Statistical Design and Analysis of Experiments

Part One

Lecture notes
Fall semester 2007

Henrik Spliid

Informatics and Mathematical Modelling
Technical University of Denmark

A strict mathematical presentation is not intended, but by indicating some of the exact results and showing examples and numerical calculations it is hoped that a little deeper understanding of the different ideas and methods can be achieved.

In all circumstances, I hope these notes can inspire and assist the student in studying and learning a number of the most fundamental principles in the wonderful art of designing and analyzing scientific experiments.

The present version is a revision of the previous (2003) notes. Some of the material is reorganized and some additions have been made (sample size calculations for analysis of variance models and a simpler calculation of expectations of mean squares (2005)).

July 2004
A moderate revision has been made in January 2006 in which, primarily, the page references have been changed to the 6th edition of Montgomery's textbook

$$
\text { January } 2006
$$

A larger revision was undertaken in August 2006. The format is now landscape. A number of slides I considered less important have been taken out. I hope this has clarified the subjects concerned.

Foreword

The present collection af lecture notes is intended for use in the courses given by the author about the design and analysis of experiments. Please respect that the material is copyright protected.

The material relates to the textbook: D.C. Montgomery, Statistical Design and Analysis, 6th ed., Wiley.

The notes have been prepared as a supplement to the textbook and they are primarily intended to present the material in both a much shorter and more precise and detailed form. Therefore long explanations and the like are generally left out. For the same reason the notes are not suited as stand alone texts, but should be used in parallel with the textbook.

The notes were initially worked out with the purpose of being used as slides in lectures in a design of experiments course based on Montgomery's book, and most of them are still in a format suited to be used as such.

Some important concepts that are not treated in the textbook (especially orthogonal polynomials, Duncan's and Newman-Keuls multiple range tests and Yates' algorithm) have been added and a number of useful tables are given, most noteworthy, perhaps, the expected mean square tables for all analysis of variance models including up to 3 fixed and/or random factors.

August 2007:
A major revision was carried out. No new material, but (hopefully) better organized. In part 11 a new and very easy way of computing expected mean squares (EMS) is introduced.

List of contents

1.1: Introduction, ANOVA
1.6: A weighing problem (example of DE)
1.10: Some elementary statistics (repetition)
1.16: The paired comparison design
1.19: Analysis of variance example
1.25: Designs without or with structure (after ANOVA analyses)
1.31: Patterns based on factorial designs
1.33: Polynomial effects in ANOVA

List of contents, cont.

2.25: Sample size for fixed effect model - example
2.29: Sample size for random effect model - example
3.1: Block designs - one factor and one blocking criterion
3.2: Confounding (unwanted!)
3.3: Randomization
3.5: Examples of factors and blocks

List of contents, cont.
2.1: Multiple range and related methods.
2.3: LSD - Least significant differences
2.5: Newman-Keul's (multiple range) test
2.7: Duncan's multiple range test
2.9 Comparison: Newman-Keuls versus Duncan's test
2.11: Dunnett's test
2.13: The fixed effect ANOVA model
2.14: The random effect ANOVA model, introduction
2.17: Example of random effects ANOVA
2.23: Choice of sample size fixed effect ANOVA
2.24: Choice of sample size random effect ANOVA
6
List of contents, cont.
3.7: Confounding again : Model and ANOVA problems
3.9: Randomization again : Model and ANOVA problems
3.11: The balanced (complete) block design
3.13: The Latin square design
3.15: The Graeco-Latin square design
3.17: Overview of interpretation of slides 3.5-3.14
3.19: The (important) two-period cross-over design
3.21: A little more about Latin squares
3.23: Replication of Latin squares (many possibilities)
3.25: To block or not to block
3.32: Two alternative designs - which one is best?

2.1: Multiple range and related methods.
2.3: LSD - Least significant differences
2.5: Newman-Keul's (multiple range) test
2.7: Duncan's multiple range test
2.9 Comparison: Newman-Keuls versus Duncan's test
2.13: The fixed effect ANOVA mode
2.14: The random effect ANOVA model, introduction

17: Example of random effects ANOVA
2.23: Choice of sample size fixed effect ANOVA
2.24: Choice of sample size random effect ANOVA
3.9: Randomization again : Model and ANOVA problems
3.11: The balanced (complete) block design
3.13: The Latin square design
3.15: The Graeco-Latin square design
3.17: Overview of interpretation of slides 3.5-3.14
3.19: The (important) two-period cross-over design
3.21: A little more about Latin squares
3.23: Replication of Latin squares (many possibilities)
3.32: Two alternative designs - which one is best?

List of contents, cont.
3.28: Test of additivity (factor and block)
3.30: Choice of sample size in balanced block design
4.1: Incomplete block designs
4.2: Small blocks, why?
4.3: Example of balanced incomplete block design
4.5: A heuristic design (an inadequate design example)
4.7: Incomplete balanced block designs and some definitions
4.9: Data and example of balanced incomplete block design (BIBD)
4.10: Computations in balanced incomplete block design
4.11: Expectations and variances and estimation

List of contents, cont.
4.12: After ANOVA based on Q-values (Newman-Keuls, contrasts) in BIBD
4.13: Analysis of data example of BIBD
4.17: Youden square design (incomplete Latin square)
4.21: Contrast test in BIBD and Youden square (example)
4.22-4.35: Tables over BIBDs and Youden squares
5.1: An example with many issues
5.12: Construction of the normal probability plot
5.17: The example as an incomplete block design

Supplement I
I.1: System of orthogonal polynomials
1.4: Weights for higher order polynomials
I.8: Numerical example from slide 1.33

Supplement II

Determination of sample size - general
II.8: Sample size determination in general - fixed effects
II.11: Sample size determination in general - random effects

Supplement III
III.1: Repetition of Latin squares and ANOVA

Design of Experiments (DoE)

What is DoE?

Ex: Hardening of a metallic item
Variables that may be of importance: Factors
1: Medium (oil, water, air or other)
2: Heating temperature
3: Other factors ?

Dependent variables: Response

1: Surface hardness
2: Depth of hardening
3: Others ?

Sources of variation (uncertainty)

1: Uneven usage of time for heating
2: All items not completely identical
3: Differences in handling by operators

Sources of noise

13

Design of Experiments

Model of process determines	temperatures, heating time, etc. Factors in general based on a priori knowledge)
Laboratory resources decide	Number of measurements Practical execution Handling and staff
Conclusions wanted	How are data to be analyzed Which factors are important Which sources of uncertainty are important
Estimation of effects and	
uncertainties	

A weighing problem

Three items $\mathrm{A} \quad \mathrm{B}$ C
Standard weighing experiment:

Measurement	(1)	a	b	c
Meaning	No	with	with	with
	item	A	B	C

Model for (1) $=\mu+E_{1}$
responses a $\quad=\mu+A+E_{2}$
b $=\mu+B+E_{3}$
c $=\mu+C+E_{4}$
$\mu=$ offset (zero reading) of weighing device
$A=$ weight of item A $\quad B=$ weight of item $\mathrm{B} \quad C=$ weight of item C
E_{1}, E_{2}, E_{3} and E_{4} are the 4 measurement errors

17

The alternative weighing design

Model of (1) $=\mu+E_{5}$
responses ac $=\mu+A+C+E_{6}$
$\mathrm{bc}=\mu+B+C+E_{7}$
$\mathrm{ab}=\mu+A+B+E_{8}$

$$
\widehat{A}^{*}=\frac{-(1)+a c-b c+a b}{2}=A+\frac{4 \text { errors }}{2}
$$

Which design is preferable and why?

$$
\begin{gathered}
\operatorname{Var}\{\widehat{A}\}=2 \sigma_{E}^{2} \\
\operatorname{Var}\left\{\widehat{A^{*}}\right\}=\frac{4 \sigma_{E}^{2}}{2^{2}}=\sigma_{E}^{2}
\end{gathered}
$$

The "natural" estimates of A, B and C are

$$
\widehat{A}=a-(1)
$$

and the corresponding for B and C

An alternative experiment:

(1)	ac	bc	ab
No	with	with	with
item	A and C	B and C	A and B

18

Conclusion

The alternative design is preferable because

1) The two designs both use 4 measurements
but
2) The second design is (much) more precise than the first design.

The reason for this is that
In the first design not all measurements are used to estimate all parameters, which is the case in the second design.
This is a basic property of (most) good designs.

Some repetition of elementary statistics

Table 2-1: Portland cement strength		
Observation number	Modified Mortar	Unmodified mortar
1	16.85	17.50
2	16.40	17.63
$:$	$:$	$:$
10	16.57	18.15

Factor: Types of mortar with 2 levels
Response: Strength of cement

The experiment represents a comparative (not absolute) study (it assesses differences between types of mortar).
${ }^{21}$

Example p. 36: $\bar{Y}_{1}=16.76, \bar{Y}_{2}=17.92, s^{2}=0.284^{2}$

$$
\mu_{1}=\mu_{2} \Rightarrow t=\frac{16.76-17.92}{0.284 \sqrt{1 / 10+1 / 10}}=-9.13
$$

The difference is strongly significant

Two treatments: the t-test can be applied

Two distributions to compare

$$
\begin{aligned}
& \begin{aligned}
x \times x \times z z z z \quad z=y_{2} \\
x \times x
\end{aligned} \\
& \begin{array}{l}
x \times x \times x z z z z z z z \\
x x x x x z z z z z
\end{array} \\
& \text { xxxxxxxzzzz }
\end{aligned}
$$

Model: $Y_{i j}=\mu_{i}+E_{i j}=\mu+\tau_{i}+E_{i j} ; i=\{1,2\} \quad$ with $\tau_{1}+\tau_{2}=0$
Test of $H_{0}: \mu_{1}=\mu_{2} \Longleftrightarrow \tau_{1}=\tau_{2}=0$

$$
\begin{gathered}
t=\frac{\left(\bar{Y}_{1}-\bar{Y}_{2}\right)-\left(\mu_{1}-\mu_{2}\right)}{s \sqrt{1 / n_{1}+1 / n_{2}}} \\
s^{2}=s_{\text {pooled }}^{2}=\frac{\left(n_{1}-1\right) s_{1}^{2}+\left(n_{2}-1\right) s_{2}^{2}}{n_{1}-1+n_{2}-1}
\end{gathered}
$$

Analysis of variance for cement data
Two levels \sim Two treatments.
The test (of the hypothesis of no difference between treatments) can be formulated as an analysis of variance (one-way model):

Source of variation	SSQ	df	s^{2}	F value
Between treatments Within	6.7048	$2-1$	6.7048	82.98
treatments	1.4544	18	0.0808	
Total Variation	8.1592	$20-1$		

The reference distribution is an F-distribution:

The t-test and the one-way analysis of variance with two treatments give the same results.
The F-value in the analysis of variance is the t-value squared:

$$
t^{2}(f) \sim F(1, f)
$$

25

	Design I : 20 items used	
	Method A	Method B
test	$Y_{1, A}$	$Y_{1, B}$
item	$Y_{2, A}$	$Y_{2, B}$
Treatm. A or B	-	,
	$Y_{10, A}$	$Y_{10, B}$
	Allocation	treatments to

The method of analysis?
Answer: One-way analysis of variance (or t-test)

Conclusions to formulated:

Point estimates	μ_{1} and μ_{2}
for	$\mu_{1}-\mu_{2}$
	σ_{E}^{2}

$$
\begin{array}{ll}
\text { Confidence intervals } & \mu_{1} \text { and } \mu_{2} \\
\text { for } & \mu_{1}-\mu_{2} \\
& \sigma_{E}^{2}
\end{array}
$$

and a suitable verbal formulation of the obtained result

Treatm. B	Design II : 10 items used		
	Item	Method A	Method B
	1	$Y_{1, A}$	$Y_{1, B}$
part 1	2	$Y_{2, A}$	$Y_{2, B}$
part 2		-	${ }^{\text {P }}$
	10	$Y_{10, A}$	$Y_{10, B}$
Treatm. A	Allocation of treatments to the two parts by randomization		

The proper mathematical model is a two-way analysis of variance model.
Formulate the two models for designs I and II.
Which design is preferred? Why?

Detailed mathematical models

$$
\begin{aligned}
& \text { Design I : } Y_{i, A}=\mu_{A}+E_{i, A}+U_{i, A} \\
& Y_{i, B}=\mu_{B}+E_{i, B}+U_{i, B} \\
& \operatorname{Var}\left\{\overline{\mathrm{Y}}_{\mathrm{A}}-\overline{\mathrm{Y}}_{\mathrm{B}}\right\}=\frac{2 \sigma_{\mathrm{E}}^{2}+2 \sigma_{\mathrm{U}}^{2}}{\mathrm{n}}
\end{aligned}
$$

$$
\begin{array}{ll}
\text { Design II: } & Y_{i, A}=\mu_{A}+E_{i}+U_{i, A} \\
& Y_{i, B}=\mu_{B}+E_{i}+U_{i, B}
\end{array}
$$

$$
\begin{gathered}
Y_{i, A}-Y_{i, B}=D_{i}=\mu_{A}-\mu_{B}+U_{i, A}-U_{i, B} \\
\operatorname{Var}\left\{\overline{\mathrm{Y}}_{\mathrm{A}}-\overline{\mathrm{Y}}_{\mathrm{B}}\right\}=\frac{2 \sigma_{\mathrm{U}}^{2}}{\mathrm{n}}
\end{gathered}
$$

Conclusion: Design II eliminates the variation between items.
Design II is preferable. The analysis is a paired t-test or a two-way analysis of variance with 2 treatments and 10 blocks.

