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0.1

Foreword

The present collection af lecture notes is intended for use in the courses given by the author about

the design and analysis of experiments. Please respect that the material is copyright protected.

The material relates to the textbook: D.C. Montgomery, Statistical Design and Analysis, 6th ed.,

Wiley.

The notes have been prepared as a supplement to the textbook and they are primarily intended to

present the material in both a much shorter and more precise and detailed form. Therefore long

explanations and the like are generally left out. For the same reason the notes are not suited as

stand alone texts, but should be used in parallel with the textbook.

The notes were initially worked out with the purpose of being used as slides in lectures in a design

of experiments course based on Montgomery’s book, and most of them are still in a format suited

to be used as such.

Some important concepts that are not treated in the textbook (especially orthogonal polynomials,

Duncan’s and Newman-Keuls multiple range tests and Yates’ algorithm) have been added and a

number of useful tables are given, most noteworthy, perhaps, the expected mean square tables for

all analysis of variance models including up to 3 fixed and/or random factors.
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0.2

A strict mathematical presentation is not intended, but by indicating some of the exact results and

showing examples and numerical calculations it is hoped that a little deeper understanding of the

different ideas and methods can be achieved.

In all circumstances, I hope these notes can inspire and assist the student in studying and learning a

number of the most fundamental principles in the wonderful art of designing and analyzing scientific

experiments.

The present version is a revision of the previous (2003) notes. Some of the material is reorganized

and some additions have been made (sample size calculations for analysis of variance models and a

simpler calculation of expectations of mean squares (2005)).

July 2004

A moderate revision has been made in January 2006 in which, primarily, the page references have

been changed to the 6th edition of Montgomery’s textbook.

January 2006

A larger revision was undertaken in August 2006. The format is now landscape. A number of slides

I considered less important have been taken out. I hope this has clarified the subjects concerned.
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August 2007 :

A major revision was carried out. No new material, but (hopefully) better organized. In part 11 a

new and very easy way of computing expected mean squares (EMS) is introduced.

Henrik Spliid

August 2007

c© Henrik Spliid, IMM, DTU. 2007.
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1.1

Design of Experiments (DoE)

What is DoE?

Ex: Hardening of a metallic item

Variables that may be of importance: Factors

1: Medium (oil, water, air or other)

2: Heating temperature

3: Other factors ?

Dependent variables: Response

1: Surface hardness

2: Depth of hardening

3: Others ?
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1.2

Sources of variation (uncertainty)

1: Uneven usage of time for heating

2: All items not completely identical

3: Differences in handling by operators

Factors (A, B, ... etc)

? ? ?

Sources of noise

6 6 6

Input

item
-

- Y3

- Y2 Responses

- Y3
Hardening

process
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1.3

Mathematical model

Y = f(A, B, . . .) + E

How do we study the function f(.).

The 25% rule.
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1.4

Design of Experiments

Model of process temperatures, heating time, etc.
determines Factors in general based on

a priori knowledge)
Laboratory Number of measurements
resources Practical execution
decide Handling and staff
Conclusions How are data to be analyzed
wanted Which factors are important

Which sources of uncertainty
are important
Estimation of effects and
uncertainties
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1.5

Demands:
You must have a reasonable model idea and you must have some idea about the
sources of uncertainty.

Aims:
1) To identify a good model,
2) estimate its parameters,
3) assess the uncertainties of the experiment in general, and
4) assess the uncertainty of the estimates of the model in particular.
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1.6

A weighing problem

Three items A
�
�
�B &%

'$
C

Standard weighing experiment:

Measurement (1) a b c
Meaning No with with with

item A B C

Model for (1) = µ + E1

responses a = µ + A + E2

b = µ + B + E3

c = µ + C + E4

µ = offset (zero reading) of weighing device

A = weight of item A B = weight of item B C = weight of item C

E1, E2, E3 and E4 are the 4 measurement errors

17

1.7

The “natural” estimates of A, B and C are

Â = a − (1)

and the corresponding for B and C

An alternative experiment:

(1) ac bc ab
No with with with
item A and C B and C A and B

18

1.8

The alternative weighing design

Model of (1) = µ + E5

responses ac = µ + A + C + E6

bc = µ + B + C + E7

ab = µ + A + B + E8

Â∗ =
−(1) + ac − bc + ab

2
= A +

4 errors

2

Which design is preferable and why?

Var{Â} = 2σ2
E

Var{Â∗} =
4σ2

E

22
= σ2

E
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1.9

Conclusion

The alternative design is preferable because

1) The two designs both use 4 measurements

but

2) The second design is (much) more precise than the first design.

The reason for this is that

In the first design not all measurements are used to estimate all parameters, which
is the case in the second design.

This is a basic property of (most) good designs.
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1.10

Some repetition of elementary statistics

Table 2-1: Portland cement strength
Observation Modified Unmodified

number Mortar mortar
1 16.85 17.50
2 16.40 17.63
: : :

10 16.57 18.15

Factor: Types of mortar with 2 levels
Response: Strength of cement

The experiment represents a comparative (not absolute) study (it assesses differ-
ences between types of mortar).

21

1.11

Two treatments: the t-test can be applied

Two distributions to compare
6

x
x

x
x
x
x

x
x
x
x
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z
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z

z
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z
z

z
z
z
z
z

z
z

z z
z

6 6y2y1

x=y1

z=y2

Model: Yij = µi + Eij = µ + τi + Eij; i = {1, 2} with τ1 + τ2 = 0

Test of H0 : µ1 = µ2 ⇐⇒ τ1 = τ2 = 0

t =
(Y 1 − Y 2) − (µ1 − µ2)

s
√
1/n1 + 1/n2

s2 = s2
pooled =

(n1 − 1)s2
1 + (n2 − 1)s2

2

n1 − 1 + n2 − 1

22

1.12

The t-test and the conclusion

−3 −2 −1 0 1 2 3
0

0.1

0.2

0.3

0.4

t(18) distribution

± t(18)
0.025

Example p. 36: Y 1 = 16.76, Y 2 = 17.92, s2 = 0.2842

µ1 = µ2 ⇒ t =
16.76 − 17.92

0.284
√
1/10 + 1/10

= −9.13

The difference is strongly significant

23

1.13

Analysis of variance for cement data

Two levels ∼ Two treatments.

The test (of the hypothesis of no difference between treatments) can be
formulated as an analysis of variance (one-way model):

Source of SSQ df s2 F

variation value

Between

treatments 6.7048 2−1 6.7048 82.98

Within

treatments 1.4544 18 0.0808

Total

Variation 8.1592 20−1
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1.14

The reference distribution is an F-distribution:

0 2 4 6
0

1

2

3

4

F(1,18) distribution

95% fractile
4.41

The t-test and the one-way analysis of variance with two treatments give the same
results.

The F-value in the analysis of variance is the t-value squared:

t2(f) ∼ F (1, f)

25

1.15

Conclusions to formulated:

Point estimates µ1 and µ2

for µ1 − µ2

σ2
E

Confidence intervals µ1 and µ2

for µ1 − µ2

σ2
E

and a suitable verbal formulation of the obtained result
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1.16

Two alternative experimental designs

66

Treatm.
A or B

test
item

Design I : 20 items used
Method A Method B

Y1,A Y1,B

Y2,A Y2,B

: :
Y10,A Y10,B

Allocation of treatments to

items by randomization

The method of analysis?

Answer: One-way analysis of variance (or t-test)
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1.17

An alternative design using blocks (items)

part 1

part 2

66

??

Treatm. A

Treatm. B
Design II : 10 items used

Item Method A Method B
1 Y1,A Y1,B

2 Y2,A Y2,B

: : :
10 Y10,A Y10,B

Allocation of treatments to

the two parts by randomization

The proper mathematical model is a two-way analysis of variance model.

Formulate the two models for designs I and II.

Which design is preferred? Why?
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1.18

Detailed mathematical models

Design I : Yi,A = µA + Ei,A + Ui,A

Yi,B = µB + Ei,B + Ui,B

Var{YA − YB} =
2σ2

E + 2σ2
U

n

Design II : Yi,A = µA + Ei + Ui,A

Yi,B = µB + Ei + Ui,B

Yi,A − Yi,B = Di = µA − µB + Ui,A − Ui,B

Var{YA − YB} =
2σ2

U

n

Conclusion: Design II eliminates the variation between items.

Design II is preferable. The analysis is a paired t-test or a two-way analysis of
variance with 2 treatments and 10 blocks.
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1.19

Analysis of variance example

Sequence of measurements
Factor is % cotton

15% 20% 25% 30% 35%
1 6 11 16 21
2 7 12 17 22
3 8 13 18 23
4 9 14 19 24
5 10 15 20 25

The table displays a
systematic sequence

of measurements

What are the problems with this design?

30

1.20

An alternative design: Randomized sequence

Factor is % cotton

15% 20% 25% 30% 35%

7 (15) 12 (8) 14 (5) 19 (11) 7 (24)

7 (1) 17 (9) 18 (2) 25 (22) 20 (10)

15 (4) 12 (23) 18 (18) 22 (13) 16 (20)

11 (21) 18 (12) 19 (14) 19 (7) 15 (17)

9 (19) 18 (16) 19 (3) 23 (25) 11 (6)

The table displays both the data and the

random sequence of measurements in (.)

What is achieved by randomizing the sequence?
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1.21

Mathematical model for randomized design

Yij = µ + τj + Eij

Factor is % cotton

15% 20% 25% 30% 35% sum

7 12 14 19 7

7 17 18 25 20

15 12 18 22 16

11 18 19 19 15

9 18 19 23 11

Sum 49 77 88 108 54 376

Complete randomization assumed
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1.22

SSQtot = 72 + 72 + 152 + . . . + 112 − 3762

25
= 636.96

SSQtreatm =
492 + 772 + 882 + 1082 + 542

5
− 3762

25
= 475.76

SSQresid = SSQtot − SSQtreatm = 161.20

ftot = N − 1 = 25 − 1 = 24

ftreatm = a − 1 = 5 − 1 = 4

fresid = a(n − 1) = 5(5 − 1) = 20
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1.23

ANOVA table for cotton experiment

Source SSQ f s2 EMS F-value

Cotton 475.76 4 118.94 σ2
E + 5φτ 14.76

Residual 161.20 20 8.06 σ2
E

Total 636.96 24

0 1 2 3 4
0

0.2

0.4

0.6

0.8

1

F(4,20) distribution

95% fractile

2.87

Conclusion: Since 14.76 >> 2.87 the percentage of cotton is of importance for the
strength measured.

34

1.24

Model identified:
Yij = µ + τj + Eij

Parameter µ τj σ2
E

Estimate Y .. Y .j − Y .. s2
E

Value 15.04 -5.24 8.06 =
from data 0.36 2.842

2.56
6.56
-4.24
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1.25

Design without or with structure - how to analyse after ANOVA

Design without structure
A B C D E
Y11 Y12 Y13 Y14 Y15

Y21 Y22 Y23 Y24 Y25

: : : : :
Yn1 Yn2 Yn3 Yn4 Yn5

Design with structure

A=control B1 B2

Y11 Y12 Y13

Y21 Y22 Y23

: : :
Yn1 Yn2 Yn3

Scaled t− or range distribution

E A D B C

Natural comparisons?
Use orthogonal contrasts (two !)

