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6.1

Factorial experiments - introduction

Design with two factors
6 measurements
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The estimate of the A-effect based on y:

̂Ay = [(y3 + y4) − (y1 + y2)]/2
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6.2

Design with two factors
4 measurements
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The estimate of the A-effect based on z:

̂Az = [(z2 + z4) − (z1 + z3)]/2
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6.3

One-factor-at-the-time or factorial design

Are ̂Ay and ̂Az equivalent ?

Var ̂Ay = ?

Var ̂Az = ?

Additive model:

Response = µ + A + B + residual

Can it always be applied?
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6.4

More complicated model:

Response = µ + A + B + AB + residual

Is it more needed for factorial designs than for block designs, for example, where
additivity is often assumed?

If interaction is present, then: which design is best ?

Usage of measurements: which design is best ?

In general: How should a factorial experiment be carried out ?
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6.5

Factorial designs and interaction

Design with two factors
4 measurements
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Response and A−effect
at the two B−levels 
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The change in the response when factor A is changed is the same at both B-levels
⇐⇒ no interaction
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6.6

Design with two factors
4 measurements
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Response and A−effect
at the two B−levels 
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The change in the response when factor A is changed depends on the B-level ⇐⇒
interaction

The second situation is often the case in factorial experiments

Never use one-factor-at-the-time designs. There exist better alternatives in all
situations.
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6.7

Blocking in factorials: Two alternative factorial designs

Complete randomization, 19th and 20th October

Additive Temperature

10oC 20oC 30oC 40oC

5% y y y y y y y y

10% y y y y y y y y

Yijk = µ + ai + cj + acij + Eijk

A completely randomized 2×4 factorial with two measurements per factor combi-
nation conducted over, say, two days. The design is one block of size 16.
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6.8

Replication 1, October 19th

Additive Temperature

10oC 20oC 30oC 40oC

5% y y y y

10% y y y y

Replication 2, October 20th

Additive Temperature

10oC 20oC 30oC 40oC

5% y y y y

10% y y y y

Yijk = µ + ai + cj + acij + Dayk + Zijk

A completely randomized 2×4 factorial with one measurement per factor combi-
nation, but replicated twice, one replication per day, i.e. two blocks of size 8.

Never use the first design. Why ?
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6.9

Example from Montgomery p 164

Material Temperature

type 15oF 70oF 125oF

1 130 155 34 40 20 70

Data 74(?) 180 80 75 82 58

Averages y=134.75 y=57.25 y=57.50

2 150 188 136 122 25 70

Data 159 126 106 115 58 45

Averages y=155.75 y=119.75 y=49.50

3 138 110 174 120 96 104

Data 168 160 150 139 82 60

Averages y=144.00 y=145.75 y=85.50

Yijk = µ + mi + tj + mtij + Eijk
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6.10

A better design

Round I

Material Temperature

type 1 15oF 70oF 125oF

1 y y y y y y

2 y y y y y y

3 y y y y y y

Round II

Material Temperature

type 15oF 70oF 125oF

1 y y y y y y

2 y y y y y y

3 y y y y y y

Yijk = µ + mi + tj + mtij + Rk + Zijk

Give (at least) three reasons why this design is to be preferred.
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6.11

Response and temperature
effects for 3 materials 

m=1
m=2

m=3

50

75

100

125

150

175

15 70 125

The figure indicates a possible interaction between materials and temperature.

It is a common case that different ’materials’ react differently to fx temperature
treatments.
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6.12

ANOVA and estimation in factorial design

Yijk = µ + mi + tj + mtij + Eijk

ANOVA for battery data

Source of var. SSQ d.f. s2 EMS F-test

Materiel 10684 2 5342 σ2 + 12φm 7.91

Temperature 39119 2 19559 σ2 + 12φt 28.97

Interaction 9614 4 2403 σ2 + 4φmt 3.56

Residual 18231 27 675.2 σ2

Total 77647 35

F (4, 27)0.05 = 2.73 =⇒ all parameters in the model are significant at the 5% level
of significance.
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6.13

Estimates of parameters
for full model

µ̂ = Y ...

m̂i = Y i.. − Y ...

t̂j = Y .j. − Y ...

m̂tij = Y ij. − Y i... − Y .j. + Y ...

σ̂2
E = s2

resid

Estimates of parameters
for additive model

µ̂ = Y ...

m̂i = Y i.. − Y ...

t̂j = Y .j. − Y ...

m̂tij = 0 (not in model)

σ̂2
E = (SSQresid + SSQmt)/(fresid + fmt)
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6.14

Model control based on residuals
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7.1

Factorial experiments with two-level factors

The simplest example: 2 factors at 2 levels.

1. factor is called A (can be a temperature fx) (the supposedly most important
factor)

2. factor is called B (can be a concentration of an additive)(the supposedly next
most important factor)

For each factor combination r measurements are carried out (completely random-
ized):

20



7.2

22 factorial design

B=0 B=1

Y001 Y011

A=0 : :

Y00r Y01r

Y101 Y111

A=1 : :

Y10r Y11r

Yijk = µ + Ai + Bj + ABij + Eijk

Both indices i and j can take the values ’0’ or ’1’.