Mathematical model for randomized design

$$
Y_{i j}=\mu+\tau_{j}+E_{i j}
$$

Factor is \% cotton						
	15%	20%	25%	30%	35%	sum
	7	12	14	19	7	
	7	17	18	25	20	
	15	12	18	22	16	
	11	18	19	19	15	
	9	18	19	23	11	
Sum	49	77	88	108	54	376
Complete randomization assumed						

What is achieved by randomizing the sequence?

$$
\begin{gathered}
S S Q_{\text {tot }}=7^{2}+7^{2}+15^{2}+\ldots+11^{2}-\frac{376^{2}}{25}=636.96 \\
S S Q_{\text {treatm }}=\frac{49^{2}+77^{2}+88^{2}+108^{2}+54^{2}}{5}-\frac{376^{2}}{25}=475.76
\end{gathered}
$$

$$
S S Q_{\text {resid }}=S S Q_{\text {tot }}-S S Q_{\text {treatm }}=161.20
$$

$$
\begin{gathered}
f_{\text {tot }}=N-1=25-1=24 \\
f_{\text {treatm }}=a-1=5-1=4 \\
f_{\text {resid }}=a(n-1)=5(5-1)=20
\end{gathered}
$$

Model identified:

$$
Y_{i j}=\mu+\tau_{j}+E_{i j}
$$

Parameter	μ	τ_{j}	σ_{E}^{2}
Estimate	$Y_{. .}$	$\bar{Y}_{. j}-\bar{Y}_{. .}$	s_{E}^{2}
Value	15.04	-5.24	$8.06=$
from data		0.36	2.84^{2}
		2.56	
		6.56	
		-4.24	

ANOVA table for cotton experiment					
Source	SSQ	f	s^{2}	EMS	F-value
Cotton	475.76	4	118.94	$\sigma_{E}^{2}+5 \phi_{\tau}$	14.76
Residual	161.20	20	8.06	σ_{E}^{2}	
Total	636.96	24			

Conclusion: Since $14.76 \gg 2.87$ the percentage of cotton is of importance for the strength measured.

34

Design without or with structure - how to analyse after ANOVA

| Design without structure | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: |
| A | B | C | D | E |
| Y_{11} | Y_{12} | Y_{13} | Y_{14} | Y_{15} |
| Y_{21} | Y_{22} | Y_{23} | Y_{24} | Y_{25} |
| \vdots | \vdots | \vdots | \vdots | \vdots |
| $Y_{n 1}$ | $Y_{n 2}$ | $Y_{n 3}$ | $Y_{n 4}$ | $Y_{n 5}$ |

Scaled t - or range distribution

Natural comparisons?
Use orthogonal contrasts (two !) How can they be constructed?

Important example of orthogonal contrasts

Design with structure		
$\mathrm{A}=$ Control	Tablet= B_{1}	Inject= B_{2}
24.0	11.0	23.0
29.0	18.5	21.0
32.1	29.0	18.8
28.0	16.0	16.8
113.1	74.5	79.6
Present	Two alternative	
method	methods	

ANOVA table for drug experiment				
Source	SSQ	f	s^{2}	F-value
Treatm.	219.85	$3-1$	119.93	4.34
Residual	227.84	9	25.3	
Total	447.69	$12-1$		

$F(2,9)_{0.05}=4.26$, such that the variation between treatments is (just) significant at the 5% significance level.
What now? We can suggest reasonable contrasts:

$$
\begin{gathered}
C_{A-B}=2 \cdot T_{A}-\left(T_{B_{1}}+T_{B_{2}}\right)=72.1 \\
S S Q_{A-B}=\frac{C_{A-B}^{2}}{4 \cdot\left(2^{2}+(-1)^{2}+(-1)^{2}\right)}=216.60 \quad, \quad f=1 \\
C_{B_{1}-B_{2}}=0 \cdot T_{A}+T_{B_{1}}-T_{B_{2}}=-5.1 \\
S S Q_{B_{1}-B_{2}}=\frac{C_{B_{1}-B_{2}}^{2}}{4 \cdot\left(0^{2}+1^{2}+(-1)^{2}\right)}=3.25 \quad, \quad f=1
\end{gathered}
$$

38

Some 'patterns' leading to orthogonal contrasts

Design I	A	B_{1}	$\mathrm{~B}_{2}$
Contrasts	$2 T_{A}$	$-T_{B_{1}}$	$-T_{B_{2}}$
		$T_{B_{1}}$	$-T_{B_{2}}$

$$
\begin{array}{|l|cccc|}
\hline \text { Design II } & \mathrm{A}_{1} & \mathrm{~A}_{2} & \mathrm{~B}_{1} & \mathrm{~B}_{2} \\
\hline \text { Contrasts } & T_{A_{1}} & +T_{A_{2}} & -T_{B_{1}} & -T_{B_{2}} \\
& T_{A_{1}} & -T_{A_{2}} & & \\
& & & T_{B_{1}} & -T_{B_{2}} \\
\hline
\end{array}
$$

$$
\begin{array}{|l|cccc|}
\hline \text { Design III } & \mathrm{A} & \mathrm{~B}_{1} & \mathrm{~B}_{2} & \mathrm{~B}_{3} \\
\hline \text { Contrast } & 3 T_{A_{1}} & -T_{B_{1}} & -T_{B_{2}} & -T_{B_{3}} \\
\text { (artificial) } & & 2 T_{B_{1}} & -T_{B_{2}} & -T_{B_{3}} \\
\text { (artificial) } & & & T_{B_{2}} & -T_{B_{3}} \\
\hline
\end{array}
$$

Patterns in two-way factorial designs

In the design III example the SSQ's from the two artificial contrasts $\left[2 T_{B_{1}}-T_{B_{2}}-\right.$ $\left.T_{B_{3}}\right]$ and $\left[T_{B_{2}}-T_{B_{3}}\right]$ add up to the variation between the three B's. An ANOVA table could in principal look like

Source	SSQ	f	s^{2}	F-value
A-B	SSQ $_{A-B}$	1		
Between B's	SSQ $_{B}$	2		
Residual	SSQ $_{\text {res }}$	$\mathrm{N}-1-3$		
Total	SSQ $_{\text {tot }}$	$\mathrm{N}-1$		

41

Polynomial effects in ANOVA

Concentration				
5%	7%	9%	11%	
3.5	6.0	4.0	3.1	
5.0	5.5	3.9	4.0	
2.8	7.0	4.5	2.6	
4.2	7.2	5.0	4.8	
4.0	6.5	6.0	3.5	
Sum	19.5	32.2	23.4	

Model $: Y_{i j}=\mu+\tau_{j}+E_{i j}$

ANOVA of response				
Source	SSQ	d.f.	s^{2}	F
Concentration	24.35	$4-1$	8.1167	12.41
Residual	10.46	16	0.6538	(sign)
Total	34.81	$20-1$		

Plot of data and approximating 3. order polynomium:

By the general regression test method these models can be tested successively in order to identify the proper order of the polynomial.

An alternative method to identify the necessary (statistically significant) order of the polynomial is based on orthogonal polynomials. The technique uses the concept of ortogonal regression and it is much similar to the orthogonal contrast technique.
The technique is shown in the supplementary section I.

Polynomial estimation in ANOVA

Possible empirical function as a polynomial:

$$
Y_{i j}=\beta_{0}+\beta_{1} \cdot x_{j}+\beta_{2} \cdot x_{j}^{2}+\beta_{3} \cdot x_{j}^{3}+E_{i j}
$$

With $4 x$-points a polynomial of degree $(4-1)=3$ can be estimated using standard (polynomial) regression analysis.
Alternative (reduced) models:

$$
\begin{gathered}
Y_{i j}=\beta_{0}+\beta_{1} \cdot x_{j}+\beta_{2} \cdot x_{j}^{2}+E_{i j} \\
Y_{i j}=\beta_{0}+\beta_{1} \cdot x_{j}+E_{i j} \\
Y_{i j}=\beta_{0}+E_{i j} \quad \text { (ultimately) }
\end{gathered}
$$

${ }^{46}$

Exercise 3-1

Tensile strength			
A	B	C	D
3129	3200	2800	2600
3000	3300	2900	2700
2865	2975	2985	2600
2890	3150	3050	2765

ANOVA for mixing experiment				
Source	SSQ	df	s^{2}	F
Methods	489740	3	163247	12.73
Residual	153908	12	12826	
Total	643648	15		

How can we try to group the treatments?

$s_{\text {mean }}=s_{\text {residual }} / \sqrt{n_{\text {mean }}}=\sqrt{12826} / \sqrt{4}=56.63$.

Which averages are possibly significantly different ?

$$
\begin{aligned}
& |A-B|=|3156-2971|=185 \text { significant } \\
& |A-C|=|2971-2933|=38 \text { not significant } \\
& |A-D|=|2971-2666|=305 \text { significant } \\
& |B-C|=|3156-2933|=223 \text { significant } \\
& |B-D|=|3156-2666|=490 \text { significant } \\
& |C-D|=|2933-2666|=223 \text { significant }
\end{aligned}
$$

\[

\]

Here $n_{A}=n_{B}=4, s_{\text {res }}=113.25, f_{\text {res }}=12$

$$
\left|\bar{Y}_{A}-\bar{Y}_{B}\right|>113.25 \sqrt{1 / 4+1 / 4} \times 2.179=174.5 \quad ?
$$

Sort averages increasing: $\bar{Y}_{(1)}, \bar{Y}_{(2)}, \bar{Y}_{(3)}, \bar{Y}_{(4)}$

$$
\text { Range }=\bar{Y}_{(4)}-\bar{Y}_{(1)}
$$

Table VII (gives q_{α}) : Criterion

$$
\begin{aligned}
& \qquad \bar{Y}_{(4)}-\bar{Y}_{(1)}>s_{\text {mean }} \cdot q_{\alpha}\left(4, f_{\text {res }}\right)
\end{aligned} ?
$$

LSD: Least Significant Difference

For example A versus B :

$$
\begin{gathered}
\frac{\bar{Y}_{A}-\bar{Y}_{B}}{s_{r e s} \sqrt{1 / n_{A}+1 / n_{B}}} \sim t\left(f_{\text {res }}\right) \\
\left|\bar{Y}_{A}-\bar{Y}_{B}\right|<s_{r e s} \sqrt{1 / n_{A}+1 / n_{B}} \times t\left(f_{\text {res }}\right)_{0.025}
\end{gathered}
$$

Newman - Keuls Range Test

Range including 4: $\mathrm{LSR}_{4}=4.20 \cdot 56.63=237.8$
Range including 3: $\mathrm{LSR}_{3}=3.77 \cdot 56.63=213.5$
Range including 2: $\quad \mathrm{LSR}_{2}=3.08 \cdot 56.63=174.4$
B-D: 3156-2666 $=490>237.8\left(\mathrm{LSR}_{4}\right)$ sign.
B-C: 3156-2933 = $223>213.5\left(\mathrm{LSR}_{3}\right)$ sign.
B-A: 3156-2971 = $185>174.4\left(\mathrm{LSR}_{3}\right)$ sign.
A - D: $2971-2666=305>213.5\left(\mathrm{LSR}_{3}\right)$ sign.
A - C: 2971-2933 = $38<174.4\left(\mathrm{LSR}_{2}\right)$ not s

Conclusion:

53
. $\mathrm{LSR}_{4}=3.03 \cdot 56.63=188.6$ Range including 3: $\mathrm{LSR}_{3}=3.23 \cdot 56.63=182.9$ Range including 2: $\mathrm{LSR}_{2}=3.08 \cdot 56.63=174.4$

B - D: 3156-2666 $=490>188.6\left(\mathrm{LSR}_{4}\right)$ sign. B-C: 3156-2933 = $223>182.9\left(\mathrm{LSR}_{3}\right)$ sign. B - A: 3156-2971 $=185>174.4\left(\mathrm{LSR}_{3}\right)$ sign. A - D: 2971-2666 = $305>182.9\left(\mathrm{LSR}_{3}\right)$ sign. A - C: 2971-2933 = $38<174.4\left(\mathrm{LSR}_{2}\right)$ not s.

Conclusion is the same as for Newman -Keuls here:

Duncans Multiple Range Test

Sort averages increasing: $\bar{Y}_{(1)}, \bar{Y}_{(2)}, \bar{Y}_{(3)}, \bar{Y}_{(4)}$

$$
\text { Range }=\bar{Y}_{(4)}-\bar{Y}_{(1)}
$$

Criterion (from special table find r_{α}):

$$
\begin{aligned}
& \qquad \bar{Y}_{(4)}-\bar{Y}_{(1)}>s_{\text {mean }} \cdot r_{\alpha}\left(4, f_{\text {res }}\right) ? \\
& s_{\text {mean }}=s_{\text {res }} / \sqrt{n_{\text {mean }}}=113.25 / \sqrt{4}=56.63 \\
& r_{0.05}(4,12)=3.33
\end{aligned}
$$

$$
54
$$

Newman - Keuls \& Duncans test

Works alike, but use different types of range distributions. For example:

$$
\begin{array}{ll}
\text { Duncan } & \text { Newman }- \text { Keuls } \\
\hline r(6,12)_{0.05}=3.40 & q(6,12)_{0.05}=4.75 \\
r(5,12)_{0.05}=3.36 & q(5,12)_{0.05}=4.51 \\
r(4,12)_{0.05}=3.33 & q(4,12)_{0.05}=4.20 \\
r(3,12)_{0.05}=3.23 & q(3,12)_{0.05}=3.77 \\
r(2,12)_{0.05}=3.08 & q(2,12)_{0.05}=3.08 \\
\hline \text { More significances } & \text { More conservative } \\
\hline
\end{array}
$$

A grouping of averages that is significant according to Newman - Keuls test is more reliable

No structure on treatments \Longrightarrow
Use Newman Keuls or Duncans test
(LSD method not recommendable)

Structure on treatments \Longrightarrow Use contrast method or fx Dunnetts test (below)

Dunnetts test
$\mathrm{H}_{0}: \mu_{A}=\mu_{B}=\mu_{C}=\mu_{D}$
H_{1} : One or more of $\left(\mu_{B}, \mu_{C}, \mu_{D}\right)$ different from μ_{A}

Example: Exercise 3-1 with A as control (fx).