How can they be constructed?

36



1.26

Important example of orthogonal contrasts

Design with structure

A=Control Tablet=B1 Inject=B2

24.0 11.0 23.0

29.0 18.5 21.0

32.1 29.0 18.8

28.0 16.0 16.8

113.1 74.5 79.6

Present Two alternative

method methods

ANOVA table for drug experiment

Source SSQ f s2 F-value

Treatm. 219.85 3-1 119.93 4.34

Residual 227.84 9 25.3

Total 447.69 12-1

37

1.27

0 2 4 6
0

0.2

0.4

0.6

0.8

1

F(2,9) distribution

95% fractile

4.26

F (2, 9)0.05 = 4.26, such that the variation between treatments is (just) significant at the 5%

significance level.

What now? We can suggest reasonable contrasts:

CA−B = 2 · TA − (TB1 + TB2) = 72.1

SSQA−B =
C2

A−B
4·(22+(−1)2+(−1)2)

= 216.60 , f = 1

CB1−B2 = 0 · TA + TB1 − TB2 = −5.1

SSQB1−B2 =
C2

B1−B2
4·(02+12+(−1)2)

= 3.25 , f = 1

38

1.28

Splitting up the variance between treatments in two parts:

Detailed ANOVA table for drug experiment

Source SSQ f s2 F-value

Between A and B: A−B 216.60 1 216.60 8.56

Between the two B’s: B1−B2 3.25 1 3.25 0.13

Residual 227.84 9 25.3

Total 447.69 12-1

F (1, 9)0.05 = 5.12, such that A−B is significant, but B1−B2 is far from.

The variation between all three treatments has been split up in variation between
A and the B’s and variation between the two B’s.

The B’s are probably not (very) different while A has significantly higher response
than the B’s.
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1.29

Some ’patterns’ leading to orthogonal contrasts

Design I A B1 B2

Contrasts 2TA −TB1 −TB2

TB1 −TB2

Design II A1 A2 B1 B2

Contrasts TA1 +TA2 −TB1 −TB2

TA1 −TA2

TB1 −TB2

Design III A B1 B2 B3

Contrast 3TA1 −TB1 −TB2 −TB3

(artificial) 2TB1 −TB2 −TB3

(artificial) TB2 −TB3

40



1.30

In the design III example the SSQ’s from the two artificial contrasts [2TB1 −TB2 −
TB3] and [TB2 − TB3] add up to the variation between the three B’s. An ANOVA
table could in principal look like

Source SSQ f s2 F-value
A−B SSQA−B 1
Between B’s SSQB 2
Residual SSQres N-1-3
Total SSQtot N-1

41

1.31

Patterns in two-way factorial designs

Factor Factor B

A B1 B2

A1 T11 T12

A2 T21 T22

Totals T11 T12 T21 T22 Effect

Coeffi- −1 −1 +1 +1 A main

cients −1 +1 −1 +1 B main

+1 −1 −1 +1 AB interaction

42

1.32

A 3 × 2 design

Factor Factor B

A B1 B2

Control (C) T01 T02

A1 T11 T12

A2 T21 T22

Totals T01 T02 T11 T12 T21 T22 Effect

Main −2 −2 +1 +1 +1 +1 A-C

effects −1 −1 +1 +1 A

−1 +1 −1 +1 −1 +1 B

Inter- +2 −2 −1 +1 −1 +1 (A-C)×B

actions +1 −1 −1 +1 A×B

The two last contrasts correspond to interactions. They are

easily constructed by multiplication of the coefficients of the

corresponding main effects. All 5 contrasts are orthogonal.
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1.33

Polynomial effects in ANOVA

Concentration

5% 7% 9% 11%

3.5 6.0 4.0 3.1

5.0 5.5 3.9 4.0

2.8 7.0 4.5 2.6

4.2 7.2 5.0 4.8

4.0 6.5 6.0 3.5

Sum 19.5 32.2 23.4 18.0

Model : Yij = µ + τj + Eij

ANOVA of response

Source SSQ d.f. s2 F

Concentration 24.35 4−1 8.1167 12.41

Residual 10.46 16 0.6538 (sign)

Total 34.81 20−1
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1.34

Plot of data and approximating 3. order polynomium:

4 6 8 10 12
2

4

6

8

10

x
x
xx

x
x
x
x
xx

xx
x
x

x

x
x
x
x

x
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1.35

Polynomial estimation in ANOVA

Possible empirical function as a polynomial:

Yij = β0 + β1 · xj + β2 · x2
j + β3 · x3

j + Eij

With 4 x-points a polynomial of degree (4−1)=3 can be estimated using standard
(polynomial) regression analysis.

Alternative (reduced) models:

Yij = β0 + β1 · xj + β2 · x2
j + Eij

Yij = β0 + β1 · xj + Eij

Yij = β0 + Eij (ultimately)

46

1.36

By the general regression test method these models can be tested successively in
order to identify the proper order of the polynomial.

An alternative method to identify the necessary (statistically significant) order of
the polynomial is based on orthogonal polynomials. The technique uses the concept
of ortogonal regression and it is much similar to the orthogonal contrast technique.

The technique is shown in the supplementary section I.
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2.1

Exercise 3-1

Tensile strength

A B C D

3129 3200 2800 2600

3000 3300 2900 2700

2865 2975 2985 2600

2890 3150 3050 2765

ANOVA for mixing experiment

Source SSQ df s2 F

Methods 489740 3 163247 12.73

Residual 153908 12 12826

Total 643648 15

48



2.2

How can we try to group the treatments?

56.63=s
mean

scaled t(12)

A BCD
2971

2933
31562666

smean = sresidual/
√

nmean =
√

12826/
√

4 = 56.63.

Which averages are possibly significantly different ?

49

2.3

LSD: Least Significant Difference

For example A versus B:

Y A − Y B

sres

√
1/nA + 1/nB

∼ t(fres)

|Y A − Y B| < sres

√
1/nA + 1/nB × t(fres)0.025

Here nA = nB = 4, sres = 113.25, fres = 12

|Y A − Y B| > 113.25
√
1/4 + 1/4 × 2.179 = 174.5 ?

50

2.4

|A − B| = |3156 − 2971| = 185 significant

|A − C| = |2971 − 2933| = 38 not significant

|A − D| = |2971 − 2666| = 305 significant

|B − C| = |3156 − 2933| = 223 significant

|B − D| = |3156 − 2666| = 490 significant

|C − D| = |2933 − 2666| = 223 significant

A BCD

2971

2933

31562666

Conclusion ? All pairs ∼ multiple testing - any problems ?

51

2.5

Newman - Keuls Range Test

Sort averages increasing: Y (1), Y (2), Y (3), Y (4)

Range = Y (4) − Y (1)

Table VII (gives qα) : Criterion

Y (4) − Y (1) > smean · qα(4, fres) ?

smean = sres/
√

nmean = 113.25/
√

4 = 56.63
q0.05(4, 12) = 4.20
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2.6

Range including 4: LSR4 = 4.20 · 56.63 = 237.8

Range including 3: LSR3 = 3.77 · 56.63 = 213.5

Range including 2: LSR2 = 3.08 · 56.63 = 174.4

B - D: 3156 - 2666 = 490 > 237.8 (LSR4) sign.

B - C: 3156 - 2933 = 223 > 213.5 (LSR3) sign.

B - A: 3156 - 2971 = 185 > 174.4 (LSR3) sign.

A - D: 2971 - 2666 = 305 > 213.5 (LSR3) sign.

A - C: 2971 - 2933 = 38 < 174.4 (LSR2) not s.

Conclusion:

A BCD

2971

2933

31562666
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2.7

Duncans Multiple Range Test

Sort averages increasing: Y (1), Y (2), Y (3), Y (4)

Range = Y (4) − Y (1)

Criterion (from special table find rα) :

Y (4) − Y (1) > smean · rα(4, fres) ?

smean = sres/
√

nmean = 113.25/
√

4 = 56.63
r0.05(4, 12) = 3.33

54

2.8

Range including 4: LSR4 = 3.33 · 56.63 = 188.6

Range including 3: LSR3 = 3.23 · 56.63 = 182.9

Range including 2: LSR2 = 3.08 · 56.63 = 174.4

B - D: 3156 - 2666 = 490 > 188.6 (LSR4) sign.

B - C: 3156 - 2933 = 223 > 182.9 (LSR3) sign.

B - A: 3156 - 2971 = 185 > 174.4 (LSR3) sign.

A - D: 2971 - 2666 = 305 > 182.9 (LSR3) sign.

A - C: 2971 - 2933 = 38 < 174.4 (LSR2) not s.

Conclusion is the same as for Newman -Keuls here:

A BCD

2971

2933

31562666
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2.9

Newman - Keuls & Duncans test

Works alike, but use different types of range distributions. For example:

Duncan Newman - Keuls

r(6, 12)0.05 = 3.40 q(6, 12)0.05 = 4.75

r(5, 12)0.05 = 3.36 q(5, 12)0.05 = 4.51

r(4, 12)0.05 = 3.33 q(4, 12)0.05 = 4.20

r(3, 12)0.05 = 3.23 q(3, 12)0.05 = 3.77

r(2, 12)0.05 = 3.08 q(2, 12)0.05 = 3.08

More significances More conservative
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2.10

A grouping of averages that is significant according to Newman - Keuls test is more
reliable

No structure on treatments =⇒
Use Newman Keuls or Duncans test
(LSD method not recommendable)

Structure on treatments =⇒ Use contrast method or fx Dunnetts test (below)

57

2.11

Dunnetts test

Alternative
Control Treatments

A B C D
Parameters µA µB µC µD

H0: µA = µB = µC = µD

H1: One or more of (µB, µC , µD) different from µA

Example: Exercise 3-1 with A as control (fx).

58

2.12

Two sided criterion:

|Y A − Y B| > sres

√
1/nA + 1/nB · d(4 − 1, 12)0.05

d(3, 12)0.05(two sided) = 2.68 =⇒
critical difference =

√
12826

√
1/4 + 1/4 · 2.68 = 214.7

One sided criterion:

Y A − Y B > sres

√
1/nA + 1/nB · d(4 − 1, 12)0.05

d(3, 12)0.05(one sided) = 2.29 =⇒
critical difference =

√
12826

√
1/4 + 1/4 · 2.29 = 183.5

More reliable (and correct) than LSD if relevant
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2.13

The fixed (deterministic) effect ANOVA model

4 treatments
Filter Clean Heat Nothing

x x x x
x x x x
x x x x
x x x x

Model for response:
Yij = µ + τj + Eij

The 4 treatment effects
are deterministic
(µ and τj are constants)

Assumptions: ∑
j τj = 0 and Eij ∈ N(0, σ2

E)
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2.14

The random effect ANOVA model (see chapter 13 in 6th ed. of book)

Example: choose 4 batches among a large number of possible batches and measure
some response (purity for example) on these batches:

4 batches
B-101 B-309 B-84 B-211

x x x x
x x x x
x x x x
x x x x

Model for response:
Yij = µ + Bj + Eij

The 4 batch effects are
random variables
(Bj are random variables)

Assumptions: Bj ∈ N(0, σ2
B) and Eij ∈ N(0, σ2

E)

σ2
E and σ2

B are called variance components:

They are the variances within and between (randomly chosen) batches, respec-
tively.