µ, Ai, Bj and ABij are the parameters of the model

21

7.3

Restrictions on parameters: fx A0 + A1 = 0 =⇒

A0 = - A1 and B0 = - B1 and

AB00 = - AB10 = - AB01 = AB11

All parameters have only one numerical value, positive or negative, depending on
the factor level(s).
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7.4

Effects. Special concept for 2 level factors

Effect = change in response when the factor is changed from level ’0’ to ’1’, thus

A-effect: A = A1 - A0 = 2A1 (main effect)

B-effect: B = B1 - B0 = 2B1 (main effect)

AB-effect: AB = AB11 - AB10 = 2AB11 (interaction)

In General:

k factors at 2 levels: A 2k factorial experiment

23

7.5

Special notation for 2k design

Two factors, k = 2

Standard notation for cell sums

(1) a

sum of r measurements

b abB=1

B=0
A=0 A=1

B=0 B=1

A=0 (1) b

A=1 a ab

Fx ’a’ = ∑r
k=1 Y10k , the sum in the cell where the factor A is at level ’1’ while factor

B is at level ’0’.
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7.6

Parameters, effects and estimation

A-parameter : Â1 = ( - (1) + a - b + ab)/4r

B-parameter : B̂1 = ( - (1) - a + b + ab)/4r

AB-parameter : ̂AB11 = (+(1) - a - b + ab)/4r

A-effect : Â = ( - (1) + a - b + ab)/2r = 2Â1

B-effect : B̂ = ( - (1) - a + b + ab)/2r = 2B̂1

AB-effect : ÂB = (+(1) - a - b + ab)/2r = 2 ̂AB11

25

7.7

A (very) small numerical example

Y = response = purity in solution after 48 hours

A = 1. factor = temperature (4oC , 20oC)

B = 2. factor = concentration of additive (5%, 10%)

B=0 B=1

A=0
12.1
14.3

19.8
21.0

A=1
17.9
19.1

24.3
23.4

(1)=26.4 b=40.8
a=37.0 ab=47.7

26

7.8

Standard ANOVA table for example

Source of var. SSQ d.f. s2 F-value
A: temp 38.28 1 38.28 35.75
B: conc 78.75 1 78.75 73.60
AB: interaction 1.71 1 1.71 1.60
Residual 4.27 4 1.07
Total 123.01 7

Critical F-value: F (1, 4)0.05 = 7.71 =⇒

main effects (highly) significant

interaction not significant

27

7.9

Estimation in detail

(1) a b ab

26.4 37.0 40.8 47.7

µ̂ = (+26.4 + 37.0 + 40.8 + 47.7)/(22 · 2) = 18.99

Â1 = ( - 26.4 + 37.0 - 40.8 + 47.7)/(22 · 2) = 2.19

Â0 = - A1 = −2.19

Â = Â1 - Â0 = 2Â1 = 4.38

B̂1 = ( - 26.4 - 37.0 + 40.8 + 47.7)/(22 · 2) = 3.14

B̂0 = - B1 = - 3.14

B̂ = B̂1 - B̂0 = 2B̂1 = 6.28

σ̂2 = (SSQAB + SSQresid)/(1 + 4) = 1.196 ' 1.12

(pooled estimate)

28



7.10

Yates algorithm, testing and estimation

Yates algorithm for k = 2 factors
Cell sums I II = contrasts SSQ Effects
(1) = 26.4 63.4 151.9 = [I] − µ̂ = 18.99
a = 37.0 88.5 17.5 = [A] 38.25 ̂A = 4.38
b = 40.8 10.6 25.1 = [B] 78.75 ̂B = 6.28
ab = 47.7 6.9 - 3.7 = [AB] 1.71 ̂AB = - 0.93

The important concept about Yates’ algorithm is that is
represents the transformation of the data to the contrasts -
and subsequently to the estimates and the sums of squares!

29

7.11

Explanation:

Cell sums: Organized in ’standard order’: (1), a, b, ab

Column I:
63.4 = +26.4+37.0 (sum of two first in previous column)

88.5 = +40.8+47.7 (sum of two next)

10.6 = - 26.4+37.0 (reverse difference of two first)

6.9 = - 40.8+47.7 (reverse difference of two next)

Column II: Same procedure as for column I (63.4+88.5=151.9)

SSQA: [A]2/(2k · 2) = 38.25 (k=2) and likewise for B and AB

A-Effect: ̂A = [A]/(2k−1 · 2) = 4.38 and likewise for B and AB

The procedure for column I is repeated k times for the 2k design

The sums of squares and effects appear in the ’standard order’

30

7.12

Numerical example with three factors (coded data)

B=0 B=1
A=0 - 3, - 1 - 1, 0
A=1 0, 1 2, 3

C=0

B=0 B=1
- 1, 0 1, 1
2, 1 6, 5

C=1

(1) = - 4 b = - 1
a = +1 ab = +5

c = - 1 bc = +2
ac = +3 abc = 11

31

7.13

Yates algorithm for k = 3 factors

Cell sums I II III = contrasts SSQ Effects

(1) = - 4 - 3 1 16 = [I] - µ̂ = 1.00

a = 1 4 15 24 = [A] 36.00 Â = 3.00

b = - 1 2 11 18 = [B] 20.25 B̂ = 2.25

ab = 5 13 13 6 = [AB] 2.25 ÂB = 0.75

c = - 1 5 7 14 = [C] 12.25 Ĉ = 1.75

ac = 3 6 11 2 = [AC] 0.25 ÂC = 0.25

bc = 2 4 1 4 = [BC] 1.00 B̂C = 0.50

abc = 11 9 5 4 = [ABC] 1.00 ̂ABC = 0.50

SSQresid = [((−3)2 + (−1)2) − (−3 − 1)2/2] + ....