Two sided criterion:

$$
\left|\bar{Y}_{A}-\bar{Y}_{B}\right|>s_{r e s} \sqrt{1 / n_{A}+1 / n_{B}} \cdot d(4-1,12)_{0.05}
$$

$d(3,12)_{0.05}($ two sided $)=2.68 \Longrightarrow$
critical difference $=\sqrt{12826} \sqrt{1 / 4+1 / 4} \cdot 2.68=214.7$

One sided criterion:

$$
\bar{Y}_{A}-\bar{Y}_{B}>s_{r e s} \sqrt{1 / n_{A}+1 / n_{B}} \cdot d(4-1,12)_{0.05}
$$

$d(3,12)_{0.05}($ one sided $)=2.29 \Longrightarrow$
critical difference $=\sqrt{12826} \sqrt{1 / 4+1 / 4} \cdot 2.29=183.5$

The fixed (deterministic) effect ANOVA model

4 treatments				Model for response:$Y_{i j}=\mu+\tau_{j}+E_{i j}$
Filter	Clean	Heat	Nothing	
x	X	x	x	
x	X	x	x	The 4 treatment effects
x	X	x	x	are deterministic
x	x	x	x	(μ and τ_{j} are constants)

Assumptions: $\Sigma_{j} \tau_{j}=0$ and $E_{i j} \in N\left(0, \sigma_{E}^{2}\right)$

The random effect ANOVA model (see chapter 13 in 6th ed. of book)

Example: choose 4 batches among a large number of possible batches and measure some response (purity for example) on these batches:

4 batches				Model for response:$Y_{i j}=\mu+B_{j}+E_{i j}$
B-101	B-309	B-84	B-211	
x	x	x	x	
x	x	X	x	The 4 batch effects are
x	x	x	X	random variables
x	x	x	X	(B_{j} are random variables)

Assumptions: $B_{j} \in N\left(0, \sigma_{B}^{2}\right)$ and $E_{i j} \in N\left(0, \sigma_{E}^{2}\right)$
σ_{E}^{2} and σ_{B}^{2} are called variance components:
They are the variances within and between (randomly chosen) batches, respectively.

$$
61
$$

Fixed effect model: $Y_{i j}=\mu+\tau_{j}+E_{i j}$

ANOVA for fixed effect model					
Source	SSQ	df	s^{2}	EMS $=\mathrm{E}\left\{s^{2}\right\}$	F
Methods	$S S Q_{\tau}$	f_{τ}	s_{τ}^{2}	$\sigma_{E}^{2}+n \cdot \phi_{\tau}$	s_{τ}^{2} / s_{E}^{2}
Residual	$S S Q_{E}$	f_{E}	s_{E}^{2}	σ_{E}^{2}	
Total	$S S Q_{\text {tot }}$	$f_{\text {tot }}$			

$\phi_{\tau}=\Sigma_{j} \tau_{j}^{2} /(a-1)$, and $\widehat{\tau}_{j}=\bar{Y}_{. j}-\bar{Y}$.

Fixed (deterministic) effects: temperature, concentration, treatment, etc.
${ }^{6} 2$

Example 13-1, p 487, typical example of random effect model

Assumptions: $L_{j} \in N\left(0, \sigma_{L}^{2}\right)$ and $E_{i j} \in N\left(0, \sigma_{E}^{2}\right)$

One-way ANOVA for loom example

ANOVA for variation between looms					
Source	SSQ	df	s^{2}	$\mathrm{E}\left\{s^{2}\right\}$	F
Looms	89.19	3	29.73	$\sigma_{E}^{2}+4 \cdot \sigma_{L}^{2}$	15.65
Residual	22.75	12	1.90	σ_{E}^{2}	
Total	111.94	15			

$$
\begin{aligned}
& F(3,12)_{0.05}=3.49 \ll 15.65 \Longrightarrow \text { significance! } \\
& \widehat{\sigma}_{E}^{2}=1.90=1.38^{2} \\
& \widehat{\sigma}_{L}^{2}=(29.73-1.90) / 4=6.96=2.64^{2}
\end{aligned}
$$

How do we further analyze this result?
${ }^{6} 5$

Confidence interval for σ_{L}^{2}

Interval for $\sigma_{L}^{2} / \sigma_{E}^{2}$ can be constructed

$$
\begin{gathered}
\text { Lower }<\sigma_{L}^{2} / \sigma_{E}^{2}<\mathrm{Upper} \\
\text { Lower }=\left[\frac{s_{L}^{2}}{s_{E}^{2}} \times \frac{1}{F(a-1, N-a)_{\alpha / 2}}-1\right] \frac{1}{n} \\
\text { Upper }=\left[\frac{s_{L}^{2}}{s_{E}^{2}} \times F(N-a, a-1)_{\alpha / 2}-1\right] \frac{1}{n}
\end{gathered}
$$

Looms: Lower $=[15.65 / 4.47-1] / 4=0.625$

$$
\text { Upper }=[15.65 \cdot 14.34-1] / 4=55.85
$$

An alternative:

$\frac{\text { Lower }}{1+\text { Lower }}<\frac{\sigma_{L}^{2}}{\sigma_{L}^{2}+\sigma_{E}^{2}}<\frac{\text { Upper }}{1+\text { Upper }}$

Requirements: 1) Know or assume σ_{E}^{2}
2) Which σ_{B}^{2} is of interest to detect
3) How certain do we want to be to detect

The textbook has graphs for both cases pp. 613-620. Below, after the examples based on the textbook, some mere general results are presented.

Choice of sample size

i	A	B	C
1	y_{11}	y_{12}	y_{13}
2	y_{21}	y_{22}	y_{23}
\vdots	\vdots	\vdots	\vdots
n	$y_{n 1}$	$y_{n 2}$	$y_{n 3}$

Problem : Choose sample size n with k treatment/groups

$$
\text { Fixed effect model : } Y_{i j}=\mu+\tau_{j}+E_{i j}, \Sigma_{i} \tau_{i}=0
$$

Requirements: 1) Know or assume σ_{E}^{2}
2) Which τ 's are of interest to detect
3) How certain do we want to be to detect
${ }^{70}$

Example fixed effect model
Assume (based on previous knowledge) : $\sigma_{E}^{2} \simeq 1.5^{2}$
Interesting values for $\tau(\mathrm{fx}):\{-2.00,0.00,+2.00\}$
Criterion: $P\{$ detection $\} \geq 0.80$ (for example)
Try $n=5$ (to start with)
Compute $\Phi^{2}=\left(n \Sigma_{j} \tau_{j}^{2}\right) /\left(a \cdot \sigma_{E}^{2}\right)$

$$
=5 \cdot\left(2^{2}+0^{2}+2^{2}\right) /\left(3 \cdot 1.5^{2}\right)=5.92
$$

Compute $\Phi=\sqrt{5.92}=2.43$

Read off graph page 613: $\quad \begin{aligned} & \nu_{1}=a-1=3-1=2 \\ & \nu_{2}=a(n-1)=3(5-1)=12\end{aligned}$

The graph shows, that $n=5$ is enough
${ }^{73}$

Example random effect model

Assume (based on previous knowledge) : $\sigma_{E}^{2} \simeq 1.5^{2}$

Interesting values (for example) for $\sigma_{B}^{2}: 2.0^{2}$

Criterion: $P\{$ detection $\} \geq 0.90$ (for example).

Try $n=5$ (to start with)

Compute $\lambda=\sqrt{\frac{\sigma_{E}^{2}+n \cdot \sigma_{B}^{2}}{\sigma_{E}^{2}}}=\sqrt{\frac{1.5^{2}+5 \cdot 2 \cdot 20^{2}}{1.5^{2}}}=3.14$

Read off graph page 617: $\quad \begin{aligned} & \nu_{1}=a-1=3-1=2 \\ & \nu_{2}=a(n-1)=3(5-1)=12\end{aligned}$
Note: The degrees of freedom labeling is wrong - for the $\alpha=0.05$ curves. It should be as shown for the $\alpha=0.01$ curves and for all graphs with $\nu_{1} \geq 4$.

The graph shows, that $n=5$ is not enough

Block designs - one factor and one blocking criterion
Sources of uncertainty (noise)
Day-to-day variation
Batches of raw material
Litters of animals
Persons (doing the lab work)

Test sites or alternative systems

Treatment	A	B	C
Batch	B-X	B-V	B-II
Data	Y_{11}	Y_{12}	Y_{13}
	Y_{21}	Y_{22}	Y_{23}
	\vdots	\vdots	\vdots
	$Y_{n 1}$	$Y_{n 2}$	$Y_{n 3}$

Mathematical model : $Y_{i j}=\mu+\tau_{j}+B_{j}+E_{i j}$

Is the model correct ?
How can we analyze it ?
What can and what cannot be concluded ?
Is there a problem ?
Confounding ?
The index for the factor and the block is the same:
100% confounding.

Examples of factors

Concentration of active compound in experiment: $(2 \%, 4 \%, 6 \%, 8 \%)$
Electrical voltage in test circuit (10 volt, 12 volt, 14 volt)
Load in test of strength: $\left(10 \mathrm{kp} / \mathrm{m}^{2}, 15 \mathrm{kp} / \mathrm{m}^{2}, 20 \mathrm{kp} / \mathrm{m}^{2}\right)$
Alternative catalysts: (A, B, C, D)
Alternative cleaning methods: (centrifuge treatm., filtration, electrostatic removal)
Gender of test animal: (,$\left.~ O^{\prime}\right)$

Examples of blocks

Batches of raw material: (I, II, III, IV) (can be of limited size)
Collections of experiments conducted simultaneously (dates fx): (22/2-1990, 29/31990, 24/12-1990)
Groups of participants in an indoor climate experiment: (Test-team 1, Test-team
2, Test-team 3)
Litters of test animals: (Litter 1, Litter 2, Litter 3, Litter 4)
Position in test equipment: (position 1 , position 2 , position 3)

Design with inadequate confounding - schematic:

Thermometers (= experimental condition $=$ block) are I, II and III.

Treatments	A	B	C
Data	25 (II)	16 (I)	19 (III)
	24 (II)	15 (I)	20 (III)
	24 (II)	17 (I)	20 (III)
Total	73	48	59

$$
\begin{aligned}
& Y_{i j}=\mu+\alpha_{j}+T_{j}+E_{i j} \\
& S S Q_{\text {treat }}=\frac{73^{2}+48^{2}+59^{2}}{3}-\frac{180^{2}}{9}=104.67 \\
& S S Q_{\text {tot }}=\left(25^{2}+16^{2}+\cdots+20^{2}\right)-\frac{180^{2}}{9}=108.00 \\
& S S Q_{\text {resid }}=S S Q_{\text {tot }}-S S Q_{\text {treat }}
\end{aligned}
$$

Thermometers are randomized (I, II, \cdots, X)

Treatments	A	B	C
Data	26 (X)	20 (IV)	25 (II)
	20 (II)	15 (V)	20 (VI)
	22 (I)	19 (III)	22 (V)
Total	68	54	67

$$
\begin{aligned}
& Y_{i j}=\mu+\alpha_{j}+\left(T_{i j}+E_{i j}\right) \\
& S S Q_{\text {treat }}=\frac{68^{2}+54^{2}+67^{2}}{3}-\frac{189^{2}}{9}=40.67 \\
& S S Q_{\text {tot }}=\left(26^{2}+20^{2}+\cdots+22^{2}\right)-\frac{189^{2}}{9}=86.00 \\
& S S Q_{\text {resid }}=S S Q_{\text {tot }}-S S Q_{\text {treat }}=45.34
\end{aligned}
$$

Analysis of variance table for completely randomized design

One way ANOVA						
Source of var.	SSQ	d.f.	s^{2}	EMS	F-test	
Between treatm.	40.67	$3-1$	20.34	$\sigma^{2}+\sigma_{T}^{2}+3 \phi_{\alpha}$	2.69	
Uncertainty	45.34	$3(3-1)$	7.56	$\sigma^{2}+\sigma_{T}^{2}$		
Total	86.00	$3 \cdot 3-1$				

What can (or cannot) be concluded ?

Two way ANOVA						
Source of var.	SSQ	d.f.	s^{2}	EMS	F-test	
Between treatm.	48.22	$3-1$	24.11	$\sigma^{2}+3 \phi_{\alpha}$	30.99	
Between therm.	13.56	$3-1$	6.78	$\sigma^{2}+3 \sigma_{T}^{2}$	(8.71)	
Uncertainty	3.11	$8-2-2$	0.778	σ^{2}		
Total	64.89	8				

What can now be concluded ?

