 
(3.18)  is stable with  respect to disturbances in its parame- 
ters, and exponentially stable with  respect to initial condi- 
tions, [ 11. 

The effect of (A.6)  with  (A.7)  in the proofs of [13]  will 
be that in the expressions  following (1.18), p.  566,  a  term 
should be added. In the final expression (1.27) this  term 
takes  the form 

and Step 3c of [13]  is  still  valid. 
A  similar problem arises from the fact that in  (A.4) S, 

enters, which  is not a direct function of &r). However, for 
large t ,  St - S(d(t)) will be small and bounded by the same 
quantities as in (A@, (A.7). 

It now  remains  only to show that the associated dif- 
ferential equation in fact is  (4.8). With ,$ fixed to the 
values 0 and F;:, we find that the upper part of the 
pvector will be 2(t;B), given  by  (4.2),  (4.3).  Similarily, 
comparing (3.19')  with  (4.4) we find that the lower part of 

N C O  is 
F2(t; e,F3) = q t ;  e)F3 

where V(t;e)  is  given  by  (4.4), and  that consequently  (cf. 
(3-17)) - 

L"(t; e,&) = F3[ wT(t;  e)cT(e) 
+ ~ ~ ( e , I ( t ; e ) ) ] S - ~ ( e )  

= F 3 J ( t ; e ) S - l ( e ) .  (A.9) 

Hence,  since  1 / t L ( t ) ~ ( t )  updates d(r) ( see  A.3a) the right- 
hand side of the differential equation (d.e.) associated 
with 0 will be 

- 
~ L ( t ; e , F ~ ) ~ ( t ; e ) = F ~ f ( e )  

wheref(0) is  given  by  (4.6).  Similarily, from (A.3b), what 
is updating F; ' is asymptotically 

F ~ ' ~ S ~ [ Q e + C , P l C , ' ] - ' S , ~ F ~ ' + 6 1 - F ~ ' .  

Now 

~ ~ ; l i ( r ; e , F ~ ) ~ ( e ) [ ~ ~ + c ( e ) ~ ~ ( e ) c = ( e ) ] - '  
X s(e),?(t; e , ~ ~ )  = ~ $ ( t ;  e)S-l(e)$T(t;  e )  

= G ( 6 )  

according to (A.9), (4.lb), (4.7). Hence, the right-hand 
side of the d.e. associated with 4-l is G(0) + 61- j ;  '. 
Introducing the notation R for P;' now  gives  the  d.e. 
(4.8). 

APPENDIX 11 
PROOF OF THEOREM 6.1 

Let us consider the differential equation (4.1)-(4.8) in 
case Q"=O. Then (4.1)  gives that Fl(e)=O, E(8)=0, and 
s(e)= Q e  for all 0 E 0,. Since K(B) =O in (4.2)  we find 
that, in fact, 

and hence 

$(tie)= --+;e). a -  
ae 

The last expression  implies,  via  (4.6), that 

(interchanging differentiation and expectation) where 
V(B) is defined in  the  theorem.  Along  a solution O(7) to 
(4.8)  we have 

= - 3.fT(8(.r))R 1 -'(r)f(Q(r)). 

Since R - ' ( r )  is a positive definite matrix, the function V 
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is a Lyapunov function for (4.8), i.e., it is decreasing 
outside the set 

which coincides with the set of stationary points of (5.1). 
As long as 6(<r) remains in D,, we have consequently 
shown that the estimate 8(t) converges  with probability 
one  to the set 0,. In fact, using  result  2) of Lemma  4.1,  it 
follows that among the isolated points in D, only the local 
minima of V ( 8 )  are possible  convergence points of {O( t ) } .  

We now turn to the question of the effect of projecting 
the estimates &t) into the set D,= {BIA(B) stable}. Since 
the function V ( 6 )  tends to infinity as 0 approaches the 
boundary of D,, the trajectories of  (5.1)  which point 
“downhill” cannot cross the boundary. Therefore, Lemma 
4.1:3)  implies  convergence of the estimates to 0,. Finally, 
we shall  somewhat  comment  upon the set 0,. Suppose 
that there exists a @,E 0, such that (6.3) holds that is, 8, 
gives  the true input-output transfer function for the 
model.  From the representation (2.10) of the true system 
we find that 

V(t)=C,(ql-A,)-’B,u(t) 

+ C,(ql-A,)-lKOEO(t)+Eo(t)  

= c(e,)a(t; e,) 
+(Co(qz -A , ) - ’K ,+I )EO( t )  

where  the last equality follows  from  (6.1).  We then have 

q t , q  = c(e,)Z(t; e,) - c(e)i(t; e )  
+ ( C ~ ( ~ l - A o ) - ’ ~ o + Z ) ~ , ( t ) .  (B.1) 

The estimate a ( t ; e )  is  formed entirely from u(s), s<t, 
and if the system operates in open  loop (u(t) independent 
of c0(s), e,(s), all s), then the first two terms in (B.l) are 
independent of the last one. This means that So gives the 
globalminimum of the function EE~((t,6)(Qe)E1-(t,e), and 
in particular, that f(0,) = 0. 

If the system operates in closed  loop, where  the input is 
partly determined  from output feedback (u( t )  indepen- 
dent of co(s), e,(s), s>t) then we have to require that 
E ,  = 0 in order to draw the same conclusions. 

We have thus concluded that Bo€ 0,. Whether  this set 
contains more points is a question of the parameteriza- 
tion, and has to  be studied separately. 
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