61

2.15

Fixed effect model: Yij = µ + τj + Eij

ANOVA for fixed effect model

Source SSQ df s2 EMS = E{s2} F

Methods SSQτ fτ s2
τ σ2

E + n · φτ s2
τ/s

2
E

Residual SSQE fE s2
E σ2

E

Total SSQtot ftot

φτ = ∑
j τ 2

j /(a − 1), and τ̂j = Y .j − Y ..

Fixed (deterministic) effects: temperature, concentration, treatment, etc.
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2.16

Random effect model: Yij = µ + Bj + Eij

ANOVA for random effect model

Source SSQ df s2 EMS = E{s2} F

Batches SSQB fB s2
B σ2

E + n · σ2
B s2

B/s2
E

Residual SSQE fE s2
E σ2

E

Total SSQtot ftot

σ2
B = V{B}, and σ̂2

B = (s2
B − s2

E)/n

Random effects: batches, days, persons, experimental rounds, litters of animals,
etc.
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2.17

Example 13-1, p 487, typical example of random effect model

Looms
1 2 3 4
98 91 96 95
97 90 95 96
99 93 97 99
96 92 95 98

Model for tensile strength:
Yij = µ + Lj + Eij

The 4 looms are randomly
chosen with effects Lj

(being random variables)

Assumptions: Lj ∈ N(0, σ2
L) and Eij ∈ N(0, σ2

E)
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2.18

One-way ANOVA for loom example

ANOVA for variation between looms

Source SSQ df s2 E{s2} F

Looms 89.19 3 29.73 σ2
E + 4 · σ2

L 15.65

Residual 22.75 12 1.90 σ2
E

Total 111.94 15

F (3, 12)0.05 = 3.49 << 15.65 =⇒ significance!

σ̂2
E = 1.90 = 1.382

σ̂2
L = (29.73 − 1.90)/4 = 6.96 = 2.642

12 3 4

97.50
95.75

91.50 97.00

How do we further analyze this result?
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2.19

Newman-Keuls or Duncans test on looms

First: sY =
√

1.90 = 1.38 =⇒ sY =
√
1.90/4 = 0.69

Example: Newman - Keuls test:

Find least significant ranges (q(., .)) from studentized range table
and multiply with standard deviation of group means:

LSR

q0.05(4, 12) = 4.20 → ×sY = 2.90

q0.05(3, 12) = 3.77 → ×sY = 2.60

q0.05(2, 12) = 3.08 → ×sY = 2.13
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2.20

Compare group means:

The smallest and the largest first and continue if difference is significant.
Then next largest versus smallest, etc.:

|97.50 − 91.50| = 6.00 > 2.90 : significant

|97.50 − 95.75| = 1.75 < 2.60 : not significant

|91.50 − 97.00| = 5.50 > 2.60 : significant

|91.50 − 95.75| = 4.25 > 2.13 : significant

12 3 4

97.50
95.75

91.50 97.00

Conclusion: loom no 2 is significantly different from the other looms
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2.21

Confidence interval for σ2
L

Interval for σ2
L/σ2

E can be constructed

Lower< σ2
L/σ2

E < Upper

Lower =

s
2
L

s2
E

× 1

F (a − 1, N − a)α/2
− 1

 1

n

Upper =

s
2
L

s2
E

× F (N − a, a − 1)α/2 − 1

 1

n
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2.22

Looms: Lower = [15.65/4.47 − 1]/4 = 0.625

Upper = [15.65 · 14.34 − 1]/4 = 55.85

An alternative:

Lower
1+Lower <

σ2
L

σ2
L+σ2

E
< Upper

1+Upper
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2.23

Choice of sample size

i A B C

1 y11 y12 y13

2 y21 y22 y23

: : : :

n yn1 yn2 yn3

Problem : Choose sample size n with k treatment/groups

Fixed effect model : Yij = µ + τj + Eij,
∑

i τi = 0

Requirements: 1) Know or assume σ2
E

2) Which τ ’s are of interest to detect

3) How certain do we want to be to detect
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2.24

Random effect model : Yij = µ + Bj + Eij, V (B) = σ2
B

Requirements: 1) Know or assume σ2
E

2) Which σ2
B is of interest to detect

3) How certain do we want to be to detect

The textbook has graphs for both cases pp. 613-620. Below, after the examples
based on the textbook, some mere general results are presented.
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2.25

Example fixed effect model

Assume (based on previous knowledge) : σ2
E ' 1.52

Interesting values for τ (fx) : {−2.00, 0.00, +2.00}

Criterion: P{detection} ≥ 0.80 (for example)

Try n = 5 (to start with)

Compute Φ2 = (n ∑
j τ 2

j )/(a · σ2
E)

= 5 · (22 + 02 + 22)/(3 · 1.52) = 5.92

Compute Φ =
√

5.92 = 2.43
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2.26

Read off graph page 613:
ν1 = a − 1 = 3 − 1 = 2
ν2 = a(n − 1) = 3(5 − 1) = 12

2.43

ca 0.10

 0.20

with α = 0.05

Acceptance probability 

Φ

ν
2
=12

ν
1
=2

The graph shows, that n = 5 is enough
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2.27

Will 4 be enough?

Compute Φ2 = (n ∑
j τ 2

j )/(a · σ2
E)

= 4 · (22 + 02 + 22)/(3 · 1.52) = 4.74

Compute Φ =
√

4.74 = 2.18

Read off graph page 613:
ν1 = a − 1 = 3 − 1 = 2
ν2 = a(n − 1) = 3(4 − 1) = 9
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2.28

2.18

ca 0.18

with α = 0.05

Acceptance probability 

Φ

ν
2
=9

ν
1
=2

ν
2
=12

The graph shows, that with n = 4 and testing with level of significance α = 0.05
the probability of acceptance is about 18%.

The probability of rejection (detection of significant τ ’s) is about 82%.

n = 4 is thus enough.
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2.29

Example random effect model

Assume (based on previous knowledge) : σ2
E ' 1.52

Interesting values (for example) for σ2
B : 2.02

Criterion: P{detection} ≥ 0.90 (for example).

Try n = 5 (to start with)

Compute λ =

√√√√√σ2
E+n·σ2

B
σ2

E
=

√
1.52+5·2.02

1.52 = 3.14
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2.30

Read off graph page 617 :
ν1 = a − 1 = 3 − 1 = 2
ν2 = a(n − 1) = 3(5 − 1) = 12

Note: The degrees of freedom labeling is wrong - for the α = 0.05 curves. It should
be as shown for the α = 0.01 curves and for all graphs with ν1 ≥ 4.

3.14

ca 0.35

 0.40

 0.30

with α = 0.05

Acceptance probability 

λ

ν
2
=12

ν
1
=2

The graph shows, that n = 5 is not enough
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2.31

Will 10 be enough?

λ =

√√√√√σ2
E+n·σ2

B
σ2

E
=

√
1.52+10·2.02

1.52 = 4.33

Read off graph page 617:
ν1 = a − 1 = 3 − 1 = 2
ν2 = a(n − 1) = 3(10 − 1) = 27

Note: Remember the degrees of freedom labeling again!

4.13

ca 0.22

with α = 0.05

Acceptance probability 

λ

ν
2
=12

ν
1
=2

ν
2
=27
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2.32

The graph shows, that with n = 10 and testing with level of significance α = 0.05
the probability of acceptance is still about 0.22 (it should be max. 0.10).

n = 10 is thus not enough. The graph p. 617 shows, that for λ = 5.2 the
acceptance probability ' 0.10 . It will require about n = 15 for σ2

E = 1.52 and
σ2

B = 22.

In the supplementary part III the exact determination of sample size is described
for bth deterministic and random effects models.
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3.1

Block designs - one factor and one blocking criterion

Sources of uncertainty (noise)

Day-to-day variation

Batches of raw material

Litters of animals

Persons (doing the lab work)

Test sites or alternative systems

Treatment A B C

Batch B-X B-V B-II

Data Y11 Y12 Y13

Y21 Y22 Y23

: : :

Yn1 Yn2 Yn3
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3.2

One factor and one block, but they vary in the same way!

Mathematical model : Yij = µ + τj + Bj + Eij

Is the model correct ?

How can we analyze it ?

What can and what cannot be concluded ?

Is there a problem ?

Confounding ?

The index for the factor and the block is the same:

100% confounding.
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3.3

Alternative to confounded design

Treatment A B C
Data Y11 (B-II) Y12 (B-XI) Y13 (B-IV)

Y21 (B-IX) Y22 (B-I) Y23 (B-VI)

: : :
Yn1 (B-III) Yn2 (B-XX) Yn3 (B-IIX)

In the design the batches used for the individual measurements are shown
in parentheses

The batches are selected randomly
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3.4

Mathematical model : Yij = µ + τj + Bij + Eij

How can this model be analyzed ?

What does the randomization do with respect to the mean and variance of Yij ?

Compared to the above design: any problems solved ?

Have any new problems been introduced ?

Can the second design be improved even more (how) ?
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3.5

Examples of factors

Concentration of active compound in experiment: (2%,4%,6%,8%)

Electrical voltage in test circuit (10 volt, 12 volt, 14 volt)

Load in test of strength: (10 kp/m2, 15 kp/m2, 20 kp/m2)

Alternative catalysts: (A, B, C, D)

Alternative cleaning methods: (centrifuge treatm., filtration, electrostatic removal)

Gender of test animal: ( j, j� )
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3.6

Examples of blocks

Batches of raw material: (I, II, III, IV) (can be of limited size)

Collections of experiments conducted simultaneously (dates fx): (22/2-1990, 29/3-

1990, 24/12-1990)

Groups of participants in an indoor climate experiment: (Test−team 1, Test−team

2, Test−team 3)

Litters of test animals: (Litter 1, Litter 2, Litter 3, Litter 4)

Position in test equipment: (position 1, position 2, position 3)
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3.7

Design with inadequate confounding - schematic:

Thermometers (= experimental condition = block) are I, II and III.