= 2.00 + . . . + 0.50 = 5.00, s2
resid = SSQresid/8 = 0.625

(variation within cells, r - 1 = 2 - 1 degrees of freedom per cell)

SSQA = [A]2/(r · 2k), Effect Â = [A]/(r · 2k−1), parameter Â1 = [A]/(r · 2k), Â0 = −Â1, and

Â = 2Â1.
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8.1

Block designs, principles and construction

Example: factors A, B and C:

Recipes A0 ⇔ temp = 20oC A1 ⇔ temp = 28oC

B0 ⇔ conc = 1% B1 ⇔ conc = 2%

C0 ⇔ time = 1 hour C1 ⇔ time = 2 hours

The treatments are (1) a b ab c ac bc abc

A randomized (with respect to days) plan bc a b c (1) ab abc ac

33

8.2

Discussion af the randomized plan

Problem
The total time needed to carry out the plan is 1 hour for C0 treatments and 2 hours
for C1 treatments: 2 + 1 + 1 + 2 + 1 + 1 + 2 + 2 = 12 hours.

Suggestion
Distribute the 8 experiments randomly over two days with 6 hours per day:

Day 1 ∼ 6 hours Day 2 ∼ 6 hours

bc a b c (1) ab abc ac

Is it balanced with respect to factors and days ?

Is this a good design ? What can go wrong ? What kind of variable is ’Days’ ?

34

8.3

An experiment with no influence from days

Day 1: D1 = 0 bc = 21 a = 23 b = 16 c = 20

Day 2: D2 = 0 (1)=14 ab = 25 abc = 25 ac = 29

Cell sums I II III = contrasts SSQ Effects

(1) = 14 37 78 173 = [I] - µ̂ = 21.625

a = 23 41 95 31 = [A] 120.125 Â = 7.75

b = 16 49 18 1 = [B] 0.125 B̂ = 0.25

ab = 25 46 13 -5 = [AB] 3.125 ÂB = −1.25

c = 20 9 4 17 = [C] 36.125 Ĉ = 4.25

ac = 29 9 -3 -5 = [AC] 3.125 ÂC = −1.25

bc = 21 9 0 -7 = [BC] 6.125 B̂C = −1.75

abc = 25 4 -5 -5 = [ABC] 3.125 ̂ABC = −1.25

D1 and D2 are contributions from the two days (none here).

What happens if D1 and D2 are in fact not identical (there is a day-today effect) ?

35

8.4

The same experiment if D1 and D2 (days) in fact are different

Day 1: D1 = +8 bc = 29 a = 31 b = 24 c = 28

Day 2: D2 = +2 (1) = 16 ab = 27 abc = 27 ac = 31

Cell sums I II III = contrasts SSQ Effects Day effect

(1) = 16 47 98 213 = [I] - µ̂ = 26.625 yes

a = 31 51 115 19 = [A] 45.125 Â = 4.75 yes

b = 24 59 18 1 = [B] 0.0125 B̂ = 0.25

ab = 27 56 1 -17 = [AB] 36.125 ÂB = −4.25 yes

c = 28 15 4 17 = [C] 36.125 Ĉ = 4.25

ac = 31 3 -3 -17 = [AC] 36.125 ÂC = −4.25 yes

bc = 29 3 -12 -7 = [BC] 6.125 B̂C = −1.75

abc = 27 -2 -5 7 = [ABC] 6.125 ̂ABC = 1.75 yes

The experimentor cannot know (or estimate) the difference between days.
The difference between days contaminates the results.
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8.5

How can we place the 8 measurements on the two days in
such a way that the influence from days is under control ?

Answer: Let ’Days’ (blocks) follow one of the effects in the model:

Yijk = µ + Ai + Bj + ABij + Ck + ACik + BCjk + ABCijk + Error + Day`

Which term could be used ? Not a main effect, but some higher order
term, for example ABC (why ABC ?):

We want the confounding Blocks = ABC .

We say : defining relation I = ABC . . . but how do we do it?

Look at how contrasts for effects are calculated :

37

8.6

Yates algorithm - schematically - once again:

(1) a b ab c ac bc abc

[I ] = +1 +1 +1 +1 +1 +1 +1 +1

[A] = - 1 +1 - 1 +1 - 1 +1 - 1 +1

[B] = - 1 - 1 +1 +1 - 1 - 1 +1 +1

[AB] = +1 - 1 - 1 +1 +1 - 1 - 1 +1

[C] = - 1 - 1 - 1 - 1 +1 +1 +1 +1

[AC] = +1 - 1 +1 - 1 - 1 +1 - 1 +1

[BC] = +1 +1 - 1 - 1 - 1 - 1 +1 +1

[ABC] = - 1 +1 +1 - 1 +1 - 1 - 1 +1

Note that any two rows are ’orthogonal’ (product sum = zero).

Thus [A] and [B], for example, are orthogonal contrasts.

The ’index’ for ABCijk is i · j · k if indices are - 1 or + 1 like in Yates’ algoritm.

Choose ` = i · j · k =+1 for a b c abc og -1 for (1) ab ac bc =>
the two blocks wanted.

38

8.7

The confounded block design: Blocks = ABC

Ideal data without influence from blocks:

Day 1: D1 = 0 ab = 16 bc = 21 (1) = 12 ac = 20

Day 2: D2 = 0 b = 24 a = 28 abc = 34 c = 22

Cell sums I II III = contrasts

(1) = 12 40 80 177 = [I]

a = 28 40 97 19 = [A]

b = 24 42 8 13 = [B]

ab = 16 55 11 - 9 = [AB]

c = 22 16 0 17 = [C]

ac = 20 - 8 13 3 = [AC]

bc = 21 - 2 - 24 13 = [BC]

abc = 34 13 15 39 = [ABC]

What happens if the two days in fact influence the results differently (there is a
day-to-day effect) ?