Balanced block design

Thermometers are balanced (complete) blocks

	Treatments			
Thermometers	A	B	C	Total
I	25	18	21	64
II	21	15	19	55
III	22	18	20	60
Total	68	51	60	179

$$
\begin{aligned}
& Y_{i j}=\mu+\alpha_{j}+T_{i}+E_{i j} \\
& S S Q_{\text {treat }}=\frac{68^{2}+51^{2}+60^{2}}{3}-\frac{179^{2}}{9}=48.22 \\
& S S Q_{\text {therm }}=\frac{64^{2}+55^{2}+60^{2}}{3}-\frac{179^{2}}{9}=13.56 \\
& S S Q_{\text {tot }}=\left(25^{2}+18^{2}+\cdots+20^{2}\right)-\frac{179^{2}}{9}=64.89 \\
& S S Q_{\text {resid }}=S S Q_{\text {tot }}-S S Q_{\text {treat }}-S S Q_{\text {therm }}=3.11
\end{aligned}
$$

${ }_{90}$

Latin square design

Laboratory technicians (labor: (1) (2) (3)) are balanced against both treatments and thermometers

	Treatments			
Thermometers	A	B	C	Total
I	$27(2)$	$20(3)$	$21(1)$	68
II	$21(1)$	$18(2)$	$20(3)$	59
III	$24(3)$	$17(1)$	$22(2)$	63
Total	72	55	63	190

Labor-totals : $(1)=59,(2)=67,(3)=64$

$$
Y_{i j k}=\mu+\alpha_{j}+T_{i}+L_{k}+E_{i j k}
$$

Analysis of variance table for Latin square design

Two blocking criteria completely balanced block design :

$$
\begin{aligned}
& S S Q_{\text {treat }}=48.22, S S Q_{\text {therm }}=13.56, S S Q_{\text {tot }}=72.89 \\
& S S Q_{\text {labor }}=\frac{59^{2}+67^{2}+64^{2}}{3}-\frac{190^{2}}{9}=10.89 \\
& S S Q_{\text {resid }}=0.22
\end{aligned}
$$

Latin square ANOVA					
Source of var.	SSQ	d.f.	s^{2}	EMS	F-test
Between treatm.	48.22	2	24.11	$\sigma^{2}+3 \phi_{\alpha}$	219.19
Between therm.	13.56	2	6.78	$\sigma^{2}+3 \sigma_{T}^{2}$	(61.68)
Between labor.	10.89	2	5.45	$\sigma^{2}+3 \sigma_{L}^{2}$	(49.54)
Uncertainty	0.22	2	0.11	σ^{2}	
Total	72.89	8			

$$
\begin{aligned}
& S S Q_{\text {batch }}=\frac{68^{2}+66^{2}+66^{2}}{3}-\frac{200^{2}}{9}=0.89 \\
& S S Q_{\text {treat }}=49.56, S S Q_{\text {therm }}=14.89, S S Q_{\text {labor }}=6.22 \\
& S S Q_{\text {tot }}=71.56, S S Q_{\text {resid }}=0.00
\end{aligned}
$$

Graeco-Latin square ANOVA					
Source of var.	SSQ	d.f.	s^{2}	EMS	F-test
Between treatm.	49.56	2	24.78	$\sigma^{2}+3 \phi_{\alpha}$	$?$
Between therm.	14.89	2	7.45	$\sigma^{2}+3 \sigma_{T}^{2}$	$?$
Between labor.	6.22	2	3.11	$\sigma^{2}+3 \sigma_{L}^{2}$	$?$
Between batches	0.89	2	0.45	$\sigma^{2}+3 \sigma_{B}^{2}$	$?$
Uncertainty	0	0		$\left(\sigma^{2}\right)$	
Total	71.56	8			

The example shows the principle, but of course, since there is no residual variance no tests can be carried out. An external variance estimate could be used if available

Triple balanced design $=$ Graeco-Latin square

	Treatments			
Thermometers	A	B	C	Total
I	$28(2)(\mathrm{z})$	$21(3)(\mathrm{y})$	$23(1)(\mathrm{x})$	72
II	$23(1)(\mathrm{y})$	$20(2)(\mathrm{x})$	$20(3)(\mathrm{z})$	63
III	$25(3)(\mathrm{x})$	$18(1)(\mathrm{z})$	$22(2)(\mathrm{y})$	65
Total	76	59	65	200

Labor-totals : $(1)=64,(2)=70,(3)=66$
Batch-totals : $(x)=68,(y)=66,(z)=66$

$$
Y_{i j k r}=\mu+\alpha_{j}+T_{i}+L_{k}+B_{r}+E_{i j k r}
$$

94

Comments to slides 3.3 to 3.15

All the examples are created by numerical simulation using the corresponding models.
3.3: The variation of treatments is very significant, but it cannot be determined whether it is treatments or thermometers that cause it. If the experiment is repeated at a later occasion we will presumably again find a significant, but probably different treatment effect (since thermometers would be 3 other thermometers). The experiment is not reproducible and may lead to false conclusions.
3.4: The confounding treatments/thermometers is broken. However the variation between thermometers is causing a large uncertainty variance. The treatments are estimated with correct mean, but with a large variance. The treatments are not significant.
3.5: The thermometers are now balanced out of the ANOVA, and the estimate of the treatment effect has correct mean plus a small variance. The treatment effect is significant. Note, that essentially the SSQ for treatments is as in the randomized design, but the SSQ for the residual is now free of the variation between thermometers and, thus, much smaller.
3.6: In the Latin square the same principle as used for thermometers is now used for the laboratory technicians. Variation between technicians is eliminated from the residual variance, causing improved precision (however again loosing 2 degrees of freedom for the residual variance).
3.7: The same design principle (balance) is used to eliminate variation between batches from the residual variation.

Two period crossover ANOVA, example with 2n=20 patients					
Source of var.	SSQ	d.f.	s^{2}	EMS	F-test
Treatments $\left(\tau_{i}\right)$	28.15	1	28.15	$\sigma^{2}+20 \phi_{\tau}$	4.54
Periods $\left(\right.$ per $\left._{j}\right)$	2.45	1	2.45	$\sigma^{2}+20 \phi_{p e r}$	0.40
Patients $\left(P_{k}\right)$	915.80	19	48.20	$\left(\sigma^{2}+2 \sigma_{P}^{2}\right)$	(7.77)
Uncertainty	116.60	18	6.20	σ^{2}	
Total	1063.03	39			

The design consists of $R=n$ Latin squares repeated with different persons in all squares and identical periods (1 or 2).

The analysis of this design can take other forms if residual effects are suspected (effect from A on B different from the effect from B on A).

The (important) two-period cross-over design (page 142)

Patient	Period $1 \quad 2$
1	A B
2	B A
3	B A
4	A B
:	: :
2n-1	A B
2 n	B A

$$
Y_{i j k}=\mu+\tau_{i}+p e r_{j}+P_{k}+E_{i j k}
$$

98

A little more about Latin squares

Table 4-8 page 136					
Batches of	Operators				
raw material	1	2	3	4	5
1	A	B	C	D	E
2	B	C	D	E	A
3	C	D	E	A	B
4	D	E	A	B	C
5	E	A	B	C	D
Treatments A, B, C, D, E					
A standard Latin square					

$$
Y_{i j k}=\mu+\tau_{i}+B_{j}+O_{k}+E_{i j k}
$$

ANOVA of Latin square example

ANOVA					
Source of var.	SSQ	d.f.	s^{2}	EMS	F-test
Treatments	330.00	4	82.50	$\sigma^{2}+5 \phi_{\tau}$	7.73
Batches	68.00	4	17.00	$\left(\sigma^{2}+5 \sigma_{B}^{2}\right)$	(1.59)
Operators	150.00	4	37.50	$\left(\sigma^{2}+5 \sigma_{O}^{2}\right)$	(3.51)
Uncertainty	128.00	12	10.67	σ^{2}	
Total	676.00	24			

Interpretation of result of ANOVA

What has been achieved by using this design ?

101
3.24

Which design is probably the most precise (with smallest residual variance)? Answer: The third design, but why?

How are the three different designs analyzed ?
In the supplementary part 6 the detailed ANOVA tables are indicated for each of the three cases.

Replication of Latin squares

102

To block or not to block ? Example 4.1

\square

Type of	Test item (block)			
tip	1	2	3	4
A	9.3	9.4	9.6	10.0
B	9.4	9.3	9.8	9.9
C	9.2	9.4	9.5	9.7
D	9.7	9.6	10.0	10.2

$$
Y_{i j}=\mu+t_{i}+B_{j}+E_{i j}
$$

ANOVA for block design (data scaled 10:1)					
Source	SSQ	df	s^{2}	EMS	F
Type of tip (t)	38.50	3	12.83	$\sigma^{2}+4 \phi_{t}$	14.44
Test item (B)	82.50	3	27.50	$\sigma^{2}+4 \sigma_{B}^{2}$	(30.94)
Residual	8.00	9	0.89	σ^{2}	
Total	129.00	15			

Two alternative designs - which one is best?

Type of	Test item (block)			
tip	1	2	3	4
A	$\mathrm{x} \times$	x x	xx	xx
B	x x	xx	xx	xx
C	x x	x x	xx	xx
D	xx	xx	xx	xx

4 blocks of size 8 . Double measurements for each treatment within the blocks.

8 blocks of size 4. One measurements for each treatment within the blocks.
105
The second design is preferable. It is more precise, because the blocks are smaller (variance within blocks is smaller).

Randomization is easier to do correct in small blocks and experimental circumstances are easier to keep constant.

Choice of sample size

$\begin{aligned} & \text { a treat- } \\ & \text { ments } \end{aligned}$	b blocks			
A (1)	y y	y y		y y
B (2)	y y	y y		y y
D (a)	y y	y y		y y

If : $Y_{i j k}=\mu+t_{i}+B_{j}+E_{i j k}$
$F_{\text {treat }}=s_{\text {treat }}^{2} / s_{E}^{2} \sim F\left(\nu_{1}, \nu_{2}\right)$
$\Phi_{t}^{2}=\left(b n \cdot \Sigma_{i} t_{i}^{2}\right) /\left(a \cdot \sigma_{E}^{2}\right)$
$\nu_{1}=a-1$ and $\nu_{2}=a b n-a-b+1$

$$
\begin{gathered}
\text { If: } \quad Y_{i j k}=\mu+t_{i}+B_{j}+T B_{i j}+E_{i j k} \\
F_{\text {treat }}=s_{\text {treat }}^{2} / s_{T B}^{2} \sim F\left(\nu_{1}, \nu_{2}\right) \\
\Phi_{t}^{2}=\left(b n \cdot \Sigma_{i} t_{i}^{2}\right) /\left(a \cdot\left(\sigma_{E}^{2}+n \sigma_{T B}^{2}\right)\right) \\
\Phi_{t}^{2} \simeq\left(b \cdot \Sigma_{i} t_{i}^{2}\right) /\left(a \cdot \sigma_{T B}^{2}\right) \\
\nu_{1}=a-1 \text { and } \nu_{2}=(a-1)(b-1)
\end{gathered}
$$

Incomplete block designs

Testing of 4 alternative extraction methods. Extraction of one production lasts 3 hours \Longrightarrow only 3 methods can be tested on 1 day:

Design	Fine material	Normal material	2% additive Fine mat.	2% additive Norm. mat.
Day 1	X	X		X
Day 2	X	X		X
Day 3	X		X	X
Day 4		X	X	X
Day 5	X	X	X	
Day 6		X	X	X

$$
Y_{i j}=\mu+\tau_{j}+D_{i}+E_{i j}
$$

Is the design adequate.
How could we improve the design. Which requirements should be made for the design.

$$
1 \text { day is an incomplete block: block size }=3
$$

110

A balanced incomplete block design

Four treatments, A, B, C and D. Two treatments per block.

Problem: If systematic difference between upside and downside treatment results. Can that be handled? How?

World Championship in football: 16 teams participate in 4 groups of 4 teams. In one group of 4 only 2 teams can be on the field at the same time (1 match $=1$ block of size 2). 6 matches per group needed.

World Championship in speedway with 12 participants: Groups of 4 drivers compete at the same time.

Bridge tournament with 10 teams. In one 'round' 5 tables are used each with 2 teams. How many rounds are needed so that all 10 teams meet each other once.

Football tournament with 10 teams. In one 'round' 5 matches are played each with 2 teams. How many rounds are needed so that all 10 teams meet each other once.

How is the advantage of 'home matches' handled in practice.

$$
113
$$

Incomplete balanced block designs and some definitions

	Treatments			
Day	A	B	C	D
I	X	X		X
II	X	X	X	
III	X		X	X
IV		X	X	X

$$
Y_{i j}=\mu+\alpha_{j}+D_{i}+E_{i j}
$$

```
k = 3 = block size
a = 4 = number of treatments (some times called 't')
b}=4=\mathrm{ number of blocks
r = 3 number of times each treatment is tried
\lambda=2= number of times any two treatments
    are in the same block =r.(k-1)/(a-1)
N = 12 = Total number of measurements = k b = a r
```


Exercise:

Design	Fine material	Normal material	2% Fine matd.	2% additive Norm. mat.
Day 1	X	X		
Day 2	X		X	X
Day 3	X			
Day 4		X	X	X
Day 5		X		X
Day 6			X	X
Find k, a, b, r, λ and N for this design				

117

Computations for balanced incomplete block design

$Q_{j}=T_{\cdot j}-\frac{1}{k} \sum_{i=1}^{b} n_{i j} T_{i} . \quad n_{i j}=\left\{\begin{array}{l}0 \text { if cell }(i, j) \text { is empty } \\ 1 \text { if cell }(i, j) \text { is not empty }\end{array}\right.$
$S S Q_{\alpha}=k \cdot \frac{Q_{1}^{2}+Q_{2}^{2}+\cdots+Q_{t}^{2}}{\lambda \cdot t}$
$S S Q_{b l o c k s}=\frac{T_{1}^{2}+T_{2}^{2}+\cdots+T_{b}^{2}}{k}-\frac{T_{\stackrel{~}{2}}^{N}}{N}$
$S S Q_{\text {resid }}=S S Q_{\text {tot }}-S S Q_{\alpha}-S S Q_{\text {blocks }}$

Data from incomplete balanced block design

Blocks (days)	Treatments				T_{i}.	$N=t \cdot r=b \cdot k$
	A	B	C	D		
I	52	-	75	57	184	$t=a=4$ (treatments)
II	-	87	86	53	226	$b=4$ (blocks)
III	54	68	69	-	191	$k=3$ (block size)
IV	50	78	-	61	189	$r=3$ (repeat. treat.)
$T_{. j}$	156	233	230	171	790	$\lambda=2$ (pairs in one block)

$$
\begin{aligned}
& Y_{i j}=\mu+\alpha_{j}+B_{i}+E_{i j} \\
& \Sigma_{j=1}^{t} \alpha_{j}=0, \Sigma_{i=1}^{b} B_{i}=0, \operatorname{Var}\left\{E_{i j}\right\}=\sigma^{2}
\end{aligned}
$$