Treatments A B C

Data 25 (II) 16 (I) 19 (III)

24 (II) 15 (I) 20 (III)

24 (II) 17 (I) 20 (III)

Total 73 48 59

Yij = µ + αj + Tj + Eij

SSQtreat = 732+482+592

3 − 1802

9 = 104.67

SSQtot = (252 + 162 + · · · + 202) − 1802

9 = 108.00

SSQresid = SSQtot − SSQtreat
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3.8

Analysis of variance table for 100% confounded design

One way ANOVA

Source of var. SSQ d.f. s2 EMS = E{s2} F-test

Between treatm. 104.67 3 − 1 52.335 σ2 + 3φα + 3σ2
T 94.30

Uncertainty 3.33 3(3 − 1) 0.555 σ2

Total 108.00 3 · 3 − 1

What can (or cannot) be concluded ?
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3.9

Design with thermometers randomized

Thermometers are randomized (I, II, · · · , X)

Treatments A B C

Data 26 (X) 20 (IV) 25 (II)

20 (II) 15 (V) 20 (VI)

22 (I) 19 (III) 22 (V)

Total 68 54 67

Yij = µ + αj + (Tij + Eij)

SSQtreat = 682+542+672

3 − 1892

9 = 40.67

SSQtot = (262 + 202 + · · · + 222) − 1892

9 = 86.00

SSQresid = SSQtot − SSQtreat = 45.34
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3.10

Analysis of variance table for completely randomized design

One way ANOVA

Source of var. SSQ d.f. s2 EMS F-test

Between treatm. 40.67 3 − 1 20.34 σ2 + σ2
T + 3φα 2.69

Uncertainty 45.34 3(3 − 1) 7.56 σ2 + σ2
T

Total 86.00 3 · 3 − 1

What can (or cannot) be concluded ?
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3.11

Balanced block design

Thermometers are balanced (complete) blocks

Treatments

Thermometers A B C Total

I 25 18 21 64

II 21 15 19 55

III 22 18 20 60

Total 68 51 60 179

Yij = µ + αj + Ti + Eij

SSQtreat = 682+512+602

3
− 1792

9
= 48.22

SSQtherm = 642+552+602

3 − 1792

9 = 13.56

SSQtot = (252 + 182 + · · · + 202) − 1792

9 = 64.89

SSQresid = SSQtot − SSQtreat − SSQtherm = 3.11
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3.12

Analysis of variance table for completely balanced block design

Two way ANOVA

Source of var. SSQ d.f. s2 EMS F-test

Between treatm. 48.22 3 − 1 24.11 σ2 + 3φα 30.99

Between therm. 13.56 3 − 1 6.78 σ2 + 3σ2
T (8.71)

Uncertainty 3.11 8 − 2 − 2 0.778 σ2

Total 64.89 8

What can now be concluded ?
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3.13

Latin square design

Laboratory technicians (labor : (1) (2) (3)) are balanced against both treatments
and thermometers

Treatments

Thermometers A B C Total

I 27 (2) 20 (3) 21 (1) 68

II 21 (1) 18 (2) 20 (3) 59

III 24 (3) 17 (1) 22 (2) 63

Total 72 55 63 190

Labor−totals : (1)=59, (2)=67, (3)=64

Yijk = µ + αj + Ti + Lk + Eijk
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3.14

Analysis of variance table for Latin square design

Two blocking criteria completely balanced block design :

SSQtreat = 48.22 , SSQtherm = 13.56 , SSQtot = 72.89

SSQlabor = 592+672+642

3
− 1902

9
= 10.89

SSQresid = 0.22

Latin square ANOVA

Source of var. SSQ d.f. s2 EMS F-test

Between treatm. 48.22 2 24.11 σ2 + 3φα 219.19

Between therm. 13.56 2 6.78 σ2 + 3σ2
T (61.68)

Between labor. 10.89 2 5.45 σ2 + 3σ2
L (49.54 )

Uncertainty 0.22 2 0.11 σ2

Total 72.89 8
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3.15

Triple balanced design = Graeco-Latin square

Treatments

Thermometers A B C Total

I 28 (2)(z) 21 (3)(y) 23 (1)(x) 72

II 23 (1)(y) 20 (2)(x) 20 (3)(z) 63

III 25 (3)(x) 18 (1)(z) 22 (2)(y) 65

Total 76 59 65 200

Labor−totals : (1)=64, (2)=70, (3)=66
Batch−totals : (x)=68, (y)=66, (z)=66

Yijkr = µ + αj + Ti + Lk + Br + Eijkr
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3.16

Analysis of variance table for Graeco-Latin square design

SSQbatch = 682+662+662

3
− 2002

9
= 0.89

SSQtreat = 49.56, SSQtherm = 14.89, SSQlabor = 6.22

SSQtot = 71.56, SSQresid = 0.00

Graeco-Latin square ANOVA

Source of var. SSQ d.f. s2 EMS F-test

Between treatm. 49.56 2 24.78 σ2 + 3φα ?

Between therm. 14.89 2 7.45 σ2 + 3σ2
T ?

Between labor. 6.22 2 3.11 σ2 + 3σ2
L ?

Between batches 0.89 2 0.45 σ2 + 3σ2
B ?

Uncertainty 0 0 (σ2)

Total 71.56 8

The example shows the principle, but of course, since there is no residual variance
no tests can be carried out. An external variance estimate could be used if available
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3.17

Comments to slides 3.3 to 3.15

All the examples are created by numerical simulation using the corresponding mod-
els.

3.3: The variation of treatments is very significant, but it cannot be determined
whether it is treatments or thermometers that cause it. If the experiment is re-
peated at a later occasion we will presumably again find a significant, but probably
different treatment effect (since thermometers would be 3 other thermometers).
The experiment is not reproducible and may lead to false conclusions.

3.4: The confounding treatments/thermometers is broken. However the variation
between thermometers is causing a large uncertainty variance. The treatments are
estimated with correct mean, but with a large variance. The treatments are not
significant.
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3.18

3.5: The thermometers are now balanced out of the ANOVA, and the estimate
of the treatment effect has correct mean plus a small variance. The treatment
effect is significant. Note, that essentially the SSQ for treatments is as in the
randomized design, but the SSQ for the residual is now free of the variation between
thermometers and, thus, much smaller.

3.6: In the Latin square the same principle as used for thermometers is now used
for the laboratory technicians. Variation between technicians is eliminated from the
residual variance, causing improved precision (however again loosing 2 degrees of
freedom for the residual variance).

3.7: The same design principle (balance) is used to eliminate variation between
batches from the residual variation.
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3.19

The (important) two-period cross-over design (page 142)

Period

Patient 1 2

1 A B

2 B A

3 B A

4 A B

: : :

: : :

2n-1 A B

2n B A

Yijk = µ + τi + perj + Pk + Eijk
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3.20

ANOVA for the two period cross over design:

Two period crossover ANOVA, example with 2n=20 patients

Source of var. SSQ d.f. s2 EMS F-test

Treatments (τi) 28.15 1 28.15 σ2 + 20φτ 4.54

Periods (perj) 2.45 1 2.45 σ2 + 20φper 0.40

Patients (Pk) 915.80 19 48.20 (σ2 + 2σ2
P ) (7.77)

Uncertainty 116.60 18 6.20 σ2

Total 1063.03 39

The design consists of R = n Latin squares repeated with different persons in all
squares and identical periods (1 or 2).

The analysis of this design can take other forms if residual effects are suspected
(effect from A on B different from the effect from B on A).
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3.21

A little more about Latin squares

Table 4-8 page 136

Batches of Operators

raw material 1 2 3 4 5

1 A B C D E

2 B C D E A

3 C D E A B

4 D E A B C

5 E A B C D

Treatments A, B, C, D, E

A standard Latin square

Yijk = µ + τi + Bj + Ok + Eijk
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3.22

ANOVA of Latin square example

ANOVA

Source of var. SSQ d.f. s2 EMS F-test

Treatments 330.00 4 82.50 σ2 + 5φτ 7.73

Batches 68.00 4 17.00 (σ2 + 5σ2
B) (1.59)

Operators 150.00 4 37.50 (σ2 + 5σ2
O) (3.51)

Uncertainty 128.00 12 10.67 σ2

Total 676.00 24

Interpretation of result of ANOVA

What has been achieved by using this design ?
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3.23

Replication of Latin squares

O1 O2 O3 O1 O2 O3 O1 O2 O3

B1 A B C B1 B C A B1 C A B
B2 B C A B2 A B C B2 B C A

B3 C A B B3 C A B B3 A B C
R1 R2 R3

3 squares with identical operators and batches

O1 O2 O3 O4 O5 O6 O7 O8 O9

B1 A B C B1 B C A B1 C A B

B2 B C A B2 A B C B2 B C A
B3 C A B B3 C A B B3 A B C

R1 R2 R3

3 squares with 9 operators and 3 batches

O1 O2 O3 O4 O5 O6 O7 O8 O9

B1 A B C B4 B C A B7 C A B
B2 B C A B5 A B C B8 B C A

B3 C A B B6 C A B B9 A B C
R1 R2 R3

3 squares with 9 operators and 9 batches
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3.24

Which design is probably the most precise (with smallest residual variance)? −
Answer: The third design, but why?

How are the three different designs analyzed ?

In the supplementary part 6 the detailed ANOVA tables are indicated for each of

the three cases.
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3.25

To block or not to block ? Example 4.1

Type of Test item (block)

tip 1 2 3 4

A

B

C

D

9.3

9.4

9.2

9.7

9.4

9.3

9.4

9.6

9.6

9.8

9.5

10.0

10.0

9.9

9.7

10.2

Yij = µ + ti + Bj + Eij

ANOVA for block design (data scaled 10:1)

Source SSQ df s2 EMS F

Type of tip (t) 38.50 3 12.83 σ2 + 4φt 14.44

Test item (B) 82.50 3 27.50 σ2 + 4σ2
B (30.94)

Residual 8.00 9 0.89 σ2

Total 129.00 15
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3.26

Two alternative designs - which one is best?

Type of Test item (block)

tip 1 2 3 4

A

B
C

D

x x

x x
x x

x x

x x

x x
x x

x x

x x

x x
x x

x x

x x

x x
x x

x x

4 blocks of size 8. Double measurements for each treatment within the blocks.

Round 1 Test item (block)

1 2 3 4 5 6 7 8

A
B

C
D

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

8 blocks of size 4. One measurements for each treatment within the blocks.
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3.27

The second design is preferable. It is more precise, because the blocks are smaller
(variance within blocks is smaller).

Randomization is easier to do correct in small blocks and experimental circum-
stances are easier to keep constant.
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3.28

ANOVA test of additivity

a treat- b blocks

ments 1 2 : b

A (1)

B (2)

:

D (a)

y y

y y

:

y y

y y

y y

:

y y

:

:

:

:

y y

y y

:

y y

Basic model for block design with n measurements pr combination (the general
case):

Yijk = µ + ti + Bj + Eijk

where i = {1, a} , j = {1, b} and k = {1, n}
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3.29

If n > 1 start with

Yijk = µ + ti + Bj + TBij + Eijk

and test the TBij term (two way ANOVA with interaction term) against Eijk term

If accepted, reduce model to ’ideal model’ and analyze as usual (two way ANOVA
without interaction term)

If rejected, use TBij term to test the factor
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3.30

Choice of sample size

a treat- b blocks

ments 1 2 : b

A (1)

B (2)

:

D (a)

y y

y y

:

y y

y y

y y

:

y y

:

:

:

:

y y

y y

:

y y

If : Yijk = µ + ti + Bj + Eijk

Ftreat = s2
treat/s

2
E ∼ F (ν1, ν2)

Φ2
t = (bn · ∑

i t
2
i )/(a · σ2

E)

ν1 = a − 1 and ν2 = abn − a − b + 1

If : Yijk = µ + ti + Bj + TBij + Eijk

Ftreat = s2
treat/s

2
TB ∼ F (ν1, ν2)

Φ2
t = (bn · ∑

i t
2
i )/(a · (σ2

E + nσ2
TB))

Φ2
t ' (b · ∑

i t
2
i )/(a · σ2

TB)

ν1 = a − 1 and ν2 = (a − 1)(b − 1)
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4.1

Incomplete block designs

Testing of 4 alternative extraction methods. Extraction of one production lasts 3
hours =⇒ only 3 methods can be tested on 1 day:

Design Fine Normal 2% additive 2% additive

material material Fine mat. Norm. mat.

Day 1 X X X

Day 2 X X X

Day 3 X X X

Day 4 X X X

Day 5 X X X

Day 6 X X X

Yij = µ + τj + Di + Eij

Is the design adequate.

