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Foreword

These notes have been prepared for use in the course 02411, Statistical Design of Ex-
periments, at the Technical University of Denmark. The notes are concerned solely with
experiments that have k factors, which all occur on p levels and are balanced. Such ex-
periments are generally called pk factorial experiments, and they are often used in the
laboratory, where it is wanted to investigate many factors in a limited - perhaps as few
as possible - number of single experiments.

Readers are expected to have a basic knowledge of the theory and practice of the design
and analysis of factorial experiments, or, in other words, to be familiar with concepts
and methods that are used in statistical experimental planning in general, including for
example, analysis of variance technique, factorial experiments, block experiments, square
experiments, confounding, balancing and randomisation as well as techniques for the cal-
culation of the sums of squares and estimates on the basis of average values and contrasts.

The present version is a revised English edition, which in relation to the Danish has been
improved as regards contents, layout, notation and, in part, organisation. Substantial
parts of the text have been rewritten to improve readability and to make the various
methods easier to apply. Finally, the examples on which the notes are largely based have
been drawn up with a greater degree of detailing, and new examples have been added.

Since the present version is the first in English, errors in formulation an spelling may
occur.

Henrik Spliid

IMM, March 2002

April 2002: Since the version of March 2002 a few corrections have been made on the
pages 21, 25, 26, 40, 68 and 82.

Lecture notes for course 02411. IMM - DTU.
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1

1.1 Introduction

These lecture notes are concerned with the construction of experimental designs which are
particularly suitable when it is wanted to examine a large number of factors and often under
laboratory conditions.

The complexity of the problem can be illustrated with the fact that the number of possible factor
combinations in a multi-factor experiment is the product of the levels of the single factors. If,
for example, one considers 10 factors, each on only 2 levels, the number of possible different
experiments is 2 × 2 × ... × 2 = 2k = 1024. If it is wanted to investigate the factors on 3 levels,
this number increases to 310 = 59049 single experiments. As can be seen, the number of single
experiments rapidly increases with the number of factors and factor levels.

For practical experimental work, this implies two main problems. First, it quickly becomes
impossible to perform all experiments in what is called a complete factor structure, and second, it
is difficult to keep the experimental conditions unchanged during a large number of experiments.
Doing the experiments, for example, necessarily takes a long time, uses large amounts of test
material, uses a large number of experimental animals, or involves many people, all of which
tend to increase the experimental uncertainty.

These notes will introduce general models for such multi-factor experiments where all factors
are on p levels, and we will consider fundamental methods to reduce the experimental work very
considerably in relation to the complete factorial experiment, and to group such experiments in
small blocks. In this way, both savings in the experimental work and more accurate estimates
are achieved.

An effort has been made to keep the notes as ”non-mathematical” as possible, for example by
showing the various techniques in typical examples and generalising on the basis of these. On the
other hand, this has the disadvantage that the text is perhaps somewhat longer than a purely
mathematical statistical run-through would need.

Generally, extensive numerical examples are not given nor examples of the design of experiments
for specific problem complexes, but the whole discussion is kept on such a general level that
experimental designers from different disciplines should have reasonable possibilities to benefit
from the methods described. As mentioned in the foreword, it is assumed that the reader has a
certain fundamental knowledge of experimental work and statistical experimental design.

Finally, I think that, on the basis of these notes, a person would be able to understand the idea
in the experimental designs shown, and would also be able to draw up and analyse experimen-
tal designs that are suitable in given problem complexes. However, this must not prevent the
designer of experiments from consulting the relevant specialist literature on the subject. Here
can be found many numerical examples, both detailed and relevant, and in many cases, alter-
native analysis methods are suggested, which can be very useful in the interpretation of specific
experiment results. Below, a few examples of ”classical” literature in the field are mentioned.
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1.2 Literature suggestions concerning the drawing up and ana-

lysis of factorial experiments

.

Box, G.E.P., Hunter, W.G. and Hunter, J.S.: Statistics for Experimenters, Wiley, 1978.

Chapter 10 introduces 2k factorial experiments. Chapter 11 shows examples of their use and
analysis. In particular, section 10.9 shows a method of analysing experiments with many effects,
where one does not have an explicit estimate of uncertainty. The method uses the technique
from the quantile diagram (Q-Q plot) and is both simple and illustrative for the user. A number
of standard block experiments are given. Chapter 12 introduces fractional factorial designs
and chapter 13 gives examples of applications. The book contains many examples that are
completely calculated - although on the basis of quite modest amount of data. In general a
highly recommendable book for experimenters.

Davies, O.L. and others: The Design and Analysis of Experiments, Oliver and Boyd, 1960 (1st
edition 1954).

Chapters 7, 8, 9 and 10 deal with factorial experiments with special emphasis on 2k and 3k

factorial experiments. A large number of practical examples are given based on real problems
with a chemical/technical background. Even though the book is a little old, it is highly recom-
mendable as a basis for conducting laboratory experiments. It also contains a good chapter (11)
about experimental determination of optimal conditions where factorial experiments are used.

Fisher, R.A.: The Design of Experiments, Oliver and Boyd, 1960 (1st edition 1935)

A classic (perhaps ”the classic”), written by one of the founders of statistics. Chapters 6, 7 and
8 introduce notation and methods for 2k and 3k factorial experiments. Very interesting book.

Johnson, N.L. and Leone, F.C,: Statistics and Experimental Design, Volume II, Wiley 1977.

Chapter 15 gives a practically orientated and quite condensed presentation of 2k factorial ex-
periments for use in engineering. With Volume I, this is a good general book about engineering
statistical methods.

Kempthorne, O.: The Design and Analysis of Experiments, Wiley 1973 (1st edition 1952).

This contains the mathematical and statistical basis for pk factorial experiments with which
these notes are concerned (chapter 17). In addition it deals with a number of specific problems
relevant for multi-factorial experiments, for example experiments with factors on both 2 and
3 levels (chapter 18). It is based on agricultural experiments in particular, but is actually
completely general and highly recommended.
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Montgomery, D.C.: Design and Analysis of Experiments, Wiley 1997 (1st edition 1976).

The latest edition (5th) is considerably improved in relation to the first editions. The book
gives a good, thorough and relevant run-through of many experimental designs and methods
for analysing experimental results. Chapters 7, 8 and 9 deal with 2k factorial experiments and
chapter 10 deals with 3k factorial experiments. An excellent manual and, up to a point, suitable
for self-tuition.
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2 2k–factorial experiment

Chapter 2 discusses some fundamental experimental structures for multi-factor experi-
ments. Here, for the sake of simplicity, we consider only experiments where all factors
occur on only 2 levels. These levels for example can be “low”/”high” for an amount of
additive or “not present”/”present” for a catalyst.

A special notation is introduced and a number of terms and methods, which are generally
applicable in planning experiments with many factors. This chapter should thus be seen
as an introduction to the more general treatment of the subject that follows later.

2.1 Complete 2k factorial experiments

2.1.1 Factors

The name, 2k factorial experiments, refers to experiments in which it is wished to study k
factors and where each factor can occur on only 2 levels. The number of possible different
factor combinations is precisely 2k, and if one chooses to do the experiment so that all
these combinations are gone through in a randomised design, the experiment is called a
complete 2k factorial experiment.

In this section, the main purpose is to introduce a general notation, so we will only
consider an experiment with two factors, each having two levels. This experiment is thus
called a 22 factorial experiment.

The factors in the experiment are called A and B, and it is practical, not to say required,
always to use these names, even if it could perhaps be wished to use, for example, T for
temperature or V for volume for mnemonic reasons.

In addition, the factors are organised so that A is always the first factor and B is the
second factor.

2.1.2 Design

For each combination of the two factors, we imagine that a number (r) of measurements
are made. The random error is called (generally) E. The result of a single experiment
with a certain factor combination is often called the response, and this terminology is
also used for the sum of the results obtained for the given factor combination.

This design is as follows where there are r repetitions per factor combination in a com-
pletely randomised setup:
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B = 0 B = 1
Y001 Y011

A = 0 : :
Y00r Y01r

Y101 Y111

A = 1 : :
Y10r Y11r

If for example we investigate how the output from a process depends on pressure and
temperature, the two levels of factor A can represent two values of pressure while the two
levels of factor B represent two temperatures. The measured value, Yijν, then gives the
result of the ν’th measurement with the factor combination (Ai,Bj).

2.1.3 Model for response, parametrisation

It is assumed, as mentioned, that the experiment is done as a completely randomised
experiment, that is, that the 2× 2× r observations are made, for example, in completely
random order or randomly distributed over the experimental material which may be used
in the experiment.