39

8.8

Real data with a certain influence (unknown in practice) from blocks (days):

Day 1: D1 = +8 ab = 24 bc = 29 (1) = 20 ac = 28

Day 2: D2 = +2 b = 26 a = 30 abc = 36 c = 24

Cell sums I II III = contrasts Day effect

(1) = 20 50 100 217 = [I] yes

a = 30 50 117 19 = [A]

b = 26 52 8 13 = [B]

ab = 24 65 11 -9 = [AB]

c = 24 10 0 17 = [C]

ac = 28 -2 13 3 = [AC]

bc = 29 4 -12 13 = [BC]

abc = 36 7 3 15 = [ABC] yes

What has changed and what has not changed? Why?

The effect from days is controlled (not eliminated) only to influence the ABC
interaction term (block confounding).
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8.9

Construction using the tabular method :

Arrange data in standard order and use column multiplication :

Factor levels Block no. =

Code A B C ABC = A·B·C
(1) -1 -1 -1 -1

a +1 -1 -1 +1

b -1 +1 -1 +1

ab +1 +1 -1 -1

c -1 -1 +1 +1

ac +1 -1 +1 -1

bc -1 +1 +1 -1

abc +1 +1 +1 +1

Block no. −1 => one block, Block no. +1 => the other block

41

8.10

Analysis of variance for block confounded design

In the example we imagine that r=2 measurements per factor combination were
used. The residual SSQ is computed as the variation between these two measure-
ments giving a total residual sum of squares with 8 degrees of freedom.

Correspondingly the responses on slide 8.8 (bottom) are sums of 2 measurements.

42

8.11

ANOVA for block confounded three factor design

Effects SSQ d.f. s2 F-value

A 22.56 1 22.56 9.12

B 10.56 1 10.56 4.27

AB 5.06 1 5.06 2.05

C 18.05 1 18.05 7.30

AC 0.56 1 0.56 0.22

BC 10.56 1 10.56 4.26

ABC = Blocks 14.06 1 14.06 not relevant

Residual 19.80 8 2.475

Total 101.24 15

F (1, 8)0.05 = 5.32 =⇒ A and C main effects are significant. The B effect is only
significant at the 10% level of significance, and so is BC.

The ABC effect cannot be tested because it is confounded with blocks (days)
(does it seem to be a real problem ?).
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8.12

A few generalizations

A 24 factorial design in 4 blocks of 4 :

I2 = BCD ∼ Days

(1) bc d bcd

I1 = ABC ∼ abd acd ab ac

Operators a abc b c

bd cd ad abcd

The principal block: (1) bc abd acd

b× (1) bc abd acd = b b2c ab2d abcd ⇒ b c ad abcd = another block!

Multiply any block with an ’element’ that is not in the block, and you get another
block.

Total block variation = ABC + BCD + ABC·BCD = ABC + BCD + AD

When analyzing the data from the above 24 design all effects A, B, AB, ... , ABCD
except ABC, BCD and AD can be estimated and tested.

ABC, BCD and AD are confounded with blocks
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8.13

Construction principle : Introduce blocks into factorial by confounding

Effect Confound

Level

A

B

AB

AC

BC

ABC = I1
D

AD <= ABC·BCD

BD

ABD

ACD

BCD = I2
ABCD

All effects ABC, BCD and ABC·BCD = AD will be confounded with blocks.
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8.14

Construction using the tabular method

Factor levels Four different Principal

Code A B C D ABC BCD blocks block

(1) −1 −1 −1 −1 −1 −1 1 : ( −1 , −1) (1)

a +1 −1 −1 −1 +1 −1 2 : ( +1 , −1)

b −1 +1 −1 −1 +1 +1 4 : ( +1 , +1)

ab +1 +1 −1 −1 −1 +1 3 : ( −1 , +1)

c −1 −1 +1 −1 +1 +1 4 : ( +1 , +1)

ac +1 −1 +1 −1 −1 +1 3 : ( −1 , +1)

bc −1 +1 +1 −1 −1 −1 1 : ( −1 , −1) bc

abc +1 +1 +1 −1 +1 −1 2 : ( +1 , −1)

d −1 −1 −1 +1 −1 +1 3 : ( −1 , +1)

ad +1 −1 −1 +1 +1 +1 4 : ( +1 , +1)

bd −1 +1 −1 +1 +1 −1 2 : ( +1 , −1)

abd +1 +1 −1 +1 −1 −1 1 : ( −1 , −1) abd

cd −1 −1 +1 +1 +1 −1 2 : ( +1 , −1)

acd +1 −1 +1 +1 −1 −1 1 : ( −1 , −1) acd

bcd −1 +1 +1 +1 −1 +1 3 : ( −1 , +1)

abcd +1 +1 +1 +1 +1 +1 4 : ( +1 , +1)
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8.15

Partially confounded 2k factorial experiment

B = 0 B = 1
A = 0 (1) b
A = 1 a ab

Suppose batches=blocks, block size = 2 :

Experiment 1 :
(1)1 ab1 a1 b1

batch 1 batch 2
I = AB

Model as usual: Yijν = µ + Ai + Bj + ABij + Eijν+ batches (blocks)

AB interaction confounded with blocks in experiment 1.

47

8.16

Resolving block confoundings for AB with one more experiment:

Suppose we also want to assess the interaction term AB.
We need an experiment in which AB is not confounded:

Experiment 2 :
(1)2 a2 b2 ab2

batch 3 batch 4
I = B

using two new batches.

Model again: Yijν = µ + Ai + Bj + ABij + Eijν+ batches (blocks)

The B main effect is confounded with blocks in experiment 2, but AB is not.
AB can then be estimated in experiment 2.