How could we improve the design. Which requirements should be made for the
design.

1 day is an incomplete block: block size = 3
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4.2

Small blocks, why ?

The smallest block size = 2

Example: Test item that can be treated on two sides with surface

hardening

upside of test item

downside of test item

The intra-block variation is small for small blocks:
That is a physical fact that the experimenter can utilize: use small blocks!
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4.3

A balanced incomplete block design

Four treatments, A, B, C and D. Two treatments per block.

4 treatments

with block size 2

A B C D

Item 1 X X

Item 2 X X

Item 3 X X

Item 4 X X

Item 5 X X

Item 6 X X

Problem: If systematic difference between upside and downside treatment results.
Can that be handled ? How ?
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4.4

Other ’classical’ examples of incomplete blocks

World Championship in football: 16 teams participate in 4 groups of 4 teams. In
one group of 4 only 2 teams can be on the field at the same time (1 match = 1
block of size 2). 6 matches per group needed.

World Championship in speedway with 12 participants: Groups of 4 drivers compete
at the same time.

Bridge tournament with 10 teams. In one ’round’ 5 tables are used each with 2
teams. How many rounds are needed so that all 10 teams meet each other once.

Football tournament with 10 teams. In one ’round’ 5 matches are played each with
2 teams. How many rounds are needed so that all 10 teams meet each other once.

How is the advantage of ’home matches’ handled in practice.
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4.5

A heuristic design (an inadequate design)

Treatments

Day A B C D

I X X X

II X X X

III X X X

IV X X X

Yij = µ + αj + Di + Eij

αj is the fixed factor effect (deterministic quantity)

Di is the block effect. A random variable.
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4.6

Estimate

fx : α̂B − α̂A = (Y12 + Y22)/2 − (Y11 + Y21)/2

or : α̂B − α̂A = Y B − Y A

Which one is best ? Depends on σ2
E and σ2

D .

Estimate

fx : α̂B − α̂A = (Y12 + Y22)/2 − (Y11 + Y21)/2

and : α̂D − α̂A = (Y34 + Y44)/2 − (Y11 + Y21)/2

Which one is the most precise ? Always α̂B − α̂A

Can the design be balanced, so that all comparisons are equally precise and inde-
pendent of the actual blocks used ? (Yes)
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4.7

Incomplete balanced block designs and some definitions

Treatments

Day A B C D

I X X X

II X X X

III X X X

IV X X X

Yij = µ + αj + Di + Eij

k = 3 = block size
a = 4 = number of treatments (some times called ’t’)
b = 4 = number of blocks
r = 3 = number of times each treatment is tried
λ = 2 = number of times any two treatments

are in the same block = r·(k-1)/(a-1)
N = 12 = Total number of measurements = k·b = a·r
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4.8

Exercise:

Design Fine Normal 2% additive 2% additive
material material Fine mat. Norm. mat.

Day 1 X X
Day 2 X X
Day 3 X X
Day 4 X X
Day 5 X X
Day 6 X X

Find k, a, b, r, λ and N for this design
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4.9

Data from incomplete balanced block design

Blocks Treatments
(days) A B C D Ti· N = t · r = b · k

I 52 − 75 57 184 t = a = 4 (treatments)
II − 87 86 53 226 b = 4 (blocks)
III 54 68 69 − 191 k = 3 (block size)
IV 50 78 − 61 189 r = 3 (repeat. treat.)
T·j 156 233 230 171 790 λ = 2 (pairs in one block)

Yij = µ + αj + Bi + Eij

∑t
j=1 αj = 0, ∑b

i=1 Bi = 0, Var{Eij} = σ2
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4.10

Computations for balanced incomplete block design

Qj = T·j − 1
k

∑b
i=1 nijTi· nij =

{
0 if cell (i, j) is empty
1 if cell (i, j) is not empty

SSQα = k · Q2
1+Q2

2+···+Q2
t

λ·t

SSQblocks =
T 2

1 +T 2
2 +···+T 2

b
k

− T 2··
N

SSQresid = SSQtot − SSQα − SSQblocks
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4.11

Expectations and variances of computed quantities - estimation

E{Qj} = λt
k · αj ⇒ the estimate α̂j =

Qj

λt · k
Var{Qj} = λ(t−1)

k · σ2 ⇒ Var{α̂j} = t−1
t2

· k
λ

Treatment difference estimate is α̂i − α̂j and

Var{Qi − Qj} = 2λt
k · σ2 ⇒ Var{α̂i − α̂j} = 2k

λt · σ2

µ̂ = Y ·· , Var{Y ··} = σ2/N

Treatment mean estimate: [µ̂ + α̂j] = Y ·· +
Qj

λt
· k

Variance of treatment mean estimate: Var [µ̂ + α̂j] = σ2 k
λt
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4.12

After-ANOVA tests based on the Q-values

Range-test (fx Newman-Keuls test and table VII):

α̂(max)−α̂(min)

σ̂
√

k/λt
=

Q(max)−Q(min)

sresid

√
λt/k

∈ q(“number”, fresid)

Contrast-test procedure:

contrast = [C] = Q1 · c1 + Q2 · c2 + · · · + Qt · ct

SSQcontrast = k·[C]2

λt(c21+c22+···+c2t )
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4.13

Analysis of data - example

λ = 2 , a = t = 4 , b = 4 , r = 3 , k = 3

Q1 = 156 - 1
3
(184+191+189) = −32.00

Q2 = 233 - 1
3(226+191+189) = 31.00

Q3 = 230 - 1
3(184+226+191) = 29.67

Q4 = 171 - 1
3
(184+226+189) = −28.67

Sum = 0.00
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4.14

SSQtot =
∑

ij y2
ij − T 2

.. /N = 1949.67

SSQtreat = 3·(32.002+31.002+29.672+28.672)
2·4 = 1382.73

SSQblocks = 1842+2262+1912+1892

3 − 7902

12 = 369.67

SSQresid = SSQtot − SSQtreat − SSQblocks = 197.27

ftot = 12 − 1 = 11

ftreat = 4 − 1 = 3

fblocks = 4 − 1 = 3

fresid = 11 − 3 − 3 = 5
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4.15

Newman-Keuls test for treatments using Q’s

1 324

−32.00 31.00

29.67−28.67

s2
Q = s2

E · λt
k

= 197.25
5

· 2·4
3

= 105.20 = 10.262

q(p, 5)0.05 = 3.64 4.60 5.22

LSR = sQ · q(p, 5)0.05 = 37.25 47.20 53.56
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4.16

|2 − 1| ⇒ |31.00 − (−32.00)| = 63.00 > 53.56 sign.

|2 − 4| ⇒ |31.00 − (−28.67)| = 59.67 > 47.20 sign.

|2 − 3| ⇒ |31.00 − 29.67| = 1.33 < 37.25 not sign.

−−−
|3 − 1| ⇒ |29.67 − (−32.00)| = 61.67 > 47.20 sign.

|3 − 4| ⇒ |29.67 − (−28.67)| = 58.33 > 37.25 sign.

−−−
|4 − 1| ⇒ |28.67 − (32.00)| = 3.33 < 37.25 not sign.

1 324

−32.00 31.00

29.67−28.67
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4.17

The Youden square (incomplete Latin square)

Construction of a Youden square design Youden square design

Blocks Treatments

(days) A1 A2 B1 B2 Ti·
I ? − ? ?

II − ? ? ?
III ? ? ? −
IV ? ? − ?

T·j

Blocks Treatments

(Days) A1 A2 B1 B2 Ti·
I α − β γ

II − β γ α
III β γ α −
IV γ α − β

T·j

Data from Youden square experiment

Blocks Treatments
(days) A1 A2 B1 B2 Ti·

I 52 (α) − 75 (β) 57 (γ) 184

II − 87 (β) 86 (γ) 53 (α) 226
III 54 (β) 68 (γ) 69 (α) − 191

IV 50 (γ) 78 (α) − 61 (β) 189

T·j 156 233 230 171 790
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4.18

Analysis of Youden square

The data are the same as on slide 4.9 and the example primarily illustrates how the
computations go.

Tα = 52 + 53 + 69 + 78 = 252

Tβ = 75 + 87 + 54 + 61 = 277

Tγ = 57 + 86 + 68 + 50 = 261

SSQpos = (2522 + 2772 + 2612)/4 − 7902/12 = 80.17
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4.19

The other SSQ’s : See slide 4.9 (the same data)

SSQtreat = 1382.73

SSQblocks = 369.67

SSQtot = 1949.67

ANOVA for Youden Square

Source SSQ df s2 E{s2} F

Treatm. 1382.73 3 460.91 σ2 + c · φtreat 11.81

Blocks 369.67 3 123.22 − −
Posit. 80.17 2 40.09 σ2 + 4 · φpos (1.03)

Residual 117.10 3 39.03 σ2

Total 1949.67 12-1

128



4.20

Example of computation for contrasts

Consider the Youden square slide 4.17.

k = 3, λ = 2, a = t = 4, b = 4, r = 3.

QA1 = −32.00 QA2 = 31.00 QB1 = 29.67 QB2 = −28.67

CA−B = +QA1 + QA2 −QB1 − QB2 = −2.00

CA1−A2 = +QA1 − QA2 = −63.00

CB1−B2 = +QB1 − QB2 = 58.33
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4.21

SSQA−B = (−2.00)2 · k
λt(12+12+12+12)

= 0.38

SSQA1−A2 = (−63.00)2 · 3
2·4(12+12)

= 744.19

SSQB1−B2 = 58.332 · 3
2·4(12+12)

= 638.16

Sum = 1382.73

The sums of squares for the 3 orthogonal contrasts add up to the total sum of
squares between treatments.

Each of these sums of squares have 1 degree of freedom and can be tested against
the residual sum of squares.
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4.22

Tables of balanced incomplete block designs

A, B, C, ... = Treatments

a = Number of treatments (often called ’t’)

b = Number of blocks

r = Number replications of each treatment

k = Block size

N = ar = bk = total number of measurements

λ = number of times any two treatments

occur in the same block =r(k−1)/(a−1)

α, β, γ, ... = ’positions’ within block for incomplete

Latin squares (Youden squares)

Balanced designs for ’a’ treatments with block size k = 2 consist of all

possible combinations of two treatments giving a(a-1)/2 blocks of 2
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4.23

Block size Treatments Blocks Replications Pairings Total design

k = 2 a = 3 b = 3 r = 2 λ = 1 N = 6

Symmetrical. A Youden square

Treat- Blocks

ments 1 2 3

A α β

B β α

C β α

Blocksize Treatments Blocks Replications Pairings Total design
k = 3 a = 4 b = 4 r = 3 λ = 2 N = 12

Symmetrical. A Youden square

Treat- Blocks

ments 1 2 3 4

A α β γ

B β γ α

C γ α β

D α β γ
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4.24

Block size Treatments Blocks Replications Pairings Total design

k = 3 a = 5 b = 10 r = 6 λ = 3 N = 30

All combinations of 3 treatments among 5

Treat- Blocks

ments 1 2 3 4 5 6 7 8 9 10

A x x x x x x

B x x x x x x

C x x x x x x

D x x x x x x

E x x x x x x
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4.25

Block size Treatments Blocks Replications Pairings Total design

k = 3 a = 6 b = 10 r = 5 λ = 2 N = 30

10 out of 20 possible combinations of 3 treatments among 6 (reduced)

Treat- Blocks

ments 1 2 3 4 5 6 7 8 9 10

A x x x x x

B x x x x x

C x x x x x

D x x x x x

E x x x x x

F x x x x x
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4.26

Block size Treatments Blocks Replications Pairings Total design

k = 3 a = 7 b = 7 r = 3 λ = 1 N = 21

7 out of 35 possible combinations of 3 treatments among 7 (reduced)
Symmetrical. Youden square.