Expectations and variances of computed quantities - estimation
$\mathrm{E}\left\{Q_{j}\right\}=\frac{\lambda t}{k} \cdot \alpha_{j} \Rightarrow$ the estimate $\hat{\alpha_{j}}=\frac{Q_{j}}{\lambda t} \cdot k$
$\operatorname{Var}\left\{Q_{j}\right\}=\frac{\lambda(t-1)}{k} \cdot \sigma^{2} \Rightarrow \operatorname{Var}\left\{\hat{\alpha_{j}}\right\}=\frac{t-1}{t^{2}} \cdot \frac{k}{\lambda}$

Treatment difference estimate is $\hat{\alpha_{i}}-\hat{\alpha_{j}}$ and
$\operatorname{Var}\left\{Q_{i}-Q_{j}\right\}=\frac{2 \lambda t}{k} \cdot \sigma^{2} \Rightarrow \operatorname{Var}\left\{\hat{\alpha}_{i}-\hat{\alpha}_{j}\right\}=\frac{2 k}{\lambda t} \cdot \sigma^{2}$
$\hat{\mu}=\bar{Y} . . \quad, \quad \operatorname{Var}\{\bar{Y} .\}=.\sigma^{2} / N$

Treatment mean estimate: $\left[\hat{\mu}+\hat{\alpha_{j}}\right]=Y . .+\frac{Q_{j}}{\lambda t} \cdot k$
Variance of treatment mean estimate: $\operatorname{Var}\left[\hat{\mu}+\hat{\alpha_{j}}\right]=\sigma^{2} \frac{k}{\lambda t}$

After-ANOVA tests based on the Q-values

Range-test (fx Newman-Keuls test and table VII):

$$
\frac{\hat{\alpha}_{(\text {max })}-\hat{\alpha}_{(\text {min })}}{\hat{\sigma} \sqrt{k / \lambda t}}=\frac{Q_{(\text {max })}-Q_{(\text {min })}}{s_{\text {resid }} \sqrt{\lambda t / k}} \in q\left(\text { "number" }, f_{\text {resid }}\right)
$$

Contrast-test procedure:

$$
\begin{aligned}
& \text { contrast }=[C]=Q_{1} \cdot c_{1}+Q_{2} \cdot c_{2}+\cdots+Q_{t} \cdot c_{t} \\
& S S Q_{\text {contrast }}=\frac{k \cdot[C]^{2}}{\lambda t\left(c_{1}^{2}+c_{2}^{2}+\cdots+c_{t}^{2}\right)}
\end{aligned}
$$

Newman-Keuls test for treatments using Q's

$$
\begin{array}{rl}
s_{Q}^{2}=s_{E}^{2} \cdot \frac{\lambda t}{k}=\frac{197.25}{5} \cdot \frac{2 \cdot 4}{3}=105.20=10.26^{2} \\
& \\
& =3(p, 5)_{0.05} \\
L S R=s_{Q} \cdot q(p, 5)_{0.05} & =37.64 \\
37.25 & 47.60 \\
5.20 & 53.56
\end{array}
$$

$$
\begin{aligned}
& |2-1| \Rightarrow|31.00-(-32.00)|=63.00>53.56 \text { sign. } \\
& |2-4| \Rightarrow|31.00-(-28.67)|=59.67>47.20 \text { sign. } \\
& |2-3| \Rightarrow|31.00-29.67| \quad=1.33<37.25 \text { not sign. } \\
& |3-1| \Rightarrow|29.67-(-32.00)|=61.67>47.20 \text { sign. } \\
& |3-4| \Rightarrow|29.67-(-28.67)|=58.33>37.25 \text { sign. } \\
& |4-1| \Rightarrow|28.67-(32.00)| \quad=3.33<37.25 \text { not sign. }
\end{aligned}
$$

125

Analysis of Youden square

The data are the same as on slide 4.9 and the example primarily illustrates how the computations go.

$$
\begin{aligned}
& T_{\alpha}=52+53+69+78=252 \\
& T_{\beta}=75+87+54+61=277 \\
& T_{\gamma}=57+86+68+50=261 \\
& S S Q_{\text {pos }}=\left(252^{2}+277^{2}+261^{2}\right) / 4-790^{2} / 12=80.17
\end{aligned}
$$

The Youden square (incomplete Latin square)

Construction of a Youden square design

Blocks (days)	Tratments				
	A1	A2	B1	B2	T_{i}.
I	$?$	-	$?$	$?$	
II	-	$?$	$?$	$?$	
III	$?$	$?$	$?$	-	
IV	$?$	$?$	-	$?$	
T. $_{\cdot j}$					

Youden square design

Blocks (Days)	Treatments				
	A1	A2	B1	B2	in $_{i}$.
I	α	-	β	γ	
II	-	β	γ	α	
III	β	γ	α	-	
IV	γ	α	-	β	
$\mathrm{T}_{\cdot j}$					

Data from Youden square experiment

Blocks (days)	A1	A2	B1	B2	T $_{i}$.
	$52(\alpha)$	-	$75(\beta)$	$57(\gamma)$	184
II	-	$87(\beta)$	$86(\gamma)$	$53(\alpha)$	226
III	$54(\beta)$	$68(\gamma)$	$69(\alpha)$	-	191
IV	$50(\gamma)$	$78(\alpha)$	-	$61(\beta)$	189
$\mathrm{~T}_{\cdot j}$	156	233	230	171	790

126

The other SSQ's : See slide 4.9 (the same data)
$S S Q_{\text {treat }}=1382.73$
$S S Q_{\text {blocks }}=369.67$
$S S Q_{t o t}=1949.67$

ANOVA for Youden Square					
Source	SSQ	df	s^{2}	$\mathrm{E}\left\{s^{2}\right\}$	F
Treatm.	1382.73	3	460.91	$\sigma^{2}+c \cdot \phi_{\text {treat }}$	11.81
Blocks	369.67	3	123.22	-	-
Posit.	80.17	2	40.09	$\sigma^{2}+4 \cdot \phi_{\text {pos }}$	(1.03)
Residual	117.10	3	39.03	σ^{2}	
Total	1949.67	$12-1$			

Example of computation for contrasts

Consider the Youden square slide 4.17.

$$
\mathrm{k}=3, \lambda=2, \mathrm{a}=\mathrm{t}=4, \mathrm{~b}=4, \mathrm{r}=3
$$

$C_{A-B}=+Q_{A 1}+Q_{A 2}$	$-Q_{B 1}-Q_{B 2}$	$=-2.00$
$C_{A 1-A 2}=+Q_{A 1}-Q_{A 2}$	$=-63.00$	
$C_{B 1-B 2}=$	$+Q_{B 1}-Q_{B 2}$	$=58.33$

129

$$
\begin{array}{rlrl|}
\hline S S Q_{A-B} & =(-2.00)^{2} \cdot \frac{k}{\lambda t\left(1^{2}+1^{2}+1^{2}+1^{2}\right)} & = & 0.38 \\
S S Q_{A 1-A 2}= & (-63.00)^{2} \cdot \frac{3}{2 \cdot 4\left(1^{2}+1^{2}\right)} & = & 744.19 \\
S S Q_{B 1-B 2}= & 58.33^{2} \cdot \frac{3}{2 \cdot 4\left(1^{2}+1^{2}\right)} & = & 638.16 \\
S u m & = & 1382.73
\end{array}
$$

The sums of squares for the 3 orthogonal contrasts add up to the total sum of squares between treatments.

Each of these sums of squares have 1 degree of freedom and can be tested against the residual sum of squares.

130

$\mathrm{A}, \mathrm{B}, \mathrm{C}, \ldots$	$=$ Treatments	
a	$=$	Number of treatments (often called 't')
b	$=$	Number of blocks
r		Number replications of each treatment
k	$=$	Block size
N	$=$	$\mathrm{ar}=\mathrm{bk}=$ total number of measurements
λ		number of times any two treatments
	occur in the same block $=\mathrm{r}(\mathrm{k}-1) /(\mathrm{a}-1)$	
$\alpha, \beta, \gamma, \ldots=$	'positions' within block for incomplete	
	Latin squares (Youden squares)	

Balanced designs for 'a' treatments with block size $\mathrm{k}=2$ consist of all possible combinations of two treatments giving a(a-1)/2 blocks of 2

Treat-	Blocks		
ments	1	2	3
A	α		β
B	β	α	
C		β	α

Blocksize $\mathrm{k}=3$	Treatments $\mathrm{a}=4$	Blocks $\mathrm{b}=4$	Replications $\mathrm{r}=3$	Pairings $\lambda=2$	Total design $\mathrm{N}=12$
Symmetrical. A Youden square					

Treat-	Blocks			
ments	1	2	3	4
A	α	β	γ	
B	β	γ		α
C	γ		α	β
D		α	β	γ

Block size	Treatments	Blocks	Replications	Pairings	Total design
$\mathrm{k}=3$	$\mathrm{a}=5$	$\mathrm{~b}=10$	$\mathrm{r}=6$	$\lambda=3$	$\mathrm{~N}=30$
All combinations of 3 treatments among 5					

| Treat- | Blocks | | | | | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| ments | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | |
| A | x | x | x | x | x | x | | | | | |
| B | x | x | x | | | | x | x | x | | |
| C | x | | | x | x | | x | x | | x | |
| D | | x | | x | | x | x | | x | x | |
| E | | | | x | | x | x | | x | x | x |

133

Block size $\mathrm{k}=3$	Treatments	Blocks	Replications	Pairings	Total design
7 out of 35	$\mathrm{~b}=7$	$\mathrm{r}=3$	$\lambda=1$	$\mathrm{~N}=21$	
Sysible combinations of 3 treatments among 7 (reduced)					
Symmetrical. Youden square.					

Treat-	Blocks						
ments	1	2	3	4	5	6	7
A	α	β	γ				
B			β	α	γ		
C	β			γ		α	
D			α			β	γ
E	γ				α		β
F		α			β	γ	
G		γ		β			α

Block size	Treatments	Blocks	Replications	Pairings	Total design
$\mathrm{k}=3$	$\mathrm{a}=6$	$\mathrm{~b}=10$	$\mathrm{r}=5$	$\lambda=2$	$\mathrm{~N}=30$
10 out of 20	possible combinations of 3 treatments among 6 (reduced)				

Treat-											
ments	1	2	3	4	5	6	7	8	9	10	
A	x			x		x	x	x			
B		x			x		x	x	x		
C			x			x		x	x	x	
D	x	x	x				x			x	
E	x		x	x	x				x		
F		x		x	x	x					x

134

Treat- ments	$\begin{array}{llllllllllll}\text { Blocks } \\ 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12\end{array}$													
A	X			X				X			x			
B	x				x				x				x	
C	X						x			X				x
D		x		x						x			x	
E		x			x			x						x
F		x					x		x		x			
G			x	x					x					x
H			x		x					x	x			
I			x				x	x					x	

$\mathrm{k}=4$	$\mathrm{a}=5 \quad \mathrm{~b}=5$	$\mathrm{r}=4 \quad \lambda=3$	$\mathrm{~N}=20$		
Symmetrical. Youden square					

| Treat- | Blocks | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| ments | 1 | 2 | 3 | 4 | 5 |
| A | α | β | γ | δ | |
| B | β | γ | δ | | α |
| C | γ | δ | | α | β |
| D | δ | | α | β | γ |
| E | | α | β | γ | dy |

137

Block size Treatments Blocks Replications Pairings Total design $\begin{array}{lllll}\mathrm{k}=4 & \mathrm{a}=7 & \mathrm{~b}=7 & \mathrm{r}=4 & \lambda=2\end{array} \mathrm{~N}=28$ 7 out of 35 possible combinations of 4 treatments among 7 (reduced) Symmetrical. Youden square.

Treat-	Blocks						
ments	1	2	3	4	5	6	7
A		α	β	γ			δ
B	α	β		δ		γ	
C	β		γ			δ	α
D		δ	α		γ	β	
E				β	δ	α	γ
F	γ		δ	α	β		
G	δ	γ			α		β

138

Block size $\mathrm{k}=5$	Treatments $\mathrm{a}=6$	Blocks $\mathrm{b}=6$	Replications $\mathrm{r}=5$	Pairings $\lambda=4$	Total design c Symmetrical. Youden square.

Treat-	Blocks					
ments	1	2	3	4	5	6
A	α	β	γ	δ	ϵ	
B	β	γ	δ	ϵ		α
C	γ	δ	ϵ		α	β
D	δ	ϵ		α	β	γ
E	ϵ		α	β	γ	δ
F		α	β	γ	δ	ϵ

Block size	Treatments	Blocks	Replications	Pairings	Total design
$\mathrm{k}=5$	$\mathrm{a}=11$	$\mathrm{~b}=11$	$\mathrm{r}=5$	$\lambda=2$	$\mathrm{~N}=30$
11 out of 462 possible combinations of 5 treatments among 11 (reduced)					
Symmetrical. Youden square.					

Symmetrical. Youden square.