The mathematical model for the yield of this experiment (the response) is, in that factor
A is still the first factor and factor B is the second factor:

Yijν = µ + Ai + Bj + ABij + Eijν , where i = (0, 1), j = (0, 1), ν = (1, 2, .., r)

where the ususal restrictions apply

1∑
i=0

Ai = 0 ,
1∑

j=0

Bj = 0 ,
1∑

i=0

ABij = 0 ,
1∑

j=0

ABij = 0

These restrictions imply that

A0 = −A1 , B0 = −B1 , AB00 = −AB10 = −AB01 = +AB11

Therefore, in reality, there are only 4 parameters in this model, namely the experiment
level µ and the factor parameters A1, B1and AB11, if one, (as usual) refers to the “high”
levels of the factors.
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2.1.4 Effects in 2k–factor experiments

In a 2-level factorial experiment, one often speaks of the ”effects” of the factors. By this
is understood in this special case the mean change of the response that is obtained by
changing a factor from its ”low” to its ”high” level.

The effects in an experiment where the factors have precisely 2 levels are therefore defined
in the following manner:

A = A1 − A0 = 2A1 , and likewise B = 2B1 , AB = 2AB11

In other factorial experiments, one often speaks more generally about factor effects as
expressions of the action of the factors on the response, without thereby referring to a
definite parameter form.

2.1.5 Standard notation for single experiments

In the theoretical treatment of this experiment, it is practical to introduce a standard
notation for the experimental results in the same way as for the effects in the mathematical
model.

For the experiments that are done for example with the factor combination (A1, B0), the
sum of the results of the experiment is needed. This sum is called a, that is

a =
r∑

ν=1

Y10ν

where this sum is the sum of all data with factor A on the high level and the other factors
on the low level. As mentioned, a is also called the response of the factor combination in
question.

In the same way, the sum for the experiments with the factor combination (A0, B1) is
called b, while the sum for (A1, B1) is called ”ab”. Finally, the sum for (A0, B0) is called
”(1)”.

In the design above, cell sums are thus found as in the following table

B = 0 B = 1
A = 0 (1) b
A = 1 a ab

Some presentations use names that directly refer to the factor levels as for example:

B = 0 B = 1
A = 0 00 01
A = 1 10 11
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When one works with these cell sums, they are most practically shown in the so-called
standard order for the 22 experiment:

(1), a, b, ab

It is important to keep strictly to the introduced notation, i.e. upper-case letter for param-
eters in the model and lower-case letters for cell sums, and that the order of parameters
as well as data, is kept as shown. If not, there is a considerable risk of making a mess of
it.

2.1.6 Parameter estimates

We can now formulate the analysis of the experiment in more general terms.

We find the following estimates for the parameters of the model:

µ̂ = [(1) + a + b + ab]/(4 · r) = [(1) + a + b + ab]/(2k · r)
where k = 2, as mentioned, gives the number of factors in the design and r is the number
of repetitions of the single experiments.

Further we find:
Â1 = −Â0 = [−(1) + a − b + ab]/(2k · r)

B̂1 = −B̂0 = [−(1) − a + b + ab]/(2k · r)

ÂB11 = −ÂB10 = −ÂB01 = ÂB00 = [(1) − a − b + ab]/(2k · r)

If we also want to estimate for example the A-effect, i.e. the change in response when
factor A is changed from low (i = 0) to high (i = 1) level, we find

Â = Â1 − Â0 = 2Â1 = [−(1) + a − b + ab]/(2k−1 · r)

The parenthesis [−(1) + a − b + ab] gives the total increase in response, which was found
by changing the factor A from its low level to its high level. This amount is called the
A-contrast, and is called [A]. Therefore, in the case of the factor A, we have in summary
the equations:

[A] = [−(1) + a − b + ab] , Â1 = −Â0 = [A]/(2k · r) , Â = 2Â1

and correspondingly for the other terms in the model. Specifically for the total sum of
observations, the notation [I] = [(1) + a + b + ab] is used. This quantity can be called the
pseudo-contrast.
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2.1.7 Sums of squares

Further, we can derive the sums of squares for all terms in the model. This can be done
with ordinary analysis of variance technique. For example, this gives in the case of factor
A:

SSQA = [A]2/(2k · r)
Corresponding expressions apply for all the other factor effects in the model.

The sums of squares for these factor effects all have 1 degree of freedom.

If there are repeated measurements for the single factor combinations, i.e. r > 1, we can
find the residual variation as the variation within the single cells in the design in the usual
manner:

SSQresid =
1∑

i=0

1∑
j=0

([
r∑

ν=1

Y 2
ijν] − T 2

ij·/r) ,

where

Tij· =
r∑

ν=1

Yijν

is the sum (the total) in cell (i, j).

We can summarise these considerations in an analysis of variance table:

Source of Sum of squares Degrees of S2 F-value
variation = SSQ freedom = f =SSQ/f
A [A]2/(2k · r) 1 S2

A FA = S2
A/S2

resid

B [B]2/(2k · r) 1 S2
B FB = S2

B/S2
resid

AB [AB]2/(2k · r) 1 S2
AB FAB = S2

AB/S2
resid

Residual SSQresid 2k · (r − 1) S2
resid

Totalt SSQtot r · 2k − 1

In the table, for example, FA is compared with an F distribution with (1, 2k · (r − 1))
degrees of freedom.

2.1.8 Calculation methods for contrasts

The salient point in the above analysis is the calculation of the contrasts. Various methods,
some more practical than others, can be given to solve this problem.

Mathematically, the contrasts can be calculated by the following matrix equation:
I
A
B

AB

 =


1 1 1 1

−1 1 −1 1
−1 −1 1 1

1 −1 −1 1




(1)
a
b
ab
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One notes that both contrasts and cell sums are given in standard order. In addition it
can be seen that the row for example for the A-contrast contains +1 for a and ab, where
factor A is at its high level, but -1 for (1) and b, where factor A is at its low level. Finally,
it is noticed that the row for AB found by multiplying the rows for A and B by each
other.

In some presentations, the matrix expresssion shown is given just as + and - signs in a
table:

(1) a b ab
I + + + +
A − + − +
B − − + +

AB + − − +

2.1.9 Yates’ algorithm

Finally we give a calculation algorithm which is named after the English statistician
Frank Yates and is called Yates’ algorithm. Data, i.e. the cell sums, are arranged in
standard order in a column. Then these are taken in pairs and summed, and after that
the same values are subtracted from each other. The sums are put at the top of the next
column followed by the differences. When forming the differences, the uppermost value
is subtracted from the bottom one (mnemonic rule: As complicated as possible). The
operation is repeated as many times as there are factors. Here this would be k = 2 times:

Cell sums 1st time 2nd time = Contrasts Sum of Sq.
(1) (1) + a (1) + a + b + ab = [ I ] [I]2/(2k · r)
a b + ab −(1) + a − b + ab = [ A ] [A]2/(2k · r)
b −(1) + a −(1) − a + b + ab = [ B ] [B]2/(2k · r)
ab −b + ab (1) − a − b + ab = [ AB ] [AB]2/(2k · r)

We give a numerical example where the data are shown in the following table:

B=0 B=1
A=0 12.1 19.8

14.3 21.0
A=1 17.9 24.3

19.1 23.4

One finds (1) = 12.1 + 14.3 = 26.4, a = 17.9 + 19.1 = 37.0, b = 19.8 + 21.0 = 40.8 and
ab = 24.3 + 23.4 = 47.7.

Yates= algorithm now gives
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Cell sums 1st time 2nd time = Contrasts Sums of Squares
(1) = 26.4 63.4 151.9 = [ I ] [I]2/(2k · r) = 2884.20
a = 37.0 88.5 17.5 = [ A ] [A]2/(2k · r) = 38.28
b = 40.8 10.6 25.1 = [ B ] [B]2/(2k · r) = 78.75
ab = 47.7 6.9 -3.7 = [ AB ] [AB]2/(2k · r) = 1.71

In this experiment r = 2, and SSQresid can be found as the sum of squares within the
single factor combinations.

SSQresid = (12.12 + 14.32 − (12.1 + 14.3)2/2)
+(17.92 + 19.12 − (17.9 + 19.1)2/2)
+(19.82 + 21.02 − (19.8 + 21.0)2/2)
+(24.32 + 23.42 − (24.3 + 23.4)2/2) = 2.42 + 0.72 + 0.72 + 0.41 = 4.27

ANOVA
Source of variation SSQ df s2 F-value
A main effect 38.28 2−1 = 1 38.28 35.75
B main effect 78.75 2−1 = 1 78.75 73.60
AB interaction 1.71 (2−1)(2−1) = 1 1.71 1.60
Residual variation 4.27 4(2−1) = 4 1.07
Totalt 123.01 8−1 = 7

As we shall see, Yates’ algorithm is generally applicable to all 2k factorial experiments
and for example can be easily programmed on a calculator. The algorithm also appears
in signal analysis under the name “fast Fourier transform”.

The last column in the algorithm gives the contrasts that are used for the estimation as
well as the calculation of the sums of squares for the factor effects.

2.1.10 Replications or repetitions

Before we move on to experiments with 3 or more factors, let us look at the following
experiment

B=0 B=1
A=0 Y001 Y011

A=1 Y101 Y111

Day no. 1

,

B=0 B=1
A=0 Y002 Y012

A=1 Y102 Y112

Day no. 2

, · · · ,

B=0 B=1
A=0 Y00R Y01R

A=1 Y10R Y11R

Day no. R
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that is, a 2 × 2, replicated R times. The mathematical model for this experiment is
not identical with the model presented on page 8 the beginning of this chapter. The
experiment is not completely randomised in that randomisation is done within days.