The price paid is that the main effect B can only be estimated in experiment 1
and AB only in experiment 2: Partial confounding.
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8.17

Analyze both experiments using contrasts :

Unconfounded contrasts

[A]1 = −(1)1 + a1 − b1 + ab1 (from experiment 1)

[A]2 = −(1)2 + a2 − b2 + ab2 (from experiment 2)

[B]1 = −(1)1 − a1 + b1 + ab1 (from experiment 1)

[AB]2 = +(1)2 − a2 − b2 + ab2 (from experiment 2)

Confounded contrasts

[AB]1 = +(1)1 − a1 − b1 + ab1 (from experiment 1)

[B]2 = −(1)2 − a2 + b2 + ab2 (from experiment 2)

Blocks

Variation calculated as usual: From block totals
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8.18

Use of unconfounded contrasts for effects:

The two (unconfounded) A-contrasts can be combined into an
estimate of A and a part which expresses uncertainty:

[A]total = [A]1 + [A]2 (both experiments combined)

[A]difference = [A]1 − [A]2 (both experiments combined)

Sums of squares for A and between unconfounded A’s:

SSQA = [A]2total/(2 · 22), df = 1

SSQUncert,A = ([A]21 + [A]22)/22 − SSQA, df = 2 − 1

Block (batch) totals = T1, T2, T3, T4, and Ttot = T1 + T2 + T3 + T4

SSQblocks = (T 2
1 + T 2

2 + T 2
3 + T 2

4 )/2 − T 2
tot/8, df = 4 − 1 =3.
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8.19

Estimates of effects:

̂A = [A]total/(2 · 22−1) Full precision

̂B = [B]1/(1 · 22−1) Half precision

̂AB = [A]2/(1 · 22−1) Half precision

In general
Estimate = [Contrast]/(R · 2k−1)
R = number of times the effect is unconfounded in the experiment

Here: RA = 2 , RB = 1 , RAB = 1, and r = 1 (is assumed here).
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8.20

Generalization:

A 2k factorial partially confounded, in principle as above:

Fx: RA = number of unconfounded A-contrasts : [A]1, [A]2, . . . , [A]RA

Assume r repetitions (most often r = 1) for each response within the blocks.

[A] = [A]1 + [A]2 + . . . + [A]RA
Â = [A]/(RA · r · 2k−1)

Â1 = −Â0 = [A]/(RA · r · 2k) Var{Â} = σ2/(RA · r · 2k−2)

SSQA = [A]2/(RA · r · 2k) fA = 1

SSQUncertainty,A =
∑RA

i=1[A]2i /(r · 2k) − SSQA fUncertainty,A = RA − 1

This calculation is done for all unconfounded effect-contrasts.

Block variation is calculated as the variation between blocks disregarding the factors.
It contains block effects and confounded factor effects.
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8.21

An example

Exp. 1 :
(1)1=15 ab1=7 a1=9 b1=5

batch 1 batch 2
I = AB

Exp. 2 :
(1)2=11 a2=7 b2=12 ab2=8

batch 3 batch 4
I = B

Exp. 3 :
(1)3=9 b3=11 a3=8 ab3=6

batch 5 batch 6
I = A

Model for experiment: Yijν = µ + Ai + Bj + ABij + Eijν+Block effects
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8.22

Calculations for a twice determined effect

[A]1 = - 15+7+9 - 5 = - 4 , [A]2 = - 11+7 - 12+8 = - 8

[A] = [A]1 + [A]2 = - 12 , ([A]3 ∼ blocks)

̂A = - 12/(2 · 22−1) = - 3.0 ,

SSQA = ( - 12)2/(2 · 22) = 18.0 ,

SSQUncert,A = [(−4)2 + ( - 8)2]/22 - 18 = 2.0

Likewise for B and AB.
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8.23

Completing the ANOVA table

Block totals : T1 = 15 + 7 = 22, T2 = 9 + 5 = 14, ... ,[T6] = 8 + 6 = 14

SSQblocks = ∑
i T

2
i /2 − (∑

i Ti)
2/12 =

(222 + 142 + . . . + 142)/2 − (22 + 14 + . . . + 14)2/12 = 28.0 , d.f. = 5

and it contains blocks and confounded factor effects

ANOVA table for example

Source d.f. SSQ s2 F-value p-value Precision

A 1 18.0 18.0 2.45 0.22 2/3

B 1 18.0 18.0 2.45 0.22 2/3

AB 1 2.0 2.0 0.27 0.64 2/3

Blocks+(A,B,AB) 5 28.0 5.60 (0.76) (0.63) –

Error 3 22.0 7.33

Total 11 88.0
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9.1

Fractional 2k designs

Example: factors A, B and C (the weights of 3 items) from 1.4 again

The complete factorial design (1) a b ab c ac bc abc

The weighing design from 1.4 was (1) ab ac bc

Estimate, for example: ̂A = [ - (1) +ab +ac - bc]/2
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9.2

Illustration by removing columns from contrast table

Contrasts (1) a b ab c ac bc abc

[I ] = +1 +1 +1 +1

[A] = - 1 +1 +1 - 1

[B] = - 1 +1 - 1 +1

([AB]) = +1 +1 - 1 - 1

[C] = - 1 - 1 +1 +1

([AC]) = +1 - 1 +1 - 1

([BC]) = +1 - 1 - 1 +1

([ABC]) = - 1 - 1 - 1 - 1

Note: [A] = −[BC], [B] = −[AC], [C] = −[AB] and [I ] = −[ABC] ⇐⇒
Confounding of factor effects.
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9.3

An alternative method of construction

Example: the complete 22 factorial

Effects

I Level

A A-effect

B B-effect

AB AB-interaction

Method: Introduce the extra factor, C, by confounding it with a A, B or AB. Which
one of these can (most probably) be 0 ?