${ }^{141}$

Block size	Treatments	Blocks	Replications	Pairings	Total design
$\mathrm{k}=6$	$\mathrm{a}=7$	$\mathrm{~b}=7$	$\mathrm{r}=6$	$\lambda=5$	$\mathrm{~N}=42$
Symmetrical. Youden square.					

| Treat- | Blocks | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| ments | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
| A | α | | ϕ | ϵ | δ | γ | β |
| B | β | α | | ϕ | ϵ | δ | γ |
| C | γ | β | α | | ϕ | ϵ | δ |
| D | δ | γ | β | α | | ϕ | ϵ |
| E | ϵ | δ | γ | β | α | | ϕ |
| F | ϕ | ϵ | δ | γ | β | α | |
| G | | ϕ | ϵ | δ | γ | β | α |

4.34

Block size	Treatments	Blocks	Replications	Pairings	Total design
$\mathrm{k}=6$	$\mathrm{a}=11$	$\mathrm{~b}=11$	$\mathrm{r}=6$	$\lambda=3$	$\mathrm{~N}=66$
11 out of 462 possible combinations of 6 treatments among 11 (reduced)					
Symmetrical. Youden square					

Treat-	Blocks												
ments	1	2	3	4	5	6	7	8	9	10	11		
A		ϕ	ϵ		δ				γ	β	α		
B	α		ϕ	ϵ		δ				γ	β		
C	β	α		ϕ	ϵ		δ				γ		
D	γ	β	α		ϕ	ϵ		δ					
E		γ	β	α		ϕ	ϵ		δ				
F			γ	β	α		ϕ	ϵ		δ			
G				γ	β	α		ϕ	ϵ			δ	
H	δ				γ	β	α		ϕ	ϵ			
I		δ				γ	β	α		ϕ	ϵ		
J	ϵ		δ				γ	β	α		ϕ		
K	ϕ	ϵ		δ				γ	β	α			

An example with many issues

Response : Strength of tablet (load to breakage)
1 factor $=$ Humidity in powder for tablets
Other possible factors: Load during production
Time of pressing in production
Size distribution in powder etc

145

Sources of uncertainty

Temperature in laboratory
Different handling by different operators
Day-to-day variation of measurement devices
Variation in the experimental setup (geometry)
The order of magnitude of these variations must be known or assessed before the experiment is started

Design must be based on knowledge

Guess (or study) how an experiment may turn out is a possible (good) way:

Plot how you think (or hope) the data will turn out.
Do you believe, that you will find what you are looking for: The optimal humidity for obtaining a high strength, fx.

149
5.7

Determine the necessary number of days (blocks)

$$
\begin{aligned}
& Y_{i j}=\mu+\tau_{j}+D_{i}+E_{i j} \\
& \begin{array}{|l|ccc|}
\hline \text { Possible sizes of } \tau_{j} \text { to detect } \\
\hline \tau_{j}= & -12 & +12 & +12
\end{array}-12 \\
& \hline x_{j}=
\end{aligned}
$$

Compute $\Phi^{2}=\frac{b}{a \cdot \sigma^{2}} \Sigma_{j} \tau_{j}^{2}=\frac{b}{4 \cdot 15^{2}}(576)=0.64 \cdot b$

$$
\Phi=0.80 \sqrt{b}
$$

Try $\mathrm{fx} b=8 \rightarrow \Phi=2.26, \nu_{1}=3, \nu_{2}=3 \cdot 7=21$

How will the ANOVA look when I have collected the data?

Design	Humidity			
	5%	20%	35%	50%
Day 1	x	x	x	x
Day 2	x	x	x	x
\ldots	\ldots	\ldots	\ldots	\ldots
Day b	x	x	x	x

Source of var.	SSQ	d.f. for design with b blocks
Humidity	$S S Q_{\text {treat }}$	$\nu_{1}=a-1=3$
Days (blocks)	$S S Q_{\text {blocks }}$	$\nu_{3}=b-1=b-1$
Residual	$S S Q_{\text {resid }}$	$\nu_{2}=(a-1)(b-1)=3(b-1)$
Total	$S S Q_{\text {tot }}$	$\nu_{\text {tot }}=a b-1=4 b-1$

150

Is there a reasonable probability to detect the prescribed differences?
Look up probability of acceptance page 648:

Looks reasonable. The chance of overlooking the above τ 's is less than 10% (lucky punch). $b=8$ could be worthwhile trying.

Analysis of the data from the experiment

| Day | 5% | 20% | 35% | 50% | Sums |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | | | | | 135 |
| 2 | | | | | 90 |
| 3 | | | Data from | | 231 |
| 4 | | | experiment | | 116 |
| 5 | | | | | 161 |
| 6 | | $S S Q_{\text {resid }}=$ | 4910 | 114 | |
| 7 | | | | 150 | |
| 8 | | | | | 214 |
| Sums | 175 | 450 | 376 | 210 | 1211 |

153

Estimates:

$$
\begin{array}{lcccc}
\bar{y}_{j}= & 21.9 & 56.3 & 47.0 & 26.3 \\
\hat{\tau}_{j}= & -15.96 & 18.40 & 9.15 & -11.59 \\
\widehat{\mu}= & 37.84 \\
\widehat{\sigma}^{2}= \\
\left(\widehat{\sigma}_{D}^{2}=\right. & \left.(609-234) / 4=93.8=9.7^{2}\right)
\end{array}
$$

Regression function estimate ($5 \leq x_{j} \leq 50$):

$$
\widehat{Y}_{i j}=8.0396+3.3946 \cdot x_{j}-0.0612 \cdot x_{j}^{2}
$$

Source of var.	SSQ	d.f.	s^{2}	EMS	F
Humidity	6496	3	2165	$\sigma^{2}+8 \cdot \phi_{\tau}$	9.3
Days (blocks)	4260	7	609	$\left(\sigma^{2}+4 \cdot \sigma_{D}^{2}\right)$	(2.6)
Residual	4910	21	234	σ^{2}	
Total	15666	31			

154

Draw 'normal probability plot' for daily averages, fx :

Newman-Keuls test for blocks:
$s_{\text {mean,block }}=s_{\text {resid }} / \sqrt{4}=\sqrt{234} / \sqrt{4}=7.65$
$q(8,21)_{0.05} \simeq 4.75, L S R=7.65 \cdot 4.75=36.34$
$\bar{Y}_{(8)}-\bar{Y}_{(1)}=231 / 4-90 / 4=35.25 \Longrightarrow$ not sign.

Newman-Keuls test shows that the difference between the largest and the smallest block average is not unusually large (close to, however!). Thus no grouping of the days can hardly be identified.

The same problem with incomplete blocks

Only 3 measurements per day: block size $=3$.
If the same precision as required in the previous example (8 complete blocks of size
4) is wanted the number of blocks of size 3 must be $b=8 \cdot 4 / 3 \simeq 11$.
Choose fx 12 blocks organized as 3 balanced incomplete block designs or Youden squares.

	Day=block	5%	20%	30%	50%
	1	α	γ	β	
Positions	1	γ	β		α
within a	2				
day are	3	β		α	γ
α, β or γ :	4		α	γ	β
with possible	5		γ	α	β
effects	6	α		β	γ
p_{1}, p_{2}, p_{3}	7	γ	β		α
	8	β	α	γ	
	9	β		γ	α
10		γ	α	β	
11	α	β		γ	
	12	γ	α	β	

In this design $\mathrm{k}=3, \mathrm{a}=4, \mathrm{~b}=12, \mathrm{r}=9, \lambda=6$
Taking positions into account the model could be

$$
Y_{i j}=\mu+\tau_{i}+B_{j}+p_{k}+E_{i j k}
$$

Supplement I. 2

Orthogonal polynomials

System of orthogonal polynomials, 4 points

Data from slide 1.33 again:

Concentration				
5%	7%	9%	11%	
3.5	6.0	4.0	3.1	
5.0	5.5	3.9	4.0	
2.8	7.0	4.5	2.6	
4.2	7.2	5.0	4.8	
4.0	6.5	6.0	3.5	
	19.5	32.2	23.4	18.0

Model : $Y_{i j}=\mu+\tau_{j}+E_{i j}$

ANOVA of response				
Source	SSQ	d.f.	s^{2}	F
Concentration	24.35	$4-1$	8.1167	12.41
Residual	10.46	16	0.6538	$($ sign $)$
Total	34.81	$20-1$		

162

Weights and expressions for orthogonal polynomials
4 - point polynomial weights

z	-1.5	-0.5	0.5	1.5
$P_{0}(z)$	1	1	1	1
$P_{1}(z)$	-3	-1	1	3
$P_{2}(z)$	1	-1	-1	1
$P_{3}(z)$	-1	3	-3	1

$P_{0}(z)=1$
$P_{1}(z)=\lambda_{1} \cdot z \quad, \lambda_{1}=2$
$P_{2}(z)=\lambda_{2} \cdot\left[z^{2}-\frac{\left(a^{2}-1\right)}{12}\right] \quad, \lambda_{2}=1$
$P_{3}(z)=\lambda_{3} \cdot\left[z^{3}-z \cdot \frac{\left(3 a^{2}-7\right)}{20}\right], \lambda_{3}=10 / 3$
$\sum_{j=1}^{a} P_{\ell}\left(z_{j}\right) \cdot P_{m}\left(z_{j}\right)=0$ for all $\ell \neq m$

Orthogonal polynomials continued:

$$
\begin{aligned}
& P_{0}(z)=1 \\
& P_{1}(z)=\lambda_{1} \cdot z \\
& P_{2}(z)=\lambda_{2} \cdot\left[z^{2}-\frac{\left(a^{2}-1\right)}{12}\right] \\
& P_{3}(z)=\lambda_{3} \cdot\left[z^{3}-z \cdot \frac{\left(3 a^{2}-7\right)}{20}\right] \\
& P_{4}(z)=\lambda_{4} \cdot\left[z^{4}-\frac{z^{2}}{14}\left(3 a^{2}-13\right)+\frac{3}{560}\left(a^{2}-1\right)\left(a^{2}-9\right)\right] \\
& P_{5}(z)=\lambda_{5} \cdot\left[z^{5}-\frac{5 z^{3}}{18}\left(a^{2}-7\right)+\frac{z}{1008}\left(15 a^{4}-230 a^{2}+407\right)\right]
\end{aligned}
$$

165

Method:

$$
Y_{i j}=\beta_{0}+\beta_{1} \cdot x_{j}+\beta_{2} \cdot x_{j}^{2}+\beta_{3} \cdot x_{j}^{3}+E_{i j}
$$

Compute standardized variable $z_{j}=\left(x_{j}-\bar{x}\right) / \Delta_{x}$, for $j=1,2, . ., a$, where \bar{x} is the mean of the x values, and Δ_{x} is the spacing between the x values.

Rewrite model using the orthogonal polynomials:

$Y_{i j}=\alpha_{0}+\alpha_{1} \cdot P_{1}\left(z_{j}\right)+\alpha_{2} \cdot P_{2}\left(z_{j}\right)+\alpha_{3} \cdot P_{3}\left(z_{j}\right)+E_{i j}$

Weights for higher order orthogonal polynomials

a	Polynomial	x_{1}	x_{2}	x_{3}	x_{4}	x_{5}	x_{6}		λ
3	Linear	-1	0	1					1
	Quadratic	1	-2	1					3
${ }^{4}$	Linear	-3	-1	1	3				2
	Quadratic	-	-1	-1	1				1
	Cubic	-1	3	-3	1				10/3
5	Linear	-2	-1	0	1	2			1
	Quadratic	2	-1	-2	-1	2			1
	Cubic	-1	2	0	-2	1			5/6
	Quartic	1	-4	6	-4	1			35/12
6	Linear	-5	-3	-1	1	3	5		2
	Quadratic	5	-1	-4	-4	-1	5		$3 / 2$
	Cubic	-5	7	4	-4	-7	5		5/3
	Quartic	1	-3	2	2	-3	1		7/12
	5th degr.	-1	5	-10	10	-5	1		21/10
7	Linear	-3	-2	-1	0	1	2	3	1
	Quadratic	5		-3	-4	-3	0	5	1
	Cubic	-1	1	1	0	-1	-1	1	1/6
	Quartic	3	-7	1		1	-7	3	7/12
	5th degr.	-1	4	-5	0		-4	1	7/20

The values $x_{1}, x_{2}, \ldots, x_{a}$ are equi-spaced with difference Δ_{x} between values and average value \bar{x}. Then

$$
z_{j}=\left(x_{j}-\bar{x}\right) / \Delta_{x} \quad ; \quad j=1,2, \ldots, a
$$

166

Estimate coefficients, using treatment totals $T_{. j}$:

$$
\widehat{\alpha}_{\ell}=\left[\sum_{j=1}^{a} T_{. j} \cdot P_{\ell}\left(z_{j}\right)\right] /\left(n \cdot \sum_{j=1}^{a}\left[P_{\ell}\left(z_{j}\right)\right]^{2}\right)
$$

Compute sums of squares:

$$
S S Q_{\ell}=\left[\sum_{j=1}^{a} T_{. j} \cdot P_{\ell}\left(z_{j}\right)\right]^{2} /\left(n \cdot \sum_{j=1}^{a}\left[P_{\ell}\left(z_{j}\right)\right]^{2}\right)
$$

Note that $C_{\ell}=\left[\Sigma_{j=1}^{a} T_{. j} \cdot P_{\ell}\left(z_{j}\right)\right]$ for $\ell>0$ is a contrast, and the contrasts are orthogonal. Therefore

$$
S S Q_{\text {treatments }}=\Sigma_{l=1}^{a-1} S S Q_{\ell}
$$

Numerical example from slide 6.1 (and 1.33)

Example $P_{2}: C_{2}=19.5-32.2-23.4+18.0=-18.1$
$S S Q_{2}=(-18.1)^{2} /\left(5\left[1^{2}+(-1)^{2}+(-1)^{2}+1^{2}\right]\right)=16.38$
$\widehat{\alpha}_{2}=(-18.1) /\left(5\left[1^{2}+(-1)^{2}+(-1)^{2}+1^{2}\right]\right)=-0.905$

Computations for $a=4$								
	$x_{j}=$	5	7	9	11	$\bar{x}=8, \Delta_{x}=2$		
	$z_{j} \rightarrow$	-1.5	-0.5	0.5	1.5	$z=(x-8) / 2$		
ℓ	Totals $T_{j} \rightarrow$	19.5	32.2	23.4	18.0	C_{ℓ}	$S S Q_{\ell}$	$\widehat{\alpha}_{\ell}$
0	$P_{0} \rightarrow$	1	1	1	1	93.1	-	4.655
1	$P_{1} \rightarrow$	-3	-1	1	3	-13.3	1.77	-0.133
2	$P_{2} \rightarrow$	1	-1	-1	1	-18.1	16.38	-0.905
3	$P_{3} \rightarrow$	-1	3	-3	1	24.9	6.20	0.249
Total							24.35	

169

Supplement I. 10

Contrasts with orthogonal polynomials

ANOVA in detail with orthogonal polynomials

ANOVA of response				
Source	SSQ	d.f.	s^{2}	F
1. order polyn.	1.77	1	1.77	2.71
2. order polyn.	16.38	1	16.38	25.05
3. order polyn.	6.20	1	6.20	9.48 (sign)
Residual	10.46	16	0.6538	
Total	34.81	$20-1$		

The 3rd order term is significant. The polynomium probably has degree 3 (at least).