An experimental collection of single experiments that can be regarded as homogeneous
with respect to uncertainty, such as the days in the example, is generally called a block.

If it is assumed that the contribution from the days can be described by an additive effect,
corresponding to a general increase or reduction of the response on the single days (block
effect), a reasonable mathematical model would be:

Yijτ = µ + Ai + Bj + ABij + Dτ + Fijτ , i = (0, 1), j = (0, 1), τ = (1, 2, . . . , R),

where Dτ gives the contribution from the τ ’th dag, and Fijτ gives the purely random error
within days.

We will say that the 22 experiment is replicated R times.

This is essentially different from the case where for example 2 × 2 × r measurements are
made in a completely randomised design as on page 8.

If one is in the practical situation of having to choose between the two designs, and it is
assumed that both experiments (because of the time needed) must extend over several
days, the latter design is preferable. In the first design the randomisation is done across
days with r repetitions, and the experimental uncertainty, Eijν will also contain the
variation between days.

One can regard Dτ , i.e. the effect from the τ ’th day, as a randomly varying amount with
the variance σ2

D, while Fijτ , i.e. the experimental error within one day, is assumed to have
the variance σ2

F . From this can be derived that Eijν, i.e. the total experimental error in
a completely randomised design over several days, has the variance

σ2
E = σ2

D + σ2
F

The example illustrates the advantage of dividing one’s experiment into smaller homo-
geneous blocks as distinct from complete randomisation. It also shows that there is a
fundamental difference between the analysis of an experiment with r repetitions in a
completely randomised design and a randomised design replicated R times.

2.1.11 23 factorial design

We now state the described terms for the 23 factorial experiment with a minimum of
comments.

The factors are now A, B, and C with indices i, j and k, respectively. The factors are
again ordered so A is the first factor, B the second and C the third factor.
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The mathematical model with r repetitions per cell in a completely randomised design is:

Yijkν = µ + Ai + Bj + ABij + Ck + ACik + BCjk + ABCijk + Eijkν

where i, j, k = (0, 1) and ν = (1, .., r).

The usual restrictions are:

1∑
i=0

Ai =
1∑

j=0

Bj =
1∑

i=0

ABij =
1∑

j=0

ABij =
1∑

k=0

Ck = · · · =
1∑

k=0

ABCijk = 0

which implies that

A1 = −A0 , B1 = −B0 , AB11 = −AB10 = −AB01 = AB00 ,

C1 = −C0 , · · · , (and further on until)

ABC000 = −ABC100 = −ABC010 = ABC110 = −ABC001 = ABC101 = ABC011 = −ABC111

The effects of the experiment (which give the difference in response when a factor is
changed from “low” level to “high” level, cf. page 9) are

A = 2A1 , B = 2B1 , AB = 2AB11 , C = 2C1 , · · · , ABC = 2ABC111

The standard order for the 23 = 8 different experimental conditions (factor combinations)
is:

(1) , a , b , ab , c , ac , bc , abc

where the introduction of the factor C is done by multiplying c onto the terms for the 22

experiment and adding the resulting terms to the sequence: (1), a, b, ab, ((1), a, b, ab)c =
(1), a, b, ab, c, ac, bc, abc.
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[I] = [+(1) + a + b + ab + c + ac + bc + abc]

[A] = [−(1) + a − b + ab − c + ac − bc + abc]

[B] = [−(1) − a + b + ab − c − ac + bc + abc]

[AB] = [+(1) − a − b + ab + c − ac − bc + abc]

[C] = [−(1) − a − b − ab + c + ac + bc + abc]

[AC] = [+(1) − a + b − ab − c + ac − bc + abc]

[BC] = [+(1) + a − b − ab − c − ac + bc + abc]

[ABC] = [−(1) + a + b − ab + c − ac − bc + abc]

or in matrix formulation



I
A
B

AB
C

AC
BC

ABC


=



1 1 1 1 1 1 1 1
−1 1 −1 1 −1 1 −1 1
−1 −1 1 1 −1 −1 1 1

1 −1 −1 1 1 −1 −1 1
−1 −1 −1 −1 1 1 1 1

1 −1 1 −1 −1 1 −1 1
1 1 −1 −1 −1 −1 1 1

−1 1 1 −1 1 −1 −1 1





(1)
a
b
ab
c
ac
bc
abc


Yates’ algorithm is performed as above, but the operation on the columns should now be
done 3 times as there are 3 factors. If one writes in detail what happens, one gets:

response 1st time 2nd time 3rd time contrasts
(1) (1) + a (1) + a + b + ab (1) + a + b + ab + c + ac + bc + abc [I]
a b + ab c + ac + bc + abc −(1) + a − b + ab − c + ac − bc + abc [A]
b c + ac −(1) + a − b + ab −(1) − a + b + ab − c − ac + bc + abc [B]
ab bc + abc −c + ac − bc + abc (1) − a − b + ab + c − ac − bc + abc [AB]
c −(1) + a −(1) − a + b + ab −(1) − a − b − ab + c + ac + ab + abc [C]
ac −b + ab −c − ac + bc + abc (1) − a + b − ab − c + ac − bc + abc [AC]
bc −c + ac (1) − a − b + ab (1) + a − b − ab − c − ac + bc + abc [BC]
abc −bc + abc c − ac − bc + abc −(1) + a + b − ab + c − ac − bc + abc [ABC]

Parameter estimates are, with k = 3 :

µ̂ =
[I]

2k · r , Â1 =
[A]

2k · r , B̂1 =
[B]

2k · r , . . . , ÂBC111 =
[ABC]

2k · r
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Correspondingly, the effect estimates are:

Â = 2Â1 , B̂ = 2B̂1 , · · · , ÂBC = 2ÂBC111

The sums of squares are, for example:

SSQA =
[A]2

2k · r , SSQB =
[B]2

2k · r , SSQABC =
[ABC]2

2k · r
The variances of the contrasts are found, with [A] as example, as

Var{[A]} = Var{−(1) + a − b + ab − c + ac − bc + abc} = 2k · r · σ2 ,

where k = 3 here.

The result is seen by noting that there are 2k terms, which all have the same variance,
which for example is

Var{ab} = Var{
r∑

ν=1

Y110ν} = r · σ2

Further, it is now found, that

Var{Â1} = Var{[A]/(2k · r)} = σ2/(2k · r)

Var{Â} = Var{2Â1} = σ2/(2k−2 · r)

2.1.12 2k factorial experiment

The stated equations are generalised directly to factorial experiments with k factors, each
on 2 levels, with r repetitions in a randomised design. Writing up the mathematical
model, names for cell sums, calculation of contrasts etc. are done in exactly the same way
as described above. For estimates and sums of squares, then generally

Parameter estimate = (Contrast)/(2k · r)
Effect estimate = 2 × Parameter estimate

Sum of squares (SSQ) = (Contrast)2/(2k · r)
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Regarding the construction of confidence intervals for the parameters and effects, the
variance of the estimates can be derived. One finds

Var{ Contrast } = σ2 · 2k · r
Var{ Parameter estimate } = Var{ Contrast} /(2k · r)2 = σ2/(2k · r)

Var{ Effect estimate } = 22σ2/(2k · r) = σ2/(2k−2 · r)

The confidence intervals for parameters or effects can be constructed if one has an estimate
of σ2. Suppose that one has such an estimate, σ̂2 = s2, and that it has f degrees of
freedom. If (1 − α) confidence intervals are wanted, one thereby gets

I1−α(parameter) = Parameter estimate ± s · t(f)(1−α/2)/
√

2k · r
I1−α(effekt) = Effect estimate ± 2 · s · t(f)(1−α/2)/

√
2k · r

where t(f)(1−α/2) denotes the (1 − α/2)-fractile in the t-distribution with f degrees of
freedom.

2.2 Block confounded 2k factorial experiment

In experiments with many factors, the number of single experiments quickly becomes
very large. For practical experimental work, this means that it can be difficult to ensure
homogeneous experimental conditions for all the single experiments.

A generally occurring problem is that in a series of experiments, raw material is used
that typically comes in the form of batches, i.e. homogeneous shipments. As long as we
perform the experiments on raw material from the same batch, the experiments will give
homogeneous results, while results of experiments done on material from different batches
will be more non-homogeneous. The batches of raw material in this way constitute blocks.

In the same way, it will often be the case that experiments done close together in time
are more uniform than experiments done with a long time between them.

In a series of experiments one will try to do experiments that are to be compared on the
most uniform basis possible, since that gives the most exact evaluation of the treatments
that are being studied. For example, one will try to do the experiment on the same batch
and within as short a space of time as possible. But this of course is a problem when the
number of single experiments is large.

Let us imagine that we want to do a 23 factorial experiment, i.e. an experiment with 8
single experiments, corresponding to the 8 different factor combinations. Suppose further
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that it is not possible to do all these 8 single experiments on the same day, but perhaps
only four per day.