Answer: AB (if any at all)

Confound C = AB ⇐⇒ Defining relation I = ABC

A and B form the complete underlying factorial. The factor C is introduced into
the complete underlying factorial as shown below:
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9.4

Construction of a 1/2 × 23 design: Tabular method

There are two possibilities.

Construction : C = - AB

22 design A B C = - AB (1/2)23

(1) - - - (1)

a + - + ac

b - + + bc

ab + + - ab

Construction : C = +AB

22 design A B C = +AB (1/2)23

(1) - - + c

a + - - a

b - + - b

ab + + + abc

The two designs are called complementary

Together they form the complete 23 factorial

In general : C = ± AB can be used, i.e. two possibilities
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9.5

Construction of a 24−1 design

The complete underlying factorial is formed by A, B and C - the three first (most
important) factors. Introduce D (the fourth factor):

Principle

1/2 × 24

I

A

B

AB

C

AC

BC

ABC = ± D
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9.6

Introduce factor D ⇒ 1/2 × 24 design: Tabular method

Choose one of the possibilities, fx

23 codes A B C D=+ABC 24−1 codes

(1) - - - - (1)

a + - - + ad

b - + - + bd

ab + + - - ab

c - - + + cd

ac + - + - ac

bc - + + - bc

abc + + + + abcd

The 24−1 design contains the data code ’(1)’, and it is called

The principal fraction
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9.7

Alias relations = Factor confoundings

Generator relation: D = +ABC =⇒ I = +ABCD : The defining relation

Alias relations

I = +ABCD

A = +BCD

B = +ACD

AB = +CD

C = +ABD

AC = +BD

BC = +AD

ABC = +D

The design is a resolution IV design

Main effects and three-factor
interactions confounded (often OK)

Two-factor interactions are confounded
with other two-factor interactions
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9.8

Analysis of data and the underlying factorial

The analysis can based on the underlying factorial (A,B,C)
(forget all about D while you do the computations) :

Yates algorithm for a 24−1 design

Measure-

ment Response 1 2 3 Contrast SSQ

(1) . 45 145 255 566 I + ABCD -

a d 100 110 311 76 A + BCD 722.0

b d 45 135 75 6 B + ACD 4.5

ab . 65 176 1 -4 AB + CD 2.0

c d 75 55 -35 56 C + ABD 392.0

ac . 60 20 41 -74 AC + BD 684.5

bc . 80 -15 -35 76 BC + AD 722.0

abc d 96 16 31 66 ABC + D 544.5

The data are from page 288 (6.ed) (5.ed: 308)
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9.9

Analysis of effects based on normal probability plot

The 7 estimated effects are 76/4, 6/4, ... , 66/4, respectively
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The present plot does not indicate any particularly small or large effect estimates

The plot is shown to illustrate the method. With only 7 points it is difficult to
conclude anything

The textbook has many more realistic examples
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9.10

Example continued

Suppose it is concluded that B=0 =⇒ AB=0, BC=0, BD=0

It could be concluded that also CD=0 (SSQAB+CD is small)

From the beginning it was assumed that BCD=0, ACD=0, ABD=0 and ABC=0
(3 factor interactions) and ABCD=0

Remove terms corresponding to all these assumptions and conclusions from the
analysis:
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9.11

Reduced model analysis of variance computations

Yates algorithm for a 24−1 design - final model

Measure- Esti-

ment Response 1 2 3 Effect SSQ mate

(1) . 45 145 255 566 µ - 70.75

a d 100 110 311 76 A 722.0 9.50

b d 45 135 75 6 4.5 -

ab . 65 176 1 -4 2.0 -

c d 75 55 -35 56 C 392.0 7.00

ac . 60 20 41 -74 AC 684.5 -9.25

bc . 80 -15 -35 76 AD 722.0 9.50

abc d 96 16 31 66 D 544.5 8.25

Residual variance estimate

σ̂2 = (4.5 + 2.0)/(1 + 1) = 3.25 ' 1.802

66

9.12

5 factors in 8 measurements

Construction

I

A

B

AB

C

AC = D

BC = E

ABC

=⇒
I1=ACD

I2=BCE

I1I2=ABDE

Alias relations - all

I = ACD = BCE = ABDE

A = CD = ABCE = BDE

B = ABCD = CE = ADE

AB = BCD = ACE = DE

C = AD = BE = ABCDE

AC = D = ABE = BCDE

BC = ABD = E = ACDE

ABC = BD = AE = CDE

In defining relation I = ACD = BCE = ABDE at least 3 letters in all terms
(except I) ⇒ Resolution is III.
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9.13

Alias relations for model without high order interactions

Without many-factor interactions

I

A = CD

B = CE

AB = DE

C = AD = BE

AC = D

BC = E

(ABC) = BD = AE
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9.14

Construction of 1/4 × 25 design

Underlying Introduce × de ⇒
Factorial D E Design Principal

Code A B C =+AC =+BC 25−2 fraction

(1) - - - + + de (1)

a + - - - + ae ad

b - + - + - bd be

ab + + - - - ab abde

c - - + - - c cde

ac + - + + - acd ace

bc - + + - + bce bcd

abc + + + + + abcde abc

In the principal fraction D = - AC and E= - BC, and t here are 4 possible (equally
usefull) designs:

D = ± AC

combined with

E = ± BC
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9.15

A 25−2 factorial in 2 blocks of 4

Use fx D= - AC and E= - BC and Blocks=ABC :

Alias relations reduced

I = - ACD = - BCE +ABDE

A = - CD

B = - CE

AB = +DE

C = - AD = - BE

AC = - D

BC = - E

(ABC) = - BD = - AE = Blocks
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9.16

Construction using the tabular method

23 A B C D= - AC E= - BC 25−2 ABC=Block

(1) - - - - - (1) - ∼ 1

a + - - + - ad + ∼ 2

b - + - - + be + ∼ 2

ab + + - + + abde - ∼ 1

c - - + + + cde + ∼ 2

ac + - + - + ace - ∼ 1

bc - + + + - bcd - ∼ 1

abc + + + - - abc + ∼ 2

Design:

Block 1 Block 2

(1) abde ace bcd ad be cde abc

Even ABC Uneven ABC
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10.1

Example 8-6 p 308, design construction

Construction of design by introducing the factors F, G and H into the complete factorial defined

by A, B, C, D and E. The design is carried out in 4 blocks.