Test successively with higest order first. When a significant order is found the polynomial and all the lower order polynomials are retained in the model.

170

Contrasts for two-factor orthogonal polynomials

Factor	Factor Z	
X	$24^{\circ} \mathrm{C}$	$30^{\circ} \mathrm{C}$
10%	$T_{10,24}$	$T_{10,30}$
15%	$T_{15,24}$	$T_{15,30}$
20%	$T_{20,24}$	$T_{20,30}$

Totals	$T_{10,24}$	$T_{10,30}$	$T_{15,24}$	$T_{15,30}$	$T_{20,24}$	$T_{20,30}$	Effect
Main	-1	-1	0	0	+1	+1	X_{L}
effects	+1	+1	-2	-2	+1	+1	X_{Q}
	-1	+1	-1	+1	-1	+1	Z_{L}
Inter-	+1	-1	0	0	-1	+1	$\mathrm{X}_{L} \times \mathbf{Z}_{L}$
actions	-1	+1	+2	-2	-1	+1	$\mathrm{X}_{Q} \times \mathbf{Z}_{L}$

One can then test all coefficients successively ($\mathrm{fx} e, d, c, b, a$) in the model:
$Y=\mu+a \cdot x+b \cdot x^{2}+c \cdot z+d \cdot x \cdot z+e \cdot x^{2} \cdot z+\epsilon$

Orthogonal regression with x -factor at k levels - brief theory

Consider the balanced analysis of variance table :

x_{1}	x_{2}	\ldots	x_{k}
Y_{11}	Y_{12}	\ldots	$Y_{1 k}$
Y_{21}	Y_{22}	\ldots	$Y_{2 k}$
\vdots	\vdots	$:$	\vdots
$Y_{n 1}$	$Y_{n 2}$	\ldots	$Y_{n k}$

where $k \geq 3$. We want to estimate (as an example):

$$
Y_{i j}=\mu+\alpha_{1} \cdot P_{1}\left(x_{j}\right)+\alpha_{2} \cdot P_{2}\left(x_{j}\right)+E_{i j}
$$

where $P_{1}($.$) and P_{2}($.$) are some functions of the regression variable x$ (polynomials or any other functions).

Supplement I. 14

Use of orthogonal polynomials:

Choose the functions $P_{1}($.$) and P_{2}($.$) such that$

$$
\begin{aligned}
& \quad \sum_{j=1}^{k} P_{1}\left(x_{j}\right)=0, \sum_{j=1}^{k} P_{2}\left(x_{j}\right)=0 \\
& \text { and } \sum_{j=1}^{k} P_{1}\left(x_{j}\right) P_{2}\left(x_{j}\right)=0 \text { (i.e. orthogonal) }
\end{aligned}
$$

then the solutions to the estimation equations are :

$$
\begin{gathered}
\widehat{\mu}=\sum_{j=1}^{k} \sum_{i=1}^{n} Y_{i} /(n \cdot k)=T . /(n \cdot k)=\bar{Y} . \\
\widehat{\alpha}_{1}=\sum_{j=1}^{k}\left[T_{. j} \cdot P_{1}\left(x_{j}\right)\right] /\left(n \cdot \sum_{j=1}^{k}\left[P_{1}\left(x_{j}\right)\right]^{2}\right) \\
\widehat{\alpha}_{2}=\sum_{j=1}^{k}\left[T_{. j} \cdot P_{2}\left(x_{j}\right)\right] /\left(n \cdot \sum_{j=1}^{k}\left[P_{2}\left(x_{j}\right)\right]^{2}\right)
\end{gathered}
$$

Least squares estimation

The residual SSQ for the parameters $\left(\mu, \alpha_{1}, \alpha_{2}\right)$ is

$$
S S Q_{\text {res }}=\sum_{j=1}^{k} \sum_{i=1}^{n}\left(Y_{i j}-\mu-\alpha_{1} \cdot P_{1}\left(x_{j}\right)-\alpha_{2} \cdot P_{2}\left(x_{j}\right)\right)^{2}
$$

We estimate the regression model such that $S S Q_{r e s}$ is minimized (least squares), and we therefore require that the partial derivatives are zero

$$
\begin{gathered}
\partial\left(S S Q_{r e s}\right) / \partial \mu=-2 \sum_{j=1}^{k} \sum_{i=1}^{n}\left(Y_{i j}-\mu-\alpha_{1} \cdot P_{1}\left(x_{j}\right)-\alpha_{2} \cdot P_{2}\left(x_{j}\right)\right)=0 \\
\partial\left(S S Q_{r e s}\right) / \partial \alpha_{1}=-2 \sum_{j=1}^{k} \sum_{i=1}^{n} P_{1}\left(x_{j}\right)\left(Y_{i j}-\mu-\alpha_{1} \cdot P_{1}\left(x_{j}\right)-\alpha_{2} \cdot P_{2}\left(x_{j}\right)\right)=0 \\
\partial\left(S S Q_{r e s}\right) / \partial \alpha_{2}=-2 \sum_{j=1}^{k} \sum_{i=1}^{n} P_{2}\left(x_{j}\right)\left(Y_{i j}-\mu-\alpha_{1} \cdot P_{1}\left(x_{j}\right)-\alpha_{2} \cdot P_{2}\left(x_{j}\right)\right)=0
\end{gathered}
$$

Supplement I. 15

If we introduce

$$
S S Q\left(P_{1}\right)=\sum_{j=1}^{k}\left[T_{. j} \cdot P_{1}\left(x_{j}\right)\right]^{2} /\left(n \cdot \sum_{j=1}^{k}\left[P_{1}\left(x_{j}\right)\right]^{2}\right)
$$

and similarly for $S S Q\left(P_{2}\right)$, it is easy also to show that

$$
S S Q_{r e s}=\sum_{j=1}^{k} \sum_{i=1}^{n}\left(Y_{i j}-\mu\right)^{2}-S S Q\left(P_{1}\right)-S S Q\left(P_{2}\right)
$$

Note that, since $\Sigma_{j=1}^{k} P_{1}\left(x_{j}\right)=0, \Sigma_{j=1}^{k}\left[T_{j} \cdot P_{1}\left(x_{j}\right)\right]$ is a contrast with sum of squares $S S Q\left(P_{1}\right)$ which exactly is the part of the variation between the levels of x explained by the function $P_{1}($.$) and similarly for S S Q\left(P_{2}\right)$.

The example is easily generalized to more orthogonal functions than 2 (in fact to $\mathrm{k}-1$ functions).
where $T_{. j}=\Sigma_{i=1}^{n} Y_{i j}$ are the column totals.

What if the model is a two-way model?

Experiment with an additive x on n batches					
Batch	$x_{1}=2 \%$	$x_{2}=4 \%$	$x_{3}=6 \%$	$x_{4}=8 \%$	$T_{1 .}$
Batch 1	Y_{11}	Y_{12}	Y_{13}	Y_{14}	$T_{1 .}$
Batch 2	Y_{21}	Y_{22}	Y_{13}	Y_{24}	$T_{2 .}$
$:$		\vdots	\vdots	\vdots	\vdots
Batch n	$Y_{n 1}$	$Y_{n 2}$	$Y_{n 3}$	$Y_{n 4}$	$T_{n .}$
Totals	$T_{.1}$	$T_{.2}$	$T_{.3}$	$T_{.4}$	$T_{. .}$

$\mathrm{SSQ}_{\text {Batches }}: \Sigma_{i} T_{i .}^{2} / 4-T_{. .}^{2} /(4 n)(\mathrm{df}=n-1)$
$\mathrm{SSQ}_{\text {Additive }}: \Sigma_{j} T_{. j}^{2} / n-T_{. .}^{2} /(4 n)(\mathrm{df}=4-1=3)$
$\mathrm{SSQ}_{\text {Total }}: \Sigma_{j} \Sigma_{j} T_{i j}^{2}-T_{. .}^{2} /(4 n)(\mathrm{df}=4 n-1)$
$\mathrm{SSQ}_{\text {Residual }}: \mathrm{SSQ}_{\text {Total }}-\mathrm{SSQ}_{\text {Batches }}-\mathrm{SSQ}_{\text {Additive }}$

Supplement II. 1

Sample size determination in general
Sample size in fixed effect model - exact method
The sample test quantity in the one-way ANOVA is

$$
F_{\text {sample }}=\frac{n \cdot \Sigma_{j}\left(\bar{X}_{. j}-\bar{X}_{. .}\right)^{2} /(k-1)}{\Sigma_{i} \Sigma_{j}\left(\bar{X}_{i j}-\bar{X}_{. j}\right)^{2} /(k(n-1))} \in F\left(k-1, k(n-1), \gamma^{2}(n)\right)
$$

where $F(., .,$.$) denotes the non-central \mathrm{F}$-distribution with
$k-1$ and $k(n-1)$ degrees of freedom and non-centrality parameter

$$
\gamma^{2}(n)=n \sum_{i} \tau_{i}^{2} / \sigma_{E}^{2}
$$

which for $\gamma^{2}(n)=0$ corresponds to the usual F-distribution.
Test $\gamma^{2}(n)=0$ with level of significance α and require that the acceptance probability for a certain $\gamma^{2}(n)>0$ is at most β (or that the power is at least $1-\beta$).

Split up the variance between concentration levels using orthogonal contrasts
Construct (4-1) orthogonal functions (fx polynomials), $P_{1}(x), P_{2}(x)$ and $P_{3}(x)$, such that for all $\ell \neq m$

$$
\sum_{x} P_{\ell}(x)=0 \text { and } \sum_{x} P_{\ell}(x) \cdot P_{m}(x)=0
$$

then

$$
S S Q_{\text {Additive }}=S S Q\left(P_{1}\right)+S S Q\left(P_{2}\right)+S S Q\left(P_{3}\right)
$$

each with 1 degree of freedom

Supplement II. 2

The p-critical value for the non-central F-distribution is (in the usual way) denoted by $F\left(\nu_{1}, \nu_{2}, \gamma^{2}(n)\right)_{p}$ (p is upper tail probability).
The probability of acceptance is:

$$
\beta\left(\gamma^{2}(n)\right)=P_{r}\left\{F_{\text {sample }} \leq F\left(\nu_{1}, \nu_{2}, 0\right)_{\alpha}\right\}
$$

and our requirement is met if

$$
F\left(\nu_{1}, \nu_{2}, 0\right)_{\alpha} \leq F\left(\nu_{1}, \nu_{2}, \gamma^{2}(n)\right)_{1-\beta}
$$

By trying different n values using $\nu_{1}=k-1$ and $\nu_{2}=k(n-1)$ and the corresponding $\gamma^{2}(n)$ the lowest n satisfying this inequality is the necessary sample size.

In order to do so a computer program is needed which can calculate the non-central F-distribution. All modern statistical programs can do it.

Take the example from slide 2.25 again: $\sigma_{E}^{2}=1.5^{2}$ and $\tau=[-2,0,2]$ and require a test with $\alpha=0.05$ and probability of acceptance for this τ at most $\beta=0.20$. Use $\gamma^{2}(n)=n \cdot \Sigma_{i} \tau_{i}^{2} / \sigma_{E}^{2}=n \cdot 8 / 2.25$:

n	ν_{1}	ν_{2}	$\left.\gamma^{2}(n)\right)$	$F\left(\nu_{1}, \nu_{2}, 0\right)_{0.05}$	$\beta\left(\gamma^{2}(n)\right)$	$F\left(\nu_{1}, \nu_{2}, \gamma^{2}\right)_{0.80}$
2	2	3	7.11	9.55	0.711	1.97
3	2	6	10.67	5.14	0.392	3.16
4	2	9	14.22	4.26	0.185	4.44
5	2	12	17.78	3.89	0.079	5.77
6	2	15	21.33	3.68	0.031	7.15
7	2	18	24.89	3.55	0.012	8.55
8	2	21	28.44	3.47	0.004	9.98
9	2	24	32.00	3.40	0.001	11.43
10	2	27	35.56	3.35	0.000	12.90

181

Supplement II. 5

Sample size in random effect model - exact method

The test quantity is

$$
F_{\text {sample }}=\frac{n \cdot \Sigma_{j}\left(\bar{X}_{. j}-\bar{X}_{. .}\right)^{2} /(k-1)}{\sum_{i} \Sigma_{j}\left(\bar{X}_{i j}-\bar{X}_{. j}\right)^{2} /(k(n-1))} \in \lambda^{2}(n) \cdot F(k-1, k(n-1))
$$

i.e. a usual F -distribution with scale parameter

$$
\lambda^{2}(n)=\left(n \cdot \sigma_{B}^{2}+\sigma_{E}^{2}\right) / \sigma_{E}^{2}
$$

Test $\sigma_{B}^{2}=0$ with level of significance α and require that the acceptance probability for a certain σ_{B}^{2} is at most β.

The p-critical value for the usual F -distribution is (as usual) denoted by $F\left(\nu_{1}, \nu_{2}\right)_{p}$ (p is upper tail probability).