Treat- Blocks

ments 1 2 3 4 5 6 7

A α β γ

B β α γ

C β γ α

D α β γ

E γ α β

F α β γ

G γ β α
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4.27

Block size Treatments Blocks Replications Pairings Total design

k = 3 a = 9 b = 12 r = 3 λ = 1 N = 36

12 out of 84 possible combinations of 3 treatments among 9 (reduced)

Treat- Blocks

ments 1 2 3 4 5 6 7 8 9 10 11 12

A x x x x

B x x x x

C x x x x

D x x x x

E x x x x

F x x x x

G x x x x

H x x x x

I x x x x
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4.28

Block size Treatments Blocks Replications Pairings Total design

k = 4 a = 5 b = 5 r = 4 λ = 3 N = 20

Symmetrical. Youden square

Treat- Blocks

ments 1 2 3 4 5

A α β γ δ

B β γ δ α

C γ δ α β

D δ α β γ

E α β γ dy
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4.29

Block size Treatments Blocks Replications Pairings Total design

k = 4 a = 7 b = 7 r = 4 λ = 2 N = 28

7 out of 35 possible combinations of 4 treatments among 7 (reduced)
Symmetrical. Youden square.

Treat- Blocks

ments 1 2 3 4 5 6 7

A α β γ δ

B α β δ γ

C β γ δ α

D δ α γ β

E β δ α γ

F γ δ α β

G δ γ α β
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4.30

Block size Treatments Blocks Replications Pairings Total design

k = 4 a = 8 b = 14 r = 7 λ = 3 N = 56

14 out of 70 possible combinations of 4 treatments among 8 (reduced)

Treat- Blocks

ments 1 2 3 4 5 6 7 8 9 10 11 12 13 14

A x x x x x x x

B x x x x x x x

C x x x x x x x

D x x x x x x x

E x x x x x x x

F x x x x x x x

G x x x x x x x

H x x x x x x x
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4.31

Block size Treatments Blocks Replications Pairings Total design

k = 5 a = 6 b = 6 r = 5 λ = 4 N = 30

Symmetrical. Youden square.

Treat- Blocks

ments 1 2 3 4 5 6

A α β γ δ ε

B β γ δ ε α

C γ δ ε α β

D δ ε α β γ

E ε α β γ δ

F α β γ δ ε
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4.32

Block size Treatments Blocks Replications Pairings Total design

k = 5 a = 11 b = 11 r = 5 λ = 2 N = 30

11 out of 462 possible combinations of 5 treatments among 11 (reduced)
Symmetrical. Youden square.

Treat- Blocks

ments 1 2 3 4 5 6 7 8 9 10 11

A α ε δ γ β

B α ε δ γ β

C α ε δ γ β

D α ε δ γ β

E β α ε δ γ

F γ β α ε δ

G δ γ β α ε

H δ γ β α ε

I ε δ γ β α

J ε δ γ β α

K ε δ γ β α
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4.33

Block size Treatments Blocks Replications Pairings Total design

k = 6 a = 7 b = 7 r = 6 λ = 5 N = 42

Symmetrical. Youden square.

Treat- Blocks

ments 1 2 3 4 5 6 7

A α φ ε δ γ β

B β α φ ε δ γ

C γ β α φ ε δ

D δ γ β α φ ε

E ε δ γ β α φ

F φ ε δ γ β α

G φ ε δ γ β α
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4.34

Block size Treatments Blocks Replications Pairings Total design

k = 6 a = 9 b = 12 r = 8 λ = 5 N = 72

12 out of 84 possible combinations of 6 treatments among 9 (reduced)

Treat- Blocks

ments 1 2 3 4 5 6 7 8 9 10 11 12

A x x x x x x x x

B x x x x x x x x

C x x x x x x x x

D x x x x x x x x

E x x x x x x x x

F x x x x x x x x

G x x x x x x x x

H x x x x x x x x

I x x x x x x x x
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4.35

Block size Treatments Blocks Replications Pairings Total design

k = 6 a = 11 b = 11 r = 6 λ = 3 N = 66

11 out of 462 possible combinations of 6 treatments among 11 (reduced)
Symmetrical. Youden square

Treat- Blocks

ments 1 2 3 4 5 6 7 8 9 10 11

A φ ε δ γ β α

B α φ ε δ γ β

C β α φ ε δ γ

D γ β α φ ε δ

E γ β α φ ε δ

F γ β α φ ε δ

G γ β α φ ε δ

H δ γ β α φ ε

I δ γ β α φ ε

J ε δ γ β α φ

K φ ε δ γ β α
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5.1

An example with many issues

Test tablet

Load

supports

Response : Strength of tablet (load to breakage)

1 factor = Humidity in powder for tablets

Other possible factors: Load during production
Time of pressing in production
Size distribution in powder
etc
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5.2

Practical problems

One test item can only be used once

The testing of one item takes time (is expensive)

How do we find a representative collection of independent tablets (randomization)

Other problems about sampling and preparation in lab
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5.3

Design problems

Approximately, how large is the load to be measured
(select a suited apparatus to do the tests)

Which humidity percentages are relevant
(fx 5% − 50%)

What is an interesting difference in load to detect
(fx ∆ = ±12 g)

The anticipated measurement uncertainty variance
(fx σ2 ' (15 g)2) (measurement + tablet variation)

These questions must be answered before the experiment is started
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5.4

Sources of uncertainty

Temperature in laboratory

Different handling by different operators

Day-to-day variation of measurement devices

Variation in the experimental setup (geometry)

The order of magnitude of these variations must be known or assessed before the
experiment is started
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5.5

Design must be based on knowledge

Guess (or study) how an experiment may turn out is a possible (good) way:

0 20 40 60
0

20

40

60

x
x
x

x
x
x

x
x
x

x
x
x

Plot how you think (or hope) the data will turn out.

Do you believe, that you will find what you are looking for: The optimal humidity
for obtaining a high strength, fx.
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5.6

How will the ANOVA look when I have collected the data?

Design Humidity

5% 20% 35% 50%

Day 1 x x x x

Day 2 x x x x

... ... ... ... ...

Day b x x x x

Source of var. SSQ d.f. for design with b blocks

Humidity SSQtreat ν1 = a − 1 = 3

Days (blocks) SSQblocks ν3 = b − 1 = b − 1

Residual SSQresid ν2 = (a − 1)(b − 1) = 3(b − 1)

Total SSQtot νtot = ab − 1 = 4b − 1
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5.7

Determine the necessary number of days (blocks)

Yij = µ + τj + Di + Eij

Possible sizes of τj to detect

τj = −12 +12 +12 −12

xj = 5 20 35 50

Compute Φ2 = b
a·σ2

∑
j τ 2

j = b
4·152(576) = 0.64 · b

Φ = 0.80
√

b

Try fx b = 8 → Φ = 2.26, ν1 = 3, ν2 = 3 · 7 = 21
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5.8

Is there a reasonable probability to detect the prescribed differences?

Look up probability of acceptance page 648:

2.26

ca 0.08

 0.20

with α = 0.05 ANOVA test
Acceptance probability 

Φ

ν
2
=21

ν
1
=3

Looks reasonable. The chance of overlooking the above τ ’s is less than 10% (lucky
punch). b = 8 could be worthwhile trying.
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5.9

Analysis of the data from the experiment

Day 5% 20% 35% 50% Sums

1 135

2 90

3 Data from 231

4 experiment 116

5 161

6 SSQresid = 4910 114

7 150

8 214

Sums 175 450 376 210 1211
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5.10

Source of var. SSQ d.f. s2 EMS F

Humidity 6496 3 2165 σ2 + 8 · φτ 9.3

Days (blocks) 4260 7 609 (σ2 + 4 · σ2
D) (2.6)

Residual 4910 21 234 σ2

Total 15666 31

0 20 40 60
0

20

40

60

x

x

x

x

Mean response

regression estimate
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5.11

Estimates:

yj = 21.9 56.3 47.0 26.3

τ̂j = -15.96 18.40 9.15 -11.59

µ̂ = 37.84

σ̂2 = 234 = 15.32

(σ̂2
D = (609 − 234)/4 = 93.8 = 9.72)

Regression function estimate (5 ≤ xj ≤ 50):

Ŷij = 8.0396 + 3.3946 · xj − 0.0612 · x2
j
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5.12

Further analysis of days (blocks)

Draw ’normal probability plot’ for daily averages, fx:

10 20 30 40 50 60 70
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−1
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2
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a
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Dayly averages

0.1

0.2

0.3
0.4
0.5
0.6
0.7

0.8

0.9

(i−0.5)/n
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5.13

Newman-Keuls test for blocks:

smean,block = sresid/
√

4 =
√

234/
√

4 = 7.65

q(8, 21)0.05 ' 4.75, LSR = 7.65 · 4.75 = 36.34

Y (8) − Y (1) = 231/4 − 90/4 = 35.25 =⇒ not sign.

Newman-Keuls test shows that the difference between the largest and the smallest
block average is not unusually large (close to, however!). Thus no grouping of the
days can hardly be identified.
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5.14

Construction of the normal probability plot

Use as example the block averages computed from slide 5.9. n = 8 observations.

Averages Order p = Normal

sorted (x) i (i−0.5)/n quantile

22.50 1 0.0625 −1.53

28.50 2 0.1875 −0.89

29.00 3 0.3125 −0.49

33.75 4 0.4375 −0.16

37.50 5 0.5625 +0.16

40.25 6 0.6875 +0.49

53.50 7 0.8125 +0.89

57.75 8 0.9375 +1.53
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5.15

Plot the quantiles against the averages.

Average of the averages is x = 37.84

The standard deviation of the averages is sx = 12.33

The suggested normal distribution is represented by the straight line through the
point x = 37.84 and slope 1/sx = 1/12.33.

One can draw the line through the two points
(x − 2sx,−2) and (x + 2sx, +2)

The plot is shown on page 5.12. A normal probability scale is added to the right
there.
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5.16

The same problem with incomplete blocks

Only 3 measurements per day: block size = 3.

If the same precision as required in the previous example (8 complete blocks of size
4) is wanted the number of blocks of size 3 must be b = 8 · 4/3 ' 11.