An obvious way to distribute the 8 single experiments over the two days could be to draw
lots. We imagine that this drawing lots results in the following design:

day 1 day 2
(1) c abc a bc ac ab b

For this design, we get for example the A-contrast:

[A] = [−(1) + a − b + ab − c + ac − bc + abc]

As long as the two days give results with exactly the same mean response, this estimate
will, in principle, be just as good as if the experiments had been done on the same day.
(however the variance is generally increased when experiments are done over two days
instead of on one day).

But if on the other hand there is a certain unavoidable difference in the mean response
on the two days, we obviously have a risk that this affects the estimates. As a simple
model for such a difference in the days, we can assume that the response on day 1 is 1g
under the ideal, while it is 2g over the ideal on day 2. An effect of this type is a block
effect, and the days constitute the blocks. One says that the experiment is laid out in two
blocks each with 4 single experiments.

For the A-contrast, it is shown below how these unintentional, but unavoidable, effects
on the experimental results from the days will affect the estimation, as 1g is subtracted
from all the results from day 1 and 2g is added to all the results from day 2:

[A] = [−((1)−1g)+(a−1g)−(b+2g)+(ab+2g)−(c−1g)+(ac+2g)−(bc+2g)+(abc−1g)]

= [−(1) + a − b + ab − c + ac − bc + abc] + [1 − 1 − 2 + 2 + 1 + 2 − 2 − 1]g

= [−(1) + a − b + ab − c + ac − bc + abc]

Thus, a difference in level on the results from the two days (blocks) will not have any effect
on the estimate for the main effect of factor A. In other words, factor A is in balance
with the blocks (the days).

If we repeat the procedure for the main effect of factor B, we get

[B] = [−((1)−1g)−(a−1g)+(b+2g)+(ab+2g)−(c−1g)−(ac+2g)+(bc+2g)+(abc−1g)]
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= [−(1) − a + b + ab − c − ac + bc + abc] + [1 + 1 + 2 + 2 + 1 − 2 + 2 − 1]g

= [−(1) + a − b + ab − c + ac − bc + abc] + 6g

The estimate for the B effect (i.e. the difference in response when B is changed from low
to high level) is thereby on average (6g/4) = 1.5g higher than the ideal estimate.

If we look back at the design, this is because factor B was mainly at ”high level” on day
2, where the response on average is a little above the ideal.

The same does not apply in the case of factor A. This has been at “high level” two times
each day and likewise at “low level” two times each day. The same applies for factor C.

Thus factors A and C are in balance in relation to the blocks (the days), while factor B
is not in balance.

An overall evaluation of the effect of the blocks (the days) on the experiment can be seen
from the following matrix equation



1 1 1 1 1 1 1 1
−1 1 −1 1 −1 1 −1 1
−1 −1 1 1 −1 −1 1 1

1 −1 −1 1 1 −1 −1 1
−1 −1 −1 −1 1 1 1 1

1 −1 1 −1 −1 1 −1 1
1 1 −1 −1 −1 −1 1 1

−1 1 1 −1 1 −1 −1 1





(1) − 1g
a − 1g
b + 2g
ab + 2g
c − 1g
ac + 2g
bc + 2g
abc − 1g


=



I + 4g
A
B + 6g
AB − 6g
C
AC
BC − 6g
ABC − 6g


It can be seen that all contrasts that only concern factors A and C are found correctly,
because the two factors are in balance in relation to the blocks in the design, while all
contrasts that also concern B are affected by the (unintentional, but unavoidable) effect
from the blocks.

What we now can ask is whether it is possible to find a distribution over the two days so
that the influence from these is eliminated to the greatest possible extent.

We can note that it is the difference between the days that is important for the estimates
of the effects of the factors, while general level of the days is absorbed in the common
average for all data.

If we once more regard the calculation of the contrast [A], we can draw up the following
table, which shows how the influence of the days is weighted in the estimate:

Contrast [ A ] Response (1) a b ab c ac bc abc
Weight − + − + − + − +
Day 1 1 2 2 1 2 2 1
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We note that day 1 enters an equal number of times with + and with −, and day 2 as
well. If we look at one of the contrasts where the days do not cancel, e.g. [B], we get a
table like the following:

Contrast [ B ] Response (1) a b ab c ac bc abc
Weight − − + + − − + +
Day 1 1 2 2 1 2 2 1

where the balance is obviously not present.

The condition that is necessary so that an effect is not influenced by the days is obviously
that there is a balance as described. The possibilities for creating such a balance are
linked to the matrix of ones in the estimation:



I
A
B

AB
C

AC
BC

ABC


=



1 1 1 1 1 1 1 1
−1 1 −1 1 −1 1 −1 1
−1 −1 1 1 −1 −1 1 1

1 −1 −1 1 1 −1 −1 1
−1 −1 −1 −1 1 1 1 1

1 −1 1 −1 −1 1 −1 1
1 1 −1 −1 −1 −1 1 1

−1 1 1 −1 1 −1 −1 1





(1)
a
b
ab
c
ac
bc
abc


This matrix has the special characteristic that the product sum of any two rows is zero.
If one for example takes the rows for [A] and [B], one gets (-1)(-1) + (+1)(-1) + ... +
(+1)(+1) = 0. The two contrasts [A] and [B] are thus orthogonal contrasts (linearly
independent).

If one therefore chooses for example a design where the days follow factor B, it is absolutely
certain that in any case factor A will be in balance in relation to the days. This design
would be:

day 1 day 2
(1) a c ac b ab bc abc

The influence from the days can now be calculated by adding −1g to all data from day 1
and adding +2g to all data from day 2:
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1 1 1 1 1 1 1 1
−1 1 −1 1 −1 1 −1 1
−1 −1 1 1 −1 −1 1 1

1 −1 −1 1 1 −1 −1 1
−1 −1 −1 −1 1 1 1 1

1 −1 1 −1 −1 1 −1 1
1 1 −1 −1 −1 −1 1 1

−1 1 1 −1 1 −1 −1 1





(1) − 1g
a − 1g
b + 2g
ab + 2g
c − 1g
ac − 1g
bc + 2g
abc + 2g


=



I + 4g
A
B + 12g
AB
C
AC
BC
ABC


One can see that now, because of the described attribute of the matrix, it is only the B
contrast and the average that are affected by the distribution over the two days.

Of course this design is not very useful if we also want to estimate the effect of factor
B, as we cannot unequivocally conclude whether a B-effect found comes from factor B
or from differences in the blocks (the days). On the other hand, all the other effects are
clearly free from the block effect (the effect of the days).

One says that main effect of factor B is confounded with the effect of the blocks (the
word “confound” is from Latin and means to “mix up”).

The last example shows how we (by following the +1 and −1 variation for the correspond-
ing contrast) can distribute the 8 single experiments over the two days so that precisely
one of the effects of the model is confounded with blocks, and no more than the one
chosen. One can show that this can always just be done.

If, for example, we choose to distribute according to the three-factor interaction ABC, it
can be seen that the row for [ABC] has +1 for a, b, c og abc, but −1 for (1), ab, ac og bc.
One can also follow the + and − signs in the following table :

(1) a b ab c ac bc abc
I + + + + + + + +
A − + − + − + − +
B − − + + − − + +

AB + − − + + − − +
C − − − − + + + +

AC + − + − − + − +
BC + + − − − − + +

ABC − + + − + − − +

This gives the following distribution, as we now in general designate the days as blocks
and let these have the numbers 0 and 1:

block 0 block 1
(1) ab ac bc a b c abc
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The block that contains the single experiment (1) is called the principal block. The
practical meaning of this is that one can make a start in this block when constructing the
design.

2.2.1 Construction of a confounded block experiment

The experiment described above is called a block confounded (or just confounded) 23

factorial experiment. The chosen confounding is given with the experiment’s

defining relation : I = ABC

And in this connection ABC is called the defining contrast.

An easy way to carry out the design construction is to see if the single experiments have an
even or an uneven number of letters in common with the defining contrast. Experiments
with an even number in common should be placed in the one block and experiments with
an uneven number in common should go in the other block.

Alternatively one may use the following tabular method where the column for ’Block’
is found by multiplying the A, B and C columns:

A B C code Block = ABC
−1 −1 −1 (1) −1
+1 −1 −1 a +1
−1 +1 −1 b +1
+1 +1 −1 ab −1
−1 −1 +1 c +1
+1 −1 +1 ac −1
−1 +1 +1 bc −1
+1 +1 +1 abc +1

The experiment is analysed exactly as an ordinary 23 factorial experiment, but with the
exception that the contrast [ABC] cannot unambiguously be attributed to the factors in
the model, but is confounded with the block effect.

One can ask whether it is possible to do the experiment in 4 blocks of 2 single experiments
in a reasonable way. This has general relevance, since precisely the block size 2 (which
naturally is the smallest imaginable) occurs frequently in practical investigations.