The $\beta\left(\gamma^{2}(n)\right)$ column is the probability of acceptance for the sample size $n, \sigma_{E}^{2}=$ 1.5^{2} and $\tau=[-2,0,2]$. It decreases and must be at most 0.20 in our example.

The inequality is satisfied for $n \geq 4$; choose $n=4$.

In the above example we also found by using the (not very detailed) graphs in the textbook, that we would need $n=4$.

If, for example, $\beta \leq 0.10$ is required, $n=5$ is chosen.

The probability of acceptance is:

$$
\beta\left(\lambda^{2}(n)\right)=P_{r}\left\{F_{\text {sample }} \leq F\left(\nu_{1}, \nu_{2}, 0\right)_{\alpha}\right\}
$$

Our requirement is met if

$$
F\left(\nu_{1}, \nu_{2}\right)_{\alpha} \leq \lambda^{2}(n) \cdot F\left(\nu_{1}, \nu_{2}\right)_{1-\beta}=\lambda^{2}(n) / F\left(\nu_{2}, \nu_{1}\right)_{\beta}
$$

By trying different n values using $\nu_{1}=k-1$ and $\nu_{2}=k(n-1)$ the lowest n satisfying this inequality is the necessary sample size.

With $\mathrm{fx} \alpha=0.05$ and $\beta=0.10$ we can easily determine n using the standard 0.05 -critical and the 0.10 -critical values F -tables.

Take the example from slide 2.29 again: $\sigma_{E}^{2}=1.5^{2}$ and $\sigma_{B}^{2}=2.0^{2}$ and require a test with $\alpha=0.05$ and probability of acceptance for $\sigma_{B}^{2}=2.0$ at most $\beta=0.10$.

Use $\lambda^{2}(n)=\left(n \cdot \sigma_{B}^{2}+\sigma_{E}^{2}\right) / \sigma_{E}^{2}$

185

Supplement II. 9

The general fixed effect test sample size

The fixed effect test is generally carried out using

$$
F=S_{\tau}^{2} / S_{2}^{2} \in F\left(\nu_{\tau}, \nu_{2}, \gamma^{2}\left(n_{\tau}\right)\right)
$$

where S_{τ}^{2} is the mean square between treatments (τ_{i}, say) and S_{2}^{2} is the proper test mean square.

The degrees of freedom are ν_{τ} and ν_{2}, respectively. In general τ_{i} may denote a fixed main effect or a fixed interaction effect.

In general the expected mean squares are of the form $E\left\{S_{\tau}^{2}\right\}=n_{\tau} \cdot \Sigma_{i} \tau_{i}^{2} / \nu_{\tau}+\omega^{2}$ and $E\left\{S_{2}^{2}\right\}=\omega^{2}$ where ω^{2} is a linear combination of variances which depends on the design and the model chosen.

n	ν_{1}	ν_{2}	$\lambda^{2}(n)$	$F\left(\nu_{1}, \nu_{2}\right)_{0.05}$	$\beta\left(\lambda^{2}(n)\right)$	$F\left(\nu_{2}, \nu_{1}\right)_{0.10}$	$\frac{\lambda^{2}}{F\left(\nu_{2}, \nu_{1}\right)_{0.10}}$
10	2	27	18.78	3.35	0.163	9.45	1.99
11	2	30	20.56	3.32	0.148	9.46	2.17
12	2	33	22.33	3.28	0.136	9.46	2.36
13	2	36	24.11	3.26	0.126	9.46	2.55
14	2	39	25.89	3.24	0.117	9.47	2.74
15	2	42	27.67	3.22	0.110	9.47	2.92
16	2	45	29.44	3.20	0.103	9.47	3.11
17	2	48	31.22	3.19	0.097	9.47	3.30
18	2	51	33.00	3.18	0.092	9.47	3.48
19	2	54	34.78	3.17	0.087	9.47	3.67
20	2	57	36.56	3.16	0.083	9.47	3.86

The inequality is satisfied for $n \geq 17$; choose $n=17$.
In the above example we found by using the (not very detailed) graphs in the textbook, that we would need about $n=15$ which then was reasonably accurate.

Supplement II. 10

The constant n_{τ} is equal to the number of single measurements per level of the treatments or treatment combinations τ_{i}.

The non-centrality parameter is

$$
\gamma^{2}\left(n_{\tau}\right)=n_{\tau} \cdot \sum_{i} \tau_{i}^{2} / \omega^{2}
$$

Our requirement is, as above, met if

$$
F\left(\nu_{1}, \nu_{2}, 0\right)_{\alpha} \leq F\left(\nu_{1}, \nu_{2}, \gamma^{2}\left(n_{\tau}\right)\right)_{1-\beta}
$$

By trying different n_{τ} and corresponding ν_{1} and $\gamma^{2}\left(n_{\tau}\right)$ the lowest n_{τ} satisfying this inequality gives the necessary sample size.

In multi-factor and/or multilevel experiments the specification of a reasonable ω^{2} may be difficult - not least because it depends on the design.

The general random effect test sample size

The random effect test is generally carried out using

$$
F=S_{B}^{2} / S_{2}^{2} \in \lambda^{2}\left(n_{B}\right) \cdot F\left(\nu_{B}, \nu_{2}\right)
$$

where S_{B}^{2} is the mean square between the levels of the random factor B and S_{2}^{2} is the proper test mean square. The degrees of freedom are ν_{B} and ν_{2}, respectively.

In general the expected mean squares are of the form $E\left\{S_{B}^{2}\right\}=n_{B} \cdot \sigma_{B}^{2}+\omega^{2}$ and $E\left\{S_{2}^{2}\right\}=\omega^{2}$ where ω^{2} is a linear combination of variances which depends on the design chosen (may depend on n_{B} and the model, but does not include σ_{B}^{2}).

The constant n_{B} is equal to the number of single measurements per level of the random factor B.

The scale parameter

$$
\lambda^{2}\left(n_{B}\right)=\left(n_{B} \cdot \sigma_{B}^{2}+\omega^{2}\right) / \omega^{2}
$$

Our requirement is met if

$$
F\left(\nu_{B}, \nu_{2}\right)_{\alpha} \leq \lambda^{2}\left(n_{B}\right) \cdot F\left(\nu_{B}, \nu_{2}\right)_{1-\beta}=\lambda^{2}\left(n_{B}\right) / F\left(\nu_{2}, \nu_{B}\right)_{\beta}
$$

By trying different n_{B} values using $\nu_{B}=k-1$ and the corresponding ν_{2} and $\lambda^{2}\left(n_{B}\right)$ the lowest n_{B} satisfying this inequality is the necessary sample size.

Again, in multi-factor and/or multilevel experiments the specification of a reasonable ω^{2} may be difficult - not least because it depends on the design.

Repeated Latin squares and ANOVA

3 squares with identical operators (3) and batches (3)

$\begin{array}{llll}O_{1} & O_{2} & O_{3}\end{array}$				$\begin{array}{llll}O_{1} & O_{2} & O_{3}\end{array}$				$\begin{array}{llll}O_{1} & O_{2} & O_{3}\end{array}$				
B_{1}	A	B	C	B_{1}	B	C	A	B_{1}	C	A	B	
B_{2}	B	C	A	B_{2}	A	B	C	B_{2}	B	C	A	
B_{3}	C	A	B	B_{3}	C	A	B	B_{3}	A	B	C	
		R_{1}				R_{2}				R_{3}		

$$
Y_{\nu i j k}=\mu+R_{\nu}+\tau_{i}+B_{j}+O_{k}+E_{\nu i j k}
$$

Latin square ANOVA					
Source of var.	SSQ	d.f.	s^{2}	EMS	F-test
Treatments	$S S Q_{\tau}$	$3-1$	s_{τ}^{2}	$\sigma^{2}+9 \phi_{\tau}$	F_{τ}
Replicates	$S S Q_{R}$	$3-1$	s_{R}^{2}	$\left(\sigma^{2}+9 \sigma_{R}^{2}\right)$	$\left(F_{R}\right)$
Batches	$S S Q_{B}$	$3-1$	s_{B}^{2}	$\left(\sigma^{2}+9 \sigma_{B}^{2}\right)$	$\left(F_{B}\right)$
Operators	$S S Q_{O}$	$3-1$	s_{O}^{2}	$\left(\sigma^{2}+9 \sigma_{O}^{2}\right)$	$\left(F_{O}\right)$
Uncertainty	$S S Q_{E}$	18	s_{E}^{2}	σ^{2}	
Total	$S S Q_{\text {tot }}$	$27-1$			

Supplement III. 2

Sums of squares are computed as usual - using sums:

$$
\begin{gathered}
S S Q_{\tau}=\sum_{i=1}^{3} \frac{T_{. . .}^{2}}{9}-\frac{T_{\ldots \ldots}^{2}}{27}, S S Q_{R}=\sum_{\nu=1}^{3} \frac{T_{\nu \ldots}^{2}}{9}-\frac{T_{\ldots \ldots}^{2}}{27} \\
S S Q_{B}=\sum_{j=1}^{3} \frac{T_{\ldots j .}^{2}}{9}-\frac{T_{\ldots \ldots}^{2}}{27}, S S Q_{O}=\sum_{k=1}^{3} \frac{T_{\ldots k}^{2}}{9}-\frac{T_{\ldots \ldots}^{2}}{27} \\
S S Q_{E}=S S Q_{t o t}-S S Q_{R}-S S Q_{\tau}-S S Q_{B}-S S Q_{O}
\end{gathered}
$$

3 squares with 9 operators and 3 batches

$$
Y_{\nu i j k}=\mu+R_{\nu}+\tau_{i}+B_{j}+O(R)_{k(\nu)}+E_{\nu i j k}
$$

Latin square ANOVA					
Source of var.	SSQ	d.f.	s^{2}	EMS	F-test
Treatments	$S S Q_{\tau}$	$3-1$	s_{τ}^{2}	$\sigma^{2}+9 \phi_{\tau}$	F_{τ}
Replicates	$S S Q_{R}$	$3-1$	s_{R}^{2}	$\left(\sigma^{2}+9 \sigma_{R}^{2}\right)$	$\left(F_{R}\right)$
Batches	$S S Q_{B}$	$3-1$	s_{B}^{2}	$\left(\sigma^{2}+9 \sigma_{B}^{2}\right)$	$\left(F_{B}\right)$
Operators	$S S Q_{O(R)}$	$3(3-1)$	$s_{O(R)}^{2}$	$\left(\sigma^{2}+3 \sigma_{O(R)}^{2}\right)$	$\left(F_{O(R))}\right)$
Uncertainty	$S S Q_{E}$	14	s_{E}^{2}	σ^{2}	
Total	$S S Q_{\text {tot }}$	$27-1$			

193

Supplement III. 5

3 squares with 9 operators and 9 batches

$\begin{array}{llll}O_{1} & O_{2} & O_{3}\end{array}$					$\begin{array}{llll}O_{4} & O_{5} & O_{6}\end{array}$				$\begin{array}{cccc}O_{7} & O_{8} & O_{9}\end{array}$				
B_{1}	A	B	B	C	B_{4}	B	C	A	B_{7}	C	A		B
B_{2}	B	C	C	A	B_{5}	A	B	C	B_{8}	B	C		A
B_{3}	C	A	A	B	B_{6}	C	A	B	B_{9}	A	B		C
		R_{1}	R_{1}				R_{2}				R		

$$
Y_{\nu i j k}=\mu+R_{\nu}+\tau_{i}+B(R)_{j(\nu)}+O(R)_{k(\nu)}+E_{\nu i j k}
$$

Latin square ANOVA					
Source of var.	SSQ	d.f.	s^{2}	EMS	F-test
Treatments	$S S Q_{\tau}$	$3-1$	s_{τ}^{2}	$\sigma^{2}+9 \phi_{\tau}$	F_{τ}
Replicates	$S S Q_{R}$	$3-1$	s_{R}^{2}	$\left(\sigma^{2}+9 \sigma_{R}^{2}\right)$	$\left(F_{R}\right)$
Batches	$S S Q_{B(R)}$	$3(3-1)$	$s_{B(R)}^{2}$	$\left(\sigma^{2}+3 \sigma_{B(R)}^{2}\right)$	$\left(F_{B(R)}\right)$
Operators	$S S Q_{O(R)}$	$3(3-1)$	$s_{O(R)}^{2}$	$\left(\sigma^{2}+3 \sigma_{O(R)}^{2}\right)$	$\left(F_{O}\right)$
Uncertainty	$S S Q_{E}$	10	s_{E}^{2}	σ^{2}	
Total	$S S Q_{\text {tot }}$	$27-1$			

Sums of squares are computed as usual - using sums - again:

$$
S S Q_{O}=\sum_{\nu=1}^{3}\left[\sum_{k(\nu)} \frac{T_{\nu . k}^{2}}{3}-\frac{T_{\nu \ldots}^{2}}{9}\right]
$$

Note that now $S S Q_{O(R)}$ is computed within replicates and added up over the three replicates giving 2 degrees of freedom for each replicate. The summation over k is thus over the three values within the replicate ν.
$S S Q_{R}, S S Q_{\tau}, S S Q_{B}$ and $S S Q_{E}$ as above.

Supplement III. 6

Sums of squares are computed as usual - using sums - again - again

$$
\begin{aligned}
& S S Q_{B(R)}=\sum_{\nu=1}^{3}\left[\sum_{j(\nu)} \frac{T_{\nu, j .}^{2}}{3}-\frac{T_{\nu_{\ldots}}^{2}}{9}\right] \\
& S S Q_{O(R)}=\sum_{\nu=1}^{3}\left[\sum_{k(\nu)} \frac{T_{\nu . k}^{2}}{3}-\frac{T_{\nu_{\ldots} . .}^{2}}{9}\right]
\end{aligned}
$$

Now both $S S Q_{O(R)}$ and $S S Q_{B(R)}$ are computed within replicates. $S S Q_{R}, S S Q_{\tau}$, and $S S Q_{E}$ as above.