Choose fx 12 blocks organized as 3 balanced incomplete block designs or Youden
squares.
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5.17

Day=block 5% 20% 30% 50%

Positions 1 α γ β

within a 2 γ β α

day are 3 β α γ

α, β or γ: 4 α γ β

with possible 5 γ α β

effects 6 α β γ

p1, p2, p3 7 γ β α

8 β α γ

9 β γ α

10 γ α β

11 α β γ

12 γ α β

In this design k = 3, a = 4, b = 12, r = 9, λ = 6

Taking positions into account the model could be

Yij = µ + τi + Bj + pk + Eijk
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Supplement I.1

Orthogonal polynomials

Data from slide 1.33 again:

Concentration

5% 7% 9% 11%

3.5 6.0 4.0 3.1

5.0 5.5 3.9 4.0

2.8 7.0 4.5 2.6

4.2 7.2 5.0 4.8

4.0 6.5 6.0 3.5

Sum 19.5 32.2 23.4 18.0

Model : Yij = µ + τj + Eij

ANOVA of response

Source SSQ d.f. s2 F

Concentration 24.35 4−1 8.1167 12.41

Residual 10.46 16 0.6538 (sign)

Total 34.81 20−1
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Supplement I.2

System of orthogonal polynomials, 4 points

−2 −1 0 1 2
−4

−3

−2

−1

0

1

2

3

4

x x x x

x

x

x

x

x

x x

x

x

x

x

x
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Supplement I.3

Weights and expressions for orthogonal polynomials

4 - point polynomial

weights

z −1.5 −0.5 0.5 1.5

P0(z) 1 1 1 1

P1(z) −3 −1 1 3

P2(z) 1 −1 −1 1

P3(z) −1 3 −3 1

P0(z) = 1

P1(z) = λ1 · z , λ1 = 2

P2(z) = λ2 · [z2 − (a2−1)
12 ] , λ2 = 1

P3(z) = λ3 · [z3 − z · (3a2−7)
20 ] , λ3 = 10/3

a∑
j=1

P`(zj) · Pm(zj) = 0 for all ` 6= m
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Supplement I.4

Orthogonal polynomials continued:

P0(z) = 1

P1(z) = λ1 · z

P2(z) = λ2 · [z2 − (a2−1)
12 ]

P3(z) = λ3 · [z3 − z · (3a2−7)
20 ]

P4(z) = λ4 · [z4 − z2

14
(3a2 − 13) + 3

560
(a2 − 1)(a2 − 9)]

P5(z) = λ5 · [z5 − 5z3

18 (a2 − 7) + z
1008(15a4 − 230a2 + 407)]
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Supplement I.5

Weights for higher order orthogonal polynomials

a Polynomial x1 x2 x3 x4 x5 x6 x7 λ
3 Linear -1 0 1 1

Quadratic 1 -2 1 3
4 Linear -3 -1 1 3 2

Quadratic 1 -1 -1 1 1
Cubic -1 3 -3 1 10/3

5 Linear -2 -1 0 1 2 1
Quadratic 2 -1 -2 -1 2 1
Cubic -1 2 0 -2 1 5/6
Quartic 1 -4 6 -4 1 35/12

6 Linear -5 -3 -1 1 3 5 2
Quadratic 5 -1 -4 -4 -1 5 3/2
Cubic -5 7 4 -4 -7 5 5/3
Quartic 1 -3 2 2 -3 1 7/12
5th degr. -1 5 -10 10 -5 1 21/10

7 Linear -3 -2 -1 0 1 2 3 1
Quadratic 5 0 -3 -4 -3 0 5 1
Cubic -1 1 1 0 -1 -1 1 1/6
Quartic 3 -7 1 6 1 -7 3 7/12
5th degr. -1 4 -5 0 5 -4 1 7/20

The values x1, x2,...,xa are equi-spaced with difference ∆x between values and average value x.

Then

zj = (xj − x)/∆x ; j = 1, 2, . . . , a
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Method:

Yij = β0 + β1 · xj + β2 · x2
j + β3 · x3

j + Eij

Compute standardized variable zj = (xj − x)/∆x , for j = 1, 2, .., a, where x is
the mean of the x values, and ∆x is the spacing between the x values.

Rewrite model using the orthogonal polynomials:

Yij = α0 + α1 · P1(zj) + α2 · P2(zj) + α3 · P3(zj) + Eij
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Estimate coefficients, using treatment totals T.j :

α̂` = [
a∑

j=1
T.j · P`(zj)]/(n · a∑

j=1
[P`(zj)]

2)

Compute sums of squares:

SSQ` = [
a∑

j=1
T.j · P`(zj)]

2/(n · a∑
j=1

[P`(zj)]
2)

Note that C` = [∑a
j=1 T.j · P`(zj)] for ` > 0 is a contrast, and the contrasts are

orthogonal. Therefore

SSQtreatments = ∑a−1
l=1 SSQ`
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Numerical example from slide 6.1 (and 1.33)

Example P2 : C2 = 19.5 − 32.2 − 23.4 + 18.0 = −18.1

SSQ2 = (−18.1)2/(5[12 + (−1)2 + (−1)2 + 12]) = 16.38

α̂2 = (−18.1)/(5[12 + (−1)2 + (−1)2 + 12]) = −0.905

Computations for a = 4

xj = 5 7 9 11 x = 8, ∆x = 2

zj → −1.5 −0.5 0.5 1.5 z = (x − 8)/2

` Totals Tj → 19.5 32.2 23.4 18.0 C` SSQ` α̂`

0 P0 → 1 1 1 1 93.1 − 4.655

1 P1 → −3 −1 1 3 −13.3 1.77 −0.133

2 P2 → 1 −1 −1 1 −18.1 16.38 −0.905

3 P3 → −1 3 −3 1 24.9 6.20 0.249

Total 24.35
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ANOVA in detail with orthogonal polynomials

ANOVA of response

Source SSQ d.f. s2 F

1. order polyn. 1.77 1 1.77 2.71

2. order polyn. 16.38 1 16.38 25.05

3. order polyn. 6.20 1 6.20 9.48 (sign)

Residual 10.46 16 0.6538

Total 34.81 20−1

The 3rd order term is significant. The polynomium probably has degree 3 (at least).

Test successively with higest order first. When a significant order is found the
polynomial and all the lower order polynomials are retained in the model.
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Contrasts with orthogonal polynomials

Factor Factor B

X B1 B2

10% T10,1 T10,2

15% T15,1 T15,2

20% T20,1 T20,2

Totals T10,1 T10,2 T15,1 T15,2 T20,1 T20,2 Effect

Main −1 −1 0 0 +1 +1 X-linear, XL

effects +1 +1 −2 −2 +1 +1 X-quadr., XQ

−1 +1 −1 +1 −1 +1 B main

Inter- +1 −1 0 0 −1 +1 XL×B

actions −1 +1 +1 −1 −1 +1 XQ×B

The two last contrasts are constructed by multiplication

of the coefficients of the corresponding main effects
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Contrasts for two-factor orthogonal polynomials

Factor Factor Z

X 24oC 30oC

10% T10,24 T10,30

15% T15,24 T15,30

20% T20,24 T20,30

Totals T10,24 T10,30 T15,24 T15,30 T20,24 T20,30 Effect

Main −1 −1 0 0 +1 +1 XL

effects +1 +1 −2 −2 +1 +1 XQ

−1 +1 −1 +1 −1 +1 ZL

Inter- +1 −1 0 0 −1 +1 XL×ZL

actions −1 +1 +2 −2 −1 +1 XQ×ZL

One can then test all coefficients successively (fx e, d, c, b, a) in the model:

Y = µ + a · x + b · x2 + c · z + d · x · z + e · x2 · z + ε
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Orthogonal regression with x-factor at k levels - brief theory

Consider the balanced analysis of variance table :

x1 x2 ... xk

Y11 Y12 ... Y1k

Y21 Y22 ... Y2k

: : : :
Yn1 Yn2 ... Ynk

where k ≥ 3. We want to estimate (as an example):

Yij = µ + α1 · P1(xj) + α2 · P2(xj) + Eij

where P1(.) and P2(.) are some functions of the regression variable x (polynomials
or any other functions).
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Least squares estimation

The residual SSQ for the parameters (µ, α1, α2) is

SSQres =
k∑

j=1

n∑
i=1

(Yij − µ − α1 · P1(xj) − α2 · P2(xj))
2

We estimate the regression model such that SSQres is minimized (least squares),

and we therefore require that the partial derivatives are zero :

∂(SSQres)/∂µ = −2
k∑

j=1

n∑
i=1

(Yij − µ − α1 · P1(xj) − α2 · P2(xj)) = 0

∂(SSQres)/∂α1 = −2
k∑

j=1

n∑
i=1

P1(xj)(Yij − µ − α1 · P1(xj) − α2 · P2(xj)) = 0

∂(SSQres)/∂α2 = −2
k∑

j=1

n∑
i=1

P2(xj)(Yij − µ − α1 · P1(xj) − α2 · P2(xj)) = 0
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Use of orthogonal polynomials:

Choose the functions P1(.) and P2(.) such that
k∑

j=1
P1(xj) = 0 ,

k∑
j=1

P2(xj) = 0

and
k∑

j=1
P1(xj)P2(xj) = 0 (i.e. orthogonal)

then the solutions to the estimation equations are :

µ̂ =
k∑

j=1

n∑
i=1

Yi/(n · k) = T../(n · k) = Y ..

α̂1 =
k∑

j=1
[T.j · P1(xj)]/(n · k∑

j=1
[P1(xj)]

2)

α̂2 =
k∑

j=1
[T.j · P2(xj)]/(n · k∑

j=1
[P2(xj)]

2)

where T.j = ∑n
i=1 Yij are the column totals.
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If we introduce
SSQ(P1) =

k∑
j=1

[T.j · P1(xj)]
2/(n · k∑

j=1
[P1(xj)]

2)

and similarly for SSQ(P2), it is easy also to show that

SSQres =
k∑

j=1

n∑
i=1

(Yij − µ)2 − SSQ(P1) − SSQ(P2)

Note that, since ∑k
j=1 P1(xj) = 0, ∑k

j=1[T.j · P1(xj)] is a contrast with sum of squares
SSQ(P1) which exactly is the part of the variation between the levels of x explained
by the function P1(.) and similarly for SSQ(P2).

The example is easily generalized to more orthogonal functions than 2 (in fact to
k-1 functions).
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What if the model is a two-way model?

Experiment with an additive x on n batches
Batch x1 = 2% x2 = 4% x3 = 6% x4 = 8% T1.

Batch 1 Y11 Y12 Y13 Y14 T1.

Batch 2 Y21 Y22 Y13 Y24 T2.

: : : : :
Batch n Yn1 Yn2 Yn3 Yn4 Tn.

Totals T.1 T.2 T.3 T.4 T..

SSQBatches : ∑
i T

2
i./4 − T 2

.. /(4n) (df=n − 1)

SSQAdditive : ∑
j T 2

.j/n − T 2
.. /(4n) (df=4 − 1 = 3)

SSQTotal : ∑
j

∑
j T 2

ij − T 2
.. /(4n) (df=4n − 1)

SSQResidual : SSQTotal - SSQBatches - SSQAdditive
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Split up the variance between concentration levels using orthogonal contrasts

Construct ( 4 - 1 ) orthogonal functions (fx polynomials), P1(x), P2(x) and P3(x),
such that for all ` 6= m

∑
x

P`(x) = 0 and
∑
x

P`(x) · Pm(x) = 0

then

SSQAdditive = SSQ(P1) + SSQ(P2) + SSQ(P3),

each with 1 degree of freedom
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Sample size determination in general

Sample size in fixed effect model - exact method

The sample test quantity in the one-way ANOVA is

Fsample =
n · ∑

j(X.j − X..)
2/(k − 1)∑

i
∑

j(Xij − X.j)2/(k(n − 1))
∈ F (k − 1, k(n − 1), γ2(n))

where F (., ., .) denotes the non-central F-distribution with

k − 1 and k(n − 1) degrees of freedom and non-centrality parameter

γ2(n) = n
∑
i
τ 2
i /σ2

E

which for γ2(n) = 0 corresponds to the usual F-distribution.