One could imagine that the 8 observations were put into blocks according to two criteria,
i.e. by choosing two defining relations that for example could be:
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I1 = (1) ab ac bc
ABC c abc a b

I2 = AB

block (0,0)∼ 1 block (0,1)∼ 2
block (1,0)∼ 3 block (1,1)∼ 4

One notices for example that the experiments in block (0,1) have an even number of
letters in common with ABC and an uneven number of letters in common with AB.

The tabular method gives

A B C code B1 = ABC B2 = AB Block no.
−1 −1 −1 (1) −1 +1 1 ∼ (0,0)
+1 −1 −1 a +1 −1 4 ∼ (1,1)
−1 +1 −1 b +1 −1 4 ∼ (1,1)
+1 +1 −1 ab −1 +1 1 ∼ (0,0)
−1 −1 +1 c +1 +1 3 ∼ (1,0)
+1 −1 +1 ac −1 −1 2 ∼ (0,1)
−1 +1 +1 bc −1 −1 2 ∼ (0,1)
+1 +1 +1 abc +1 +1 3 ∼ (1,0)

In the figure, there is a 2 × 2 block system, corresponding to the grouping according to
ABC and AB. One can note that the factors A and B are both on “high” as well as “low”
level in all 4 blocks. These factors are obviously in balance in relation to the blocks.

However, this does not apply to factor C. It is at “high” level in two of the blocks and at
“low” level in the other two. If it is so unfortunate that the two blocks designated (0,0)
and (1,1) together result in a higher response than the other two blocks, we will get an
undervaluation of the effect of factor C. Thus factor C is confounded with blocks.

To be able to foresee this, one can perceive ABC and AB as factors and then with a
formal calculation find the interaction between them:

Block effect = Block level + ABC + AB + (ABC × AB)

For the effect thus calculated (ABC × AB) = A2B2C, the arithmetic rule is introduced
that in the 2k experiment, the exponents are reduced modulo 2. Thus (ABC × AB) =
A2B2C −→ A0B0C −→ C . Thereby one gets the formal expression for the block
confounding:

Block effect = Block level + ABC + AB + C

which tells us that it is precisely the three effects ABC, AB and C that become confounded
with the blocks in the given design.
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If one wants to estimate the main effect of C, this design is therefore unfortunate. A
better design would be:

I1 = (1) abc ac b
AC c ab a bc

I2 = AB

block 0,0 block 0,1
block 1,0 block 1,1

Since (AC × AB) = A2BC = BC , the influence of the blocks in the design is formally
given by

Blocks = Block level + AC + AB + BC

and the defining relation: I = AB = AC = BC.

The three effects AB, AC and BC are confounded with blocks. All other effects can be
estimated without influence from the blocks. Take special note that the main effects A,
B and C all appear at both high and low levels in all 4 blocks. The three factors are thus
all in balance in relation to the blocks.

The design shown is the best existing design for estimating the main effects of 3 factors
in minimal blocks, that is, with 2 experiments in each. Since minimal blocks at the same
time result in the most accurate experiments, the design is particularly important.

The design does not give the possibility of estimating the two-factor interactions AB, AC
and BC.

2.2.2 A one-factor-at-a-time experiment

It could be interesting to compare the design shown with the following one-factor-at-a-
time experiment, which is also carried out in blocks of size of 2:

(1) a (1) b (1) c

that is 3 blocks, where the factors are investigated each in one block.

The experiment could be a weighing experiment, where one wants to determine the weight
of three items, A, B and C. The measurement (1) corresponds to the zero point reading,
while a gives the reading when item A is (alone) on the weight and correspondingly for b
and c.

In this design, an estimate for example of the A effect is found as
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Â = [−(1) + a] with variance 2σ2

where it is here assumed that r = 1. In the previous 23 design in 2×2 blocks, it was found

Â = [−(1) + a − ... + abc]/(23−1) with variance σ2/2

If one is to achieve an accuracy as good as the “optimal” design with repeated use of the
one-factor-at-a-time design, it has to be repeated (2 · σ2/(σ2/2) = 4 times . Thus, there
will be a total of 4 × 6 = 24 single experiments in contrast to the 8 that are used in the
“optimal” design.

Another one-factor-at-a-time in 2 blocks of 2 single experiments is the following experi-
ment:

(1) a b c
block 0 block 1

Why is this a hopeless experiment? What can one estimate from the experiment?

2.3 Partially confounded 2k factorial experiment

We will again consider the 2 × 2 experiment with the two factors A and B:

B = 0 B = 1
A = 0 (1) b
A = 1 a ab

Suppose that this experiment is to be done in blocks of the size 2. The blocks can
correspond for example to batches of raw material that are no larger than at most 2
experiments per batch can be done. By choosing the defining contrast as I=AB, the
following block grouping is obtained:

Experiment 1 :
(1)1 ab1 a2 b2

batch 1 batch 2
I = AB

The mathematical model of the experiment is the following:

Yijν = µ + Ai + Bj + ABij + Eijν , where i = (0, 1), j = (0, 1), ν = 1
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but the AB interaction effect is confounded with blocks.

Suppose now that we further want to estimate and/or test the interaction contribution
ABij . This of course can only be done by doing yet another experiment, in which AB is
not confounded with blocks. There are two such experiments, one where A is confounded
with blocks and one where B is confounded with blocks. As example we choose the latter:

Experiment 2 :
(1)3 a3 b4 ab4

batch 3 batch 4
I = B

From the two experiments shown (each with two blocks and two single experiments in
each block) we will now estimate the various effects. The main effect for factor A can be
estimated both in the two first blocks and in the two last blocks and a total A contrast is
found as:

[A]total = [A]1 + [A]2 ,

that is, the sum of the A contrasts in both the two experimental parts:

[A]1 = −(1)1 + a2 − b2 + ab1 (from experiment 1)

[A]2 = −(1)3 + a3 − b4 + ab4 (from experiment 2)

as the index of the 8 single experiments corresponds to the block (batch) in which the
single experiments were made. The index of the contrast gives whether it is the first or
the second experimental part it is calculated in.

Further, we can now find a contrast for the main effect B, but only from the first experi-
ment:

[B]1 = −(1)1 − a2 + b2 + ab1

Finally a contrast for the interaction effect AB is found, but now from the other experiment
where it is not confounded with blocks:

[AB]2 = +(1)3 − a3 − b4 + ab4

Since the two A contrasts are both free of block effects, in addition to their sum we can
find their difference:

[A]difference = [A]1 − [A]2
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This amount measures the difference between the A estimates in the two parts of the
experiment. This difference, as the experiment is laid out, can only be due to experimental
uncertainty, and can thus be interpreted as an expression of the experimental uncertainty,
that is, the residual variation.

The two contrasts

[B]2 = −(1)3 − a3 + b4 + ab4 (from experiment 2)

[AB]1 = +(1)1 − a2 − b2 + ab1 (from experiment 1)

are both confounded with blocks.

As expressions of the experimental levels in the two parts of the experiment we find

[I]1 = +(1)1 + a2 + b2 + ab1 (from experiment 1)

[I]2 = +(1)3 + a3 + b4 + ab4 (from experiment 2)

This results in

[I]total = [I]1 + [I]2

[I]difference = [I]1 − [I]2

The quantity [I]total and the contrast [I]difference measure the level of the whole ex-
periment and the difference in level between the first and second part of the experiment,
respectively.

One can investigate whether the quantities drawn up are orthogonal contrasts by looking
at the following matrix expression:



[I]
[A]total
[B]1
[AB]2
[A]1 − [A]2
[B]2
[AB]1
[I]1 − [I]2


=



1 1 1 1 1 1 1 1
−1 1 −1 1 −1 1 −1 1
−1 −1 1 1 0 0 0 0

0 0 0 0 1 −1 −1 1
−1 1 −1 1 1 −1 1 −1

0 0 0 0 −1 −1 1 1
1 −1 −1 1 0 0 0 0
1 1 1 1 −1 −1 −1 −1





(1)1

a2

b2

ab1

(1)3

a3

b4

ab4
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One sees that all the contrasts are mutually orthogonal and that there are exactly 7
contrasts and the sum (the pseudo contrast). They can therefore as a whole describe all
the variation between the 8 single experiments that have been carried out.

Bt means of the general formula for the sums of squares and for contrasts in particular,
we can then find all the sums of squares.

SSQA =
[A]2total
RA·2k·r , where RA = 2 and k = 2

SSQB =
[B]21

RB ·2k·r , where RB = 1 and k = 2

SSQAB =
[AB]22

RAB ·2k·r , where RAB = 1 and k = 2

SSQA,uncertainty =
[A]21+[A]22

2k ·r − [A]2total
RA·2k·r , where RA = 2

SSQB,blocks =
[B]22

R
B,blocks·2k·r , where RB,blocks = 1

SSQAB,blocks =
[AB]21

R
AB,blocks·2k·r , where RAB,blocks = 1

SSQlevel difference =
[I]21+[I]22

2k ·r − [I]2total
R·2k ·r , where R = 2

All these sums of squares have 1 degree of freedom, and we can now draw up an analysis
of variance table based on:

SSQA , fA = 1 , (precision=1)

SSQB , fB = 1 , (precision=1/2)

SSQAB , fAB = 1 , (precision=1/2)

SSQblocks =SSQB,blocks+SSQAB,blocks+SSQlevel difference , fblocks = 3

SSQuncertainty =SSQA,uncertainty , funcertainty = 1

2.3.1 Some generalisations

As shown, all the drawn up contrasts are mutually orthogonal.
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This means that the sum of squares for the 7 contrasts make up the total sum of squares.
This is also synonymous with the statement that the effects we have in the experiment
are all mutually balanced.