I

A

B

AB

C

AC

BC

ABC = +F

D

AD

BD

ABD = +G

CD

ACD

BCD = Blocks

ABCD

E

AE

BE

ABE = Blocks

CE

ACE

BCE

ABCE

DE
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10.2

ADE

BDE

ABDE

CDE

ACDE = Blocks ( BCD*ABE = ACDE )

BCDE = +H

ABCDE

Example 8-6 p 308, statistical analyses

Analysis of 2**k complete and fractional factorial designs

This program was prepared by Henrik Spliid

Informatics and Mathematical Modelling (IMM)

Technical University of Denmark (DTU)

Lyngby, DK-2800, Denmark. (hs@imm.dtu.dk)

Version: 25/08/99

file=Montg_ex8-6.dat, Edited September 1, 2001. Course F-343, DFH.

Input for this problem was read from file Montg_ex9-6.dat

Output was written to file Montg_ex9-6.out

The 10 factors A - J are treated in the design

The 5 factors A - E define the complete underlying factorial structure

The 3 factors F - H are embedded in the underlying factorial structure

The 2 factors I - J define the blocking
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10.3

Description and options given by user :

Confoundings:(F=ABC,G=ABD,H=BCDE,Blocks=ABE=ACDE),

Options:(LaTeX Dispersion)

The treatments of the experiment were :

h afghj bfgij abi

cfi acgij bcghj abcfh

dgi adfij bdfhj abdgh

cdfgh acdhj bcdij abcdfgi

ej aefg befghi abehij

cefhij aceghi bceg abcefj

deghij adefhi bdef abdegj

cdefgj acde bcdehi abcdefghij

Data ordering in relation to standard order is :

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

17 18 19 20

21 22 23 24

25 26 27 28

29 30 31 32

From the treatments given above the following confoundings have been computed.

Interactions between factors and blocks assumed = zero

Max. factorial interaction order considered = 3
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10.4
Alias relations to interaction order 3 :

*

A = +BCF = +BDG

B = +ACF = +ADG

AB = +CF = +DG

C = +ABF = +DFG

AC = +BF = +EGH

BC = +AF = +DEH

ABC = +F = +CDG

D = +ABG = +CFG

AD = +BG = +EFH

BD = +AG = +CEH

ABD = +CDF = +G

CD = +FG = +BEH

ACD = +BDF = +BCG = +AFG

BCD = +ADF = +ACG = +BFG = +EH = Blocks

ABCD = +DF = +CG = +AEH

E

AE = +DFH = +CGH

BE = +CDH = +FGH

ABE = +CEF = +DEG = Blocks

CE = +BDH = +AGH

ACE = +BEF = +GH

BCE = +AEF = +DH

ABCE = +EF = +ADH = +BGH

DE = +BCH = +AFH

ADE = +BEG = +FH

BDE = +AEG = +CH

ABDE = +EG = +ACH = +BFH

CDE = +EFG = +BH

ACDE = +ABH = +CFH = +DGH = Blocks

BCDE = +H

ABCDE = +DEF = +CEG = +AH

Note: Design has resolution IV

==============================
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10.5From the treatments given above the following confoundings have been computed.

Interactions between factors and blocks assumed = zero

Max. factorial interaction order considered = 2

Alias relations to interaction order 2 :

*

A

B

AB = +CF = +DG

C =

AC = +BF

BC = +AF

ABC = +F

D =

AD = +BG

BD = +AG

ABD = +G

CD = +FG

ACD

BCD = +EH = Blocks

ABCD = +DF = +CG

E

AE

BE

ABE = Blocks

CE

ACE = +GH

BCE = +DH

ABCE = +EF

DE

ADE = +FH

BDE = +CH

ABDE = +EG

CDE = +BH

ACDE = Blocks

BCDE = +H

ABCDE = +AH
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10.6Response: Log-SD

Printout of input data:

Response Code A B C D E F G H I J

1 (1) = 1.02 h 0 0 0 0 0 0 0 1 0 0

2 a = 1.82 afghj 1 0 0 0 0 1 1 1 0 1

3 b = .89 bfgij 0 1 0 0 0 1 1 0 1 1

4 ab = 1.39 abi 1 1 0 0 0 0 0 0 1 0

5 c = .91 cfi 0 0 1 0 0 1 0 0 1 0

6 ac = 1.78 acgij 1 0 1 0 0 0 1 0 1 1

7 bc = .87 bcghj 0 1 1 0 0 0 1 1 0 1

8 abc = 1.21 abcfh 1 1 1 0 0 1 0 1 0 0

9 d = 1.48 dgi 0 0 0 1 0 0 1 0 1 0

10 ad = 1.41 adfij 1 0 0 1 0 1 0 0 1 1

11 bd = 1.17 bdfhj 0 1 0 1 0 1 0 1 0 1

12 abd = 1.33 abdgh 1 1 0 1 0 0 1 1 0 0

13 cd = 1.67 cdfgh 0 0 1 1 0 1 1 1 0 0

14 acd = 1.35 acdhj 1 0 1 1 0 0 0 1 0 1

15 bcd = 1.11 bcdij 0 1 1 1 0 0 0 0 1 1

16 abcd = 1.08 abcdfgi 1 1 1 1 0 1 1 0 1 0

17 e = .97 ej 0 0 0 0 1 0 0 0 0 1

18 ae = 1.70 aefg 1 0 0 0 1 1 1 0 0 0

19 be = .81 befghi 0 1 0 0 1 1 1 1 1 0

20 abe = 1.45 abehij 1 1 0 0 1 0 0 1 1 1

21 ce = .94 cefhij 0 0 1 0 1 1 0 1 1 1

22 ace = 1.68 aceghi 1 0 1 0 1 0 1 1 1 0

23 bce = .75 bceg 0 1 1 0 1 0 1 0 0 0

24 abce = 1.43 abcefj 1 1 1 0 1 1 0 0 0 1

25 de = 1.38 deghij 0 0 0 1 1 0 1 1 1 1

26 ade = 1.18 adefhi 1 0 0 1 1 1 0 1 1 0

27 bde = 1.23 bdef 0 1 0 1 1 1 0 0 0 0

28 abde = 1.46 abdegj 1 1 0 1 1 0 1 0 0 1

29 cde = 1.49 cdefgj 0 0 1 1 1 1 1 0 0 1

30 acde = 1.29 acde 1 0 1 1 1 0 0 0 0 0

31 bcde = 1.48 bcdehi 0 1 1 1 1 0 0 1 1 0

32 abcde = 1.22 abcdefghij 1 1 1 1 1 1 1 1 1 1
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10.7Effects and aliases no. Sum of Squares Deg.fr. Effect estimates

* 0 52.4032 1 1.2797

A 1 .6641 1 .2881

B 2 .3180 1 -.1994

A B 3 .0003 1 -.0056

C 4 .0058 1 -.0269

A C 5 .0294 1 -.0606

B C 6 .0167 1 -.0456

A B C = + F 7 .0124 1 -.0394

D 8 .0914 1 .1069

A D 9 1.1213 1 -.3744

B D 10 .0226 1 .0531

A B D = + G 11 .1093 1 .1169

C D 12 .0088 1 .0331

A C D 13 .0248 1 -.0556

B C D = + I 14 .0102 1 -.0356

A B C D 15 .0017 1 -.0144

E 16 .0000 1 -.0019

A E 17 .0004 1 .0069

B E 18 .0790 1 .0994

A B E = + J 19 .0088 1 .0331

C E 20 .0124 1 .0394

A C E 21 .0003 1 .0056

B C E 22 .0020 1 .0156

A B C E 23 .0026 1 -.0181

D E 24 .0026 1 .0181

A D E 25 .0063 1 -.0281

B D E 26 .0282 1 .0594

A B D E 27 .0215 1 -.0519

C D E 28 .0011 1 .0119

A C D E 29 .0011 1 -.0119

B C D E = + H 30 .0014 1 .0131

A B C D E 31 .0205 1 -.0506

------------------------------------------------------------------

Total for Effects 2.6247 31
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10.8Normal probability plot for estimates
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10.9

Estimates for final model:

==========================

Effect Estimate Stand. dev. t-test

-------------------------------------------------------------

Grand mean 1.2797 .0202 >99.95%

A .2881 .0404 >99.95%

B -.1994 .0404 >99.95%

D .1069 .0404 98.5 %

A D ( = BG ? ) -.3744 .0404 >99.95%

A B D = + G .1169 .0404 99.1 %

B C D = + I (blocks) -.0356 .0404 61.3 %

A B E = + J (blocks) .0331 .0404 57.9 %

A C D E (blocks) -.0119 .0404 22.8 %

Variability Estimate Stand. dev.

-----------------------------------------------------

Residual standard dev. .1143 .0169

Coefficient of variation 8.93 % 1.32 %

For computing the residual variance and standard deviation the sums

of squares for the significant effects and the blocks are subtracted

from the total variation giving the residual sum of squares with

32-1-8 = 23 degrees of freedom.

A model control can be made using the dispersion effects

See Montgomery p. 239 and 300.

The plot below does not indicate any dispersion effects :
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10.10Normal probability plot for dispersion effects
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10.11

Summary of analyses

Significant effects: A, B, D, AD, G (could be the conclusion)

Term Levels Effect Parameters

µ constant 1.28 1.28

A 0 - 15 × 0.001 inch 0.29 [ - 0.145, +0.145]

B 0 - 15 × 0.001 inch - 0.20 [+0.10, - 0.10]

D tool vendor 0.11 [ - 0.055, +0.055]

AD interaction - 0.37 [+0.185, - 0.185]

G 0 - 15 × 0.001 inch 0.12 [ - 0.06, +0.06]

σ2 residual variance 0.112 0.112
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10.12

Combining main effect and interaction effect estimates

The estimate of the combined effect af A, D and AD is :

A0= - 0.145 AD00= - 0.185 AD01=+0.185

A1=+0.145 AD10=+0.185 AD11= - 0.185

D0= - 0.055 D1=+0.055

giving (- 0.145 - 0.055 - 0.185 = - 0.385, for example) :

A = 0 - 0.385 +0.095

A = 1 +0.275 +0.015

D = 0 D = 1

The minimum response is wanted (it is log-standard deviation). Choose A=0, D=0,
B=1, G=0 (the combination with lowest estimated response)

Model identified

Yijkl = µ + Ai + Bj + Dk + ADik + Gl + εijkl
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