Test γ2(n) = 0 with level of significance α and require that the acceptance proba-

bility for a certain γ2(n) > 0 is at most β (or that the power is at least 1 − β).
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The p-critical value for the non-central F-distribution is (in the usual way) denoted
by F (ν1, ν2, γ

2(n))p (p is upper tail probability).

The probability of acceptance is:

β(γ2(n)) = Pr{Fsample ≤ F (ν1, ν2, 0)α}
and our requirement is met if

F (ν1, ν2, 0)α ≤ F (ν1, ν2, γ
2(n))1−β

By trying different n values using ν1 = k − 1 and ν2 = k(n − 1) and the cor-
responding γ2(n) the lowest n satisfying this inequality is the necessary sample
size.

In order to do so a computer program is needed which can calculate the non-central
F-distribution. All modern statistical programs can do it.
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Take the example from slide 2.25 again: σ2
E = 1.52 and τ = [−2, 0, 2] and require

a test with α = 0.05 and probability of acceptance for this τ at most β = 0.20.
Use γ2(n) = n · ∑

i τ
2
i /σ2

E = n · 8/2.25 :

n ν1 ν2 γ2(n)) F (ν1, ν2, 0)0.05 β(γ2(n)) F (ν1, ν2, γ
2)0.80

2 2 3 7.11 9.55 0.711 1.97

3 2 6 10.67 5.14 0.392 3.16

4 2 9 14.22 4.26 0.185 4.44

5 2 12 17.78 3.89 0.079 5.77

6 2 15 21.33 3.68 0.031 7.15

7 2 18 24.89 3.55 0.012 8.55

8 2 21 28.44 3.47 0.004 9.98

9 2 24 32.00 3.40 0.001 11.43

10 2 27 35.56 3.35 0.000 12.90
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The β(γ2(n)) column is the probability of acceptance for the sample size n, σ2
E =

1.52 and τ = [−2, 0, 2]. It decreases and must be at most 0.20 in our example.

The inequality is satisfied for n ≥ 4; choose n = 4.

In the above example we also found by using the (not very detailed) graphs in the
textbook, that we would need n = 4.

If, for example, β ≤ 0.10 is required, n = 5 is chosen.
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Sample size in random effect model - exact method

The test quantity is

Fsample =
n · ∑

j(X.j − X..)
2/(k − 1)∑

i
∑

j(Xij − X.j)2/(k(n − 1))
∈ λ2(n) · F (k − 1, k(n − 1))

i.e. a usual F-distribution with scale parameter

λ2(n) = (n · σ2
B + σ2

E)/σ2
E

Test σ2
B = 0 with level of significance α and require that the acceptance probability

for a certain σ2
B is at most β.

The p-critical value for the usual F-distribution is (as usual) denoted by F (ν1, ν2)p
(p is upper tail probability).
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The probability of acceptance is:

β(λ2(n)) = Pr{Fsample ≤ F (ν1, ν2, 0)α}
Our requirement is met if

F (ν1, ν2)α ≤ λ2(n) · F (ν1, ν2)1−β = λ2(n)/F (ν2, ν1)β

By trying different n values using ν1 = k − 1 and ν2 = k(n − 1) the lowest n
satisfying this inequality is the necessary sample size.
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With fx α = 0.05 and β = 0.10 we can easily determine n using the standard
0.05-critical and the 0.10-critical values F-tables.

Take the example from slide 2.29 again: σ2
E = 1.52 and σ2

B = 2.02 and require a
test with α = 0.05 and probability of acceptance for σ2

B = 2.0 at most β = 0.10.

Use λ2(n) = (n · σ2
B + σ2

E)/σ2
E
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n ν1 ν2 λ2(n) F (ν1, ν2)0.05 β(λ2(n)) F (ν2, ν1)0.10
λ2

F (ν2,ν1)0.10

10 2 27 18.78 3.35 0.163 9.45 1.99

11 2 30 20.56 3.32 0.148 9.46 2.17

12 2 33 22.33 3.28 0.136 9.46 2.36

13 2 36 24.11 3.26 0.126 9.46 2.55

14 2 39 25.89 3.24 0.117 9.47 2.74

15 2 42 27.67 3.22 0.110 9.47 2.92

16 2 45 29.44 3.20 0.103 9.47 3.11

17 2 48 31.22 3.19 0.097 9.47 3.30

18 2 51 33.00 3.18 0.092 9.47 3.48

19 2 54 34.78 3.17 0.087 9.47 3.67

20 2 57 36.56 3.16 0.083 9.47 3.86

The inequality is satisfied for n ≥ 17; choose n = 17.

In the above example we found by using the (not very detailed) graphs in the
textbook, that we would need about n = 15 which then was reasonably accurate.
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The general fixed effect test sample size

The fixed effect test is generally carried out using

F = S2
τ /S

2
2 ∈ F (ντ , ν2, γ

2(nτ))

where S2
τ is the mean square between treatments (τi, say) and S2

2 is the proper test
mean square.

The degrees of freedom are ντ and ν2, respectively. In general τi may denote a
fixed main effect or a fixed interaction effect.

In general the expected mean squares are of the form E{S2
τ} = nτ · ∑

i τ
2
i /ντ + ω2

and E{S2
2} = ω2 where ω2 is a linear combination of variances which depends on

the design and the model chosen.
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The constant nτ is equal to the number of single measurements per level of the
treatments or treatment combinations τi.

The non-centrality parameter is

γ2(nτ) = nτ · ∑
i
τ 2
i /ω2

Our requirement is, as above, met if

F (ν1, ν2, 0)α ≤ F (ν1, ν2, γ
2(nτ))1−β

By trying different nτ and corresponding ν1 and γ2(nτ) the lowest nτ satisfying
this inequality gives the necessary sample size.

In multi-factor and/or multilevel experiments the specification of a reasonable ω2

may be difficult - not least because it depends on the design.
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The general random effect test sample size

The random effect test is generally carried out using

F = S2
B/S2

2 ∈ λ2(nB) · F (νB, ν2)

where S2
B is the mean square between the levels of the random factor B and S2

2 is

the proper test mean square. The degrees of freedom are νB and ν2, respectively.

In general the expected mean squares are of the form E{S2
B} = nB · σ2

B + ω2 and
E{S2

2} = ω2 where ω2 is a linear combination of variances which depends on the
design chosen (may depend on nB and the model, but does not include σ2

B).
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The constant nB is equal to the number of single measurements per level of the
random factor B.

The scale parameter
λ2(nB) = (nB · σ2

B + ω2)/ω2

Our requirement is met if

F (νB, ν2)α ≤ λ2(nB) · F (νB, ν2)1−β = λ2(nB)/F (ν2, νB)β

By trying different nB values using νB = k − 1 and the corresponding ν2 and
λ2(nB) the lowest nB satisfying this inequality is the necessary sample size.

Again, in multi-factor and/or multilevel experiments the specification of a reason-
able ω2 may be difficult - not least because it depends on the design.
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Repeated Latin squares and ANOVA

3 squares with identical operators (3) and batches (3)

O1 O2 O3 O1 O2 O3 O1 O2 O3

B1 A B C B1 B C A B1 C A B

B2 B C A B2 A B C B2 B C A

B3 C A B B3 C A B B3 A B C

R1 R2 R3

Yνijk = µ + Rν + τi + Bj + Ok + Eνijk

Latin square ANOVA

Source of var. SSQ d.f. s2 EMS F-test

Treatments SSQτ 3 − 1 s2
τ σ2 + 9φτ Fτ

Replicates SSQR 3 − 1 s2
R (σ2 + 9σ2

R) (FR)

Batches SSQB 3 − 1 s2
B (σ2 + 9σ2

B) (FB)

Operators SSQO 3 − 1 s2
O (σ2 + 9σ2

O) (FO)

Uncertainty SSQE 18 s2
E σ2

Total SSQtot 27 − 1
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Sums of squares are computed as usual - using sums:

SSQτ =
3∑

i=1

T 2
.i..

9
− T 2

....

27
, SSQR =

3∑
ν=1

T 2
ν...

9
− T 2

....

27

SSQB =
3∑

j=1

T 2
..j.

9
− T 2

....

27
, SSQO =

3∑
k=1

T 2
...k

9
− T 2

....

27

SSQE = SSQtot − SSQR − SSQτ − SSQB − SSQO
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3 squares with 9 operators and 3 batches

O1 O2 O3 O4 O5 O6 O7 O8 O9

B1 A B C B1 B C A B1 C A B

B2 B C A B2 A B C B2 B C A

B3 C A B B3 C A B B3 A B C

R1 R2 R3

Yνijk = µ + Rν + τi + Bj + O(R)k(ν) + Eνijk

Latin square ANOVA

Source of var. SSQ d.f. s2 EMS F-test

Treatments SSQτ 3 − 1 s2
τ σ2 + 9φτ Fτ

Replicates SSQR 3 − 1 s2
R (σ2 + 9σ2

R) (FR)

Batches SSQB 3 − 1 s2
B (σ2 + 9σ2

B) (FB)

Operators SSQO(R) 3(3 − 1) s2
O(R) (σ2 + 3σ2

O(R)) (FO(R))

Uncertainty SSQE 14 s2
E σ2

Total SSQtot 27 − 1
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Sums of squares are computed as usual - using sums - again:

SSQO =
3∑

ν=1

 ∑
k(ν)

T 2
ν..k

3
− T 2

ν...

9



Note that now SSQO(R) is computed within replicates and added up over the three

replicates giving 2 degrees of freedom for each replicate. The summation over k is

thus over the three values within the replicate ν.

SSQR , SSQτ , SSQB and SSQE as above.
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3 squares with 9 operators and 9 batches

O1 O2 O3 O4 O5 O6 O7 O8 O9

B1 A B C B4 B C A B7 C A B

B2 B C A B5 A B C B8 B C A

B3 C A B B6 C A B B9 A B C

R1 R2 R3

Yνijk = µ + Rν + τi + B(R)j(ν) + O(R)k(ν) + Eνijk

Latin square ANOVA

Source of var. SSQ d.f. s2 EMS F-test

Treatments SSQτ 3 − 1 s2
τ σ2 + 9φτ Fτ

Replicates SSQR 3 − 1 s2
R (σ2 + 9σ2

R) (FR)

Batches SSQB(R) 3(3 − 1) s2
B(R) (σ2 + 3σ2

B(R)) (FB(R))

Operators SSQO(R) 3(3 − 1) s2
O(R) (σ2 + 3σ2

O(R)) (FO)

Uncertainty SSQE 10 s2
E σ2

Total SSQtot 27 − 1
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Sums of squares are computed as usual - using sums - again - again :

SSQB(R) =
3∑

ν=1

 ∑
j(ν)

T 2
ν.j.

3
− T 2

ν...

9



SSQO(R) =
3∑

ν=1

 ∑
k(ν)

T 2
ν..k

3
− T 2

ν...

9



Now both SSQO(R) and SSQB(R) are computed within replicates.

SSQR , SSQτ , and SSQE as above.
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