One can also note that the number of degrees of freedom is precisely 8 − 1 = 7, namely
one for each of the contrasts, to which comes 1 for the total sum [I] .

One can then test the individual effects of the model against the estimate of uncertainty.
In the example, this estimate has only 1 degree of freedom, and of course this does not
give a reasonably strong test.

The fact that one seemingly comes to the same F test for the effect of A, B as well as
AB is not synonymous with the statement that the A, B and AB effects are estimated
equally precise. For example this can be seen by calculating the variances in the parameter
estimates:

Var(Â1) = Var{ [A]

RA · 2k · r} = σ2 · RA · 2k · r
(RA · 2k · r)2

=
σ2

RA · 2k · r , RA = 2

Var(B̂1) = Var{ [B]1
RB · 2k · r} = σ2 · RB · 2k · r

(RB · 2k · r)2
=

σ2

RB · 2k · r , RB = 1

Var(ÂB11) = Var{ [AB]2
RAB · 2k · r} = σ2 · RAB · 2k · r

(RAB · 2k · r)2
=

σ2

RAB · 2k · r , RAB = 1

so that the variances of the B and AB estimates are double the variance of the A estimate.
This of course is due to the fact that the A estimate is based on twice as many observations
as the other estimates (RA/RB = 2 and RA/RAB = 2).

The difference between the tests of the three effects is their power. The test of the A
effect has greater power than the other two tests (for the same test level α).

One can generally write

Var{Parameter estimate} = Var{[Contrast]/(R · 2k · r)} = σ2/(R · 2k · r) ,

Var{Effect estimate} = Var{2 · [Contrast]/(R · 2k · r)} = σ2 · 4/(R · 2k · r) ,

where R gives the number of 2k factorial experiments on which the estimate is based,
and r gives the number of repetitions for the single factor combinations in these factorial
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experiments. For the A effect in the example, R = 2, while R = 1 for both the B and the
AB effect.

If one has repeated a 2k factorial experiment R times, where an effect can be estimated,
one can find the variation between these estimates in a similar way as shown for the A
effect in the example. If we suppose, for the sake of simplicity, that it is the A effect
that can be estimated in these R different 2k experiments with r repetitions per factor
combination, we can generally find an estimate of uncertainty as the square sum:

SSQA,uncertainty =
[A]21 + [A]22 + · · ·+ [A]2R

2k · r − ([A]1 + [A]2 + · · ·+ [A]R)2

R · 2k · r

which will have R − 1 degrees of freedom. The amount [A]τ gives the A contrast in the
τ ’th factorial experiment.

One notes that this sum of squares is exactly the variation between the R estimates for
the A effect. If one has several effects which in this way are estimated several times, all
their uncertainty contributions can be summed up in a common uncertainty estimate,
which can be used for testing.

Estimation af block effects

In some connections, it can be of interest to estimate specific block differences. If we
again take the two confounded 2k experiments that form the basis for this section, we
could for example be interested in estimating the difference between block 0 and block
1. An estimate for this difference can be derived by remembering that the difference
between blocks 0 and 1 is confounded with the AB effect, and that the pure AB effect
can be estimated in the second experimental half. In other words, we can draw up the
contrast

[AB]1 − [AB]2 = [(1)1 − a2 − b2 + ab1] − [(1)3 − a3 − b4 + ab4]

This quantity has 2×(difference between block 0 and block 1) as its expected value, and
one can therefore use the estimate X1 = ([AB]1 − [AB]2)/2 as the estimate for the block
difference Block1-Block2.

In this estimation of block effects, the principle is the simple one that one estimates the
effects that the blocks are confounded with and then breaks the confounding with these
estimates.

We will not go further here with these ideas, but only point out the general possibilities
that lie in using partial confounding.
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It becomes possible to test and estimate all factor effects in factorial experiments with
small blocks, just as it becomes possible to extract block effects with the outlined estima-
tion technique.

2.4 Fractional 2k factorial design

In this section, we will introduce a special and very important type of experiment, which
under certain assumptions can help to reduce experimental work greatly in comparison
with complete factorial experiments.

Example 2.1 : A simple weighing experiment with 3 items

Suppose we want to determine the weight of three items, A, B and C. A weighing result
can be designated in the same way as described above. For example ”a” designates the
result of the weighing where item A is on the weight alone, while (1) designates weighing
without any item being on the weight, i.e., the zero point adjustment.

The simplest experiment consists in doing the following 4 single experiments:

(1) a b c

that is, that one measurement obtained without any item on the weight is obtained first,
and the three items are weighed separately.

The estimates for the weight of the three items are:

Â = [−(1) + a] , B̂ = [−(1) + b] , Ĉ = [−(1) + c]

This kind of design is probably frequently (but unfortunately) used in practice. It can be
briefly characterised as “one-factor-at-a-time”.

One can directly find the variance in the estimates:

Var{Â} = Var{B̂} = Var{Ĉ} = 2 · σ2

A basic characteristic of good experimental designs is that all data are used in estimates
for all effects. This is seen not to be the case here, and one can ask if one could possibly
find an experimental design that is more “efficient” than the one shown.

The experiments that can be carried out are:

(1) a b ab c ac bc abc
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The complete factorial experiment of course consists of doing all 8 single experiments,
and the estimates for the effects are found as previously shown. In the case of factor A,
we get the effect estimate:

Â = [−(1) + a − b + ab − c + ac − bc + abc]/4

which is thus the estimate for the weight of item A. The variance for this estimate is σ2/2
( namely 8σ2/42).

One can easily convince oneself that the weight of item B and item C are balanced out
of the estimate for A. The same applies to a possible zero point error in the scale of the
weight (µ).

As an alternative to these two obvious experiments, we can consider the following exper-
iment:

(1) ab bc ac

The experiment thus consists of weighing the items together two by two. For example the
estimate for the weight of A is:

Â = [A]/2 = [−(1) + ab + ac − bc]/2

Var{Â} = σ2

Note that the zero point µ as well as the weights of items B and C are eliminated in this
estimate.

One also notes that in relation to the primitive “one-factor-at-a-time” experiment, in this
design we can use all 4 observations to estimate the A effect, that is, the weight of item
A. The same obviously applies to the estimates for the B and C effects. In addition,
the variance of the estimate here is only half the variance of the estimates in the “one-
factor-at-a-time” experiment. The experiment is therefore appreciably better than the
“one-factor-at-a-time” experiment.

The experiment is called a 1
2
× 23 factorial experiment or a 23−1 factorial ex-

periment, as it consists precisely of half the complete 23 factorial experiment.

Finally a small numerical example:

(1) = 6.78 g ab = 28.84 g ac = 20.66 g bc = 18.12 g

c©hs. Design of Experiments, Course 02411, IMM, DTU 35



Â = (−6.78 + 28.84 + 20.66 − 18.12)/2 = 12.30 g

B̂ = (−6.78 + 28.84 − 20.66 + 18.12)/2 = 9.76 g

Ĉ = (−6.78 − 28.84 + 20.66 + 18.12)/2 = 1.58 g

Let us suppose that the manufacturer has stated that the weight has an accuracy corre-
sponding to the standard deviation σ = 0.02g. With this is found Var{Â} = 4×0.022/22 =
0.022 g2. The standard deviation of the estimated A weight is thus 0.02g. The same stan-
dard deviation is found for the weights of B and C.

A 95% confidence interval for the weight of A is 12.30 ± 2× 0.02 g = [ 12.26 , 12.34 ] g.

End of example 2.1

We will now discuss what can generally be estimated in an experiment as described in the
above example. If one can assume that it is only the main effects that are important in
the experiments, there are no problems estimating these. In the example, one can take it
that the weight of the two items is exactly the sum of the weights of the two items, which
corresponds to saying that there is no interaction.

Alternatively, we now imagine that the following general model applies for the described
experiment with the three factors, A, B and C:

Yijkν = µ + Ai + Bj + ABij + Ck + ACik + BCjk + ABCijk + Eijkν

where i, j, k = (0, 1) and ν = (1, . . . , r) with the usual restrictions. Complete randomisa-
tion is assumed.

The quantity Eijkν designates the experimental error in the ν’th repetition of the single
experiment indexed by (i, j, k).

For the single experiment ”(1)” in the described experiment, all indices are on level “0”,
and its expected value is:

E{(1)} = µ + A0 + B0 + AB00 + C0 + AC00 + BC00 + ABC000

By using the fact that A0 = −A1 and correspondingly for the other terms of the model,
we find

E{(1)} = µ − A1 − B1 + AB11 − C1 + AC11 + BC11 − ABC111

E{ab} = µ + A1 + B1 + AB11 − C1 − AC11 − BC11 − ABC111
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E{ac} = µ + A1 − B1 − AB11 + C1 + AC11 − BC11 − ABC111

E{bc} = µ − A1 + B1 − AB11 + C1 − AC11 + BC11 − ABC111

In this way, for the A contrast we can now find

E{[A]} = E{−(1) + ab + ac − bc} = 4(A1 − BC11)

This means that if the factors B and C interact, so BC11 6= 0, the estimate for the main
effect of factor A will be affected in this half experiment. The effects A and BC are
therefore confounded in the experiment. It holds true generally in this experiment that
the effects are confounded in groups of two.

This is formally expressed through the alias relation ”A = BC”. The relation expresses
that the effects A and BC act synchronously in the experiment and that they therefore
are confounded. The A and BC effects cannot be destinguished from each other in the
experiment.

The alias relations for the whole experiment are

I = ABC
A = BC
B = AC
C = AB

where the first relation, I = ABC, is called the defining relation of the experiment and
ABC called the defining contrast - in the same way as in the construction of a confounded
block experiment (cf. page 23). This expresses that the three-factor- interaction ABC
does not vary in the experiment, but has the same level in all the single experiments
(namely −ABC111).

The other alias relations are simply derived by multiplying both sides of the defining
relation with the effects of interest, and then reducing the exponents modulo 2. For
example, the alias relation for the A effect is found as A × I = A × ABC i.e. A =
A2BC −→ BC, where ”I” is here treated as a “one” and the 2-exponent in A2BC is
reduced to 0 (modulo 2 reduction).

If we recall the confounded block experiment, where a complete 23 factorial experiment
could be laid out in two blocks according to the defining relation I = ABC, we see that
our experiment is precisely the principal block in that experiment. If it is a case of a
1
2
× 2k factorial experiment, the fraction that contains ”(1)” can be called the principal

fraction.
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We can check whether from the other half of the complete experiment one could find
estimates that are just as good as in the half we treated in our example. The experiment
is

a b c abc

[A] = [a − b − c + abc]

E{[A]} = E{a − b − c + abc} = 4(A1 + BC11)

Note that the confounding has the opposite sign compared with earlier. If one adds the
two contrasts, that is

[−(1) + ab + ac − bc] + [a − b − c + abc]

one finds precisely the A contrast for the complete experiment, while subtracting them,
that is

−[−(1) + ab + ac − bc] + [a − b − c + abc]

finds precisely the BC contrast.

The two alternative half experiments are called complementary fractional factorials, as
together they form the complete factorial experiment.

We will now show how one chooses for example a 1
2
× 23 factorial experiment in practice.

We note that a 1
2
× 23 factorial experiment consists of 22 measurements. The experiment

that is to be derived can therefore be understood as a 22 experiment with an extra factor
put in. Let us therefore consider the complete 22 experiment with the factors A and B.
The mathematical model for this experiment is:

Yijν = µ + Ai + Bj + ABij + Eijν , i = (0, 1) , j = (0, 1) , ν = (1, 2, . . . , r)

If we suspect that all 4 parameters in this model can be important, further factors cannot
be put into the experiment, but if we assume that the interaction AB is negligible, as in
the weighing experiment, we can introduce factor C, so that it is confounded with just
AB.
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We therefore choose to confound C with AB, that is using the alias relation C = AB.
This alias relation can (only) be derived from the defining relation I = ABC, which
can be seen by multiplying the alias relation C = AB on both sides with C (or AB for
that matter) and reducing all exponents modulo 2.

C = AB =⇒ I = ABC (the defining relation)
A = BC
B = AC

AB = C (the generator equation)

We shall call C = AB the generator equation since it is the alias relation from which
the design is generated.

The principal fraction is made up of all single experiments that have an even number
of letters in common with ABC, i.e., the experiments (1), ab, ac, bc. Alternatively, the
complementary fraction could be chosen, which contains all single experiments that have
an uneven number of letters in common with ABC, i.e., a, b, c and abc.

With this last method, where the starting point is the complete factorial experiment for the
two (first) factors A and B, it is said that these form an underlying complete factorial
for the fractional factorial design. We will return to this important concept later.

Let us now suppose that we choose the experiment corresponding to “uneven”:

a b c abc

To find the sign for the confoundings, it is enough to consider one of the alias relations,
for example C = AB and compare this with one of the experiments that is to be done,
for example the experiment “a”.

For the experiment ”a”, the effect C has the value C0 (since factor C is on 0 level), and
the effect AB has the value AB10. The confounding is therefore C0 = AB10. Since we
calculate on the basis of the “high” levels C1 and AB11, these are put in.

Since C0 = −C1 and AB10 = −AB11, we finally get that the alias relation is C1 = AB11.
The rest of the alias relations get the same sign when they are expressed in the high levels.
For example one gets A1 = BC11.

One writes for example

+C = +AB =⇒ +I = +ABC (the defining relation)
+A = +BC
+B = +AC

+AB = +C (the generator equation)
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Whether the constructed experiment is a suitable experiment depends on whether the
alias relations together give satisfactory possibilities for estimating the effects, which, a
priori, are considered interesting.

Example 2.2 : A 1/4×25 factorial experiment .

We finish this section by showing how, with the help of the introduced ideas, one can
construct a 1/4× 25 factorial experiment, i.e., an experiment that consists only of 23 = 8
measurements, but includes 5 factors. These are called (always) A, B, C, D and E (for
1st, 2nd, 3rd, 4th and 5th factor).

The complete factorial experiment with 3 factors contains in addition to the level µ the
effects A, B, AB, C, AC, BC, and ABC.

Suppose now that it can be assumed that factors B and C do not interact, i.e. that
BC=0. A reasonable inference from this could be that also ABC = 0. Thereby it would
be natural to choose two generator equations, namely D = BC and E = ABC.
These give I1=BCD and I2=ABCE, respectively. The principal fraction consists of the
single experiments that have an even number of letters in common with both the defining
contrasts BCD and ABCE. These single experiments are:

(1) ae bde abd cde acd bc abce

A direct and easy method to construct this experiment is to write out a table as follows:

A B C D = −BC E = ABC Code
−1 −1 −1 −1 −1 (1)
+1 −1 −1 −1 +1 a e
−1 +1 −1 +1 +1 b de
+1 +1 −1 +1 −1 ab d
−1 −1 +1 +1 +1 c de
+1 −1 +1 +1 −1 ac d
−1 +1 +1 −1 −1 bc
+1 +1 +1 −1 +1 abc e

Note that for the factors A, B and C the ordering of the levels correspond to the standard
order: (1), a, b, ab, c, ac, bc, abc, as used in Yates algorithm, for example.

The minus sign in D = −BC ensures that the experiment (1) is obtained as the first one,
if the principal fraction is wanted.

This tabular method of writing out the experiment can be used quite generally as will be
demonstrated in the following. A further advantage is that the signs of the confoundings
are obtained directly.

An alternative experiment is found by constructing one of the other “fractions”. If for
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example one wants an experiment that contains the single experiment ”a”, the corre-
sponding fraction can be found by multiplying the principal fraction through with “a”
and reducing the exponents modulo 2. In this way one gets:

a e abde bd acde cd abc bce

The same experiment would have been obtained by changing the sign in E = ABC so
that E = −ABC is used in the above tabular method.

Now, to find the alias relations in the experiment, we will again use the two defining
relations.

The interaction of the two defining contrasts is found by multiplying them together and
again reducing all exponents modulo 2:

D = BC, E = ABC =⇒ I1=BCD, I2=ABCE and I3=I1 × I2=AB2 C2DE → ADE

so that the defining relation and the alias relations (without signs) of the experiment are:

I = BCD = ABCE = ADE
A = ABCD = BCE = DE
B = CD = ACE = ABDE
AB = ACD = CE = BDE
C = BD = ABE = ACDE
AC = ABD = BE = CDE
BC = D = AE = ABCDE
ABC = AD = E = BCDE

Roughly speaking, the experiment is only a good experiment if one can assume that the
interactions are negligible (in relation to the main effects).

The signs for the confoundings can again be found by considering an alias relation, e.g.
A = ABCD = BCE = DE, together with one of the single experiments that are part of
the chosen experimental design.

For example ”a” is in the experiment and it corresponds to a single experiment with
indices (1,0,0,0,0) for the factors A, B, C, D and E, respectively. Thus

A1 = ABCD1000 = BCE000 = DE00 ⇐⇒ +A1 = −ABCD1111 = −BCE111 = +DE11

This sign pattern is repeated in all the alias relations:
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+I = −BCD = −ABCE = +ADE
+A = −ABCD = −BCE = +DE
+B = −CD = −ACE = +ABDE
+AB = −ACD = −CE = +BDE
+C = −BD = −ABE = +ACDE
+AC = −ABD = −BE = +CDE
+BC = −D = −AE = +ABCDE
+ABC = −AD = −E = +BCDE

We need now to find estimates and sums of squares. This can be done by again using
the fact that the experiment is formed on the basis of the complete underlying factorial
structure composed of factors A, B and C. In this structure we now estimate all the effects
corresponding to the three factors.

In order to subsequently find the D effect we only need to look up the BC row, where the
D effect appears with the opposite sign. Data are grouped in standard order according to
the factors A, B and C. This is done by ignoring “d” and “e”. Then the contrasts can be
calculated, with the use of Yates’ algorithm, for example. One gets:



I = −BCD = −ABCE = ADE
A = −ABCD = −BCE = DE
B = −CD = −ACE = ABDE
AB = −ACD = −CE = BDE
C = −BD = −ABE = ACDE
AC = −ABD = −BE = CDE
BC = −D = −AE = ABCDE
ABC = −AD = −E = BCDE



=



1 1 1 1 1 1 1 1
−1 1 −1 1 −1 1 −1 1
−1 −1 1 1 −1 −1 1 1

1 −1 −1 1 1 −1 −1 1
−1 −1 −1 −1 1 1 1 1

1 −1 1 −1 −1 1 −1 1
1 1 −1 −1 −1 −1 1 1

−1 1 1 −1 1 −1 −1 1





e
a
bd

abde
cd

acde
bce
abc


Note that the row e, a, bd, abde, cd, acde, bce, abc, becomes the row (1), a, b, ab, c, ac, bc, abc,
if one leaves out d and e, i.e. the standard order for the complete 23 factorial experiment
for A, B and C.

The experiment which we find by ignoring the factors D and E, i.e. the complete 23

factorial experiment including A, B and C, is again an underlying complete factorial
experiment and A, B and C constitute an underlying complete factorial structure.
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We can easily check that for example the ABC effect is confounded with -E. One way to
do this is to consider the ABC contrast:

[ABC] = −e + a + bd − abde + cd − acde − bce + abc

where we note that all data with E at the high level, i.e., e, abde, acde and bce, appear
with -1 as coefficient, while the remainder, i.e. a, bd, cd and abc appear with +1. The
contrast therefore contains a contribution of −4(E1)+4(−E1) = −8E1 from the factor E.

The suggested experiment could be done in two blocks of 4 by for example confounding
the AB interaction with blocks. That would give the grouping:

abc e cd abde a bce bd acde
block 0 block 1

The confoundings in this experiment would be:

I = −BCD = −ABCE = ADE
A = −ABCD = −BCE = DE
B = −CD = −ACE = ABDE
AB = −ACD = −CE = BDE = Blocks
C = −BD = −ABE = ACDE
AC = −ABD = −BE = CDE
BC = −D = −AE = ABCDE
ABC = −AD = −E = BCDE

where the contrasts are calculated as previously, but where the contrast that appears in
the AB row now contains possible factor effects as well as the block effects.

End of example 2.2

2.5 Factors on 2 and 4 levels

In many cases where several factors are analysed, it can be desirable and perhaps even
necessary for single factors that they can appear on 3 or perhaps 4 levels together with
the 2 levels of the other factors. In case there is a need for a mixture of 2 and 3 levels, it is
difficult to construct good experimental designs, but in the textbook by Oscar Kempthorne
(1952): The Design and Analysis of Experiments, Wiley, New York, there are however
some suggestions for this.

If 4 levels are used, one can use the procedure below, which is demonstrated with the help
of two examples, so the presentation is not too complicated.
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Example 2.3 : A 2×4 experiment in 2 blocks

Suppose that in a factorial experiment two factors are to be analysed, namely a factor
A that appears on 2 levels and a factor G that appears on 4 levels. The mathematical
model for the experiment is

Yilν = µ + Ai + G` + AGi` + Ei`ν

where i = (0, 1), ` = (0, 1, 2, 3) and ν = (1, 2, . . . , r).

Usual parameter restrictions are used

1∑
i=0

Ai =
3∑

`=0

G` =
1∑

i=0

AGi` =
3∑

`=0

AGi` = 0

To reformulate the model to a 2k factorial structure, two new factors are introduced, B
and C, as replacements for G.

G = 0 G = 1 G = 2 G = 3
B = 0 , C = 0 B = 1 , C = 0 B = 0 , C = 1 B = 1 , C = 1

Yijν = µ + Ai + Bj + ABij + Ck + ACik + BCjk + ABCijk + Eijkν

where the index j = remainder of (`/2) and k = integer part of (`/2). Inversely,
` = j + 2k.

The correspondence between factor G and the two artificial factors B and C is that

G` = Bj + Ck + BCjk , ` = j + 2k

Suppose now that one wants to do a complete factorial experiment with the two factors
A and G, i.e. a 2 × 4 experiment, or a total of 8 single experiments.

Suppose further that one wants to do the experiment in 2 blocks with 4 single experiments.
In the reformulated model, where factor G is replaced by B and C, we see that the main
effect of factor G is given as B+C+BC. The effects B, C and BC must therefore be
estimated and cannot be used as defining contrast when dividing into blocks.

For the interaction between factor A and factor G, it holds true that

AGi` = ABij + ACik + ABCijk , ` = j + 2k
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and one of these three effects (it does not matter which) can be reasonably used as defining
contrast. We choose for example the AB effect.

The experiment thereby is

Block 1 Block 2
(1) ab c abc a b ac bc

or converted to factors A and G:

Block 1 Block 2
(1) ab c abc a b ac bc

A = 0 A = 1 A = 0 A = 1 A = 1 A = 0 A = 1 A = 0
G = 0 G = 1 G = 2 G = 3 G = 0 G = 1 G = 2 G = 3

The experiment can be analysed with Yates’ algorithm, and one gets a table of analysis
of variance which (in outline) is built up as the following:

Source of Sum of Degrees of S2 F-value
variation Squares dom
A SSQA 1 S2

A

G SSQB + SSQC + SSQBC 3 S2
G

AG-unconfounded SSQAC + SSQABC 2 S2
AG

Blocks + AG SSQAB 1 S2
AG+blocks

Possible residual
from previous exp.
Total

One sees that some of the variation arising from the AG interaction can be taken out
and tested, while the remaining part is confounded with blocks. On the other hand, one
cannot estimate specific AG interaction effects, since the part described by the AB part
cannot be estimated (AG=AB+AC+ABC).

End of example 2.3

Example 2.4 : A fractional 2×2×4 factorial design

If for example one wants to evaluate three factors A, B and G with 2, 2, and 4 levels
respectively, two new artificial factors are introduced, C and D, so that G=C+D+CD,
and in this case one must keep the three effects C, D and CD clear of confoundings. It
could be wished to do such a 2×2×4 design with a total of 16 possible single experiments
as a 1

2
× 24 experiment, using only 8 single experiments.
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If it is assumed that the three factors A, B and G do not interact, the experiment can be
constructed so that the effects A, B, C, D and CD can be found (as G=C+D+CD).

One can use the following defining contrast and alias relations:

I = ABCD
A = BCD
B = ACD
AB = CD
C = ABD
AC = BD
BC = AD
ABC = D

where effects that are interesting are underlined, while effects considered to be without
interest are written normally.

The relation between the factors is that

G = C + D + CD , AG = AC + AD + ACD ,
BG = BC + BD + BCD and ABG = ABC + ABD + ABCD

The experiment wanted could be the following (try to construct it yourself!):

a b c abc d abd acd bcd

or converted to the levels of the factors, as the index for the factor G is k + 2`, where k
is the index for C while ` is the index for D:

a b c abc d abd acd bcd
A = 1 A = 0 A = 0 A = 1 A = 0 A = 1 A = 1 A = 0
B = 0 B = 1 B = 0 B = 1 B = 0 B = 1 B = 0 B = 1
G = 0 G = 0 G = 1 G = 1 G = 2 G = 2 G = 3 G = 3

Of course, one could also have used the complementary experiment as the starting point:

(1) ab ac bc ad bd cd abcd

Try to write the corresponding experiment out in factors A, B and G.

If the constructed experiment should be laid out in two blocks of 4 single experiments,
one could use either AC or BC as defining contrast. If AC is used, one gets the design:
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Block 1 Block 2
b abc d acd a c abd bcd

A = 0 A = 1 A = 0 A = 1 A = 1 A = 0 A = 1 A = 0
B = 1 B = 1 B = 0 B = 0 B = 0 B = 0 B = 1 B = 1
G = 0 G = 1 G = 2 G = 3 G = 0 G = 1 G = 2 G = 3

Note, for example, that all three factors A, B and G are balanced within both blocks.

End of example 2.4
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3 General methods for pk-factorial designs

In this chapter we will introduce general methods for factorial experiments in which there
are k factors, each on p levels. The purpose of this is to generalize the concepts and
methods that were discussed in the previous chapter, where we considered k factors of
which each was on only p = 2 levels.

In particular, we will look at experiments with many factors that have to be evaluated on
2 or 3 levels, which are most relevant in practice.

In general, no proofs are given, but the subject is presented through examples and direct
demonstration in specific cases.

The method we will deal with is often called Kempthorne’s method, and the interested
reader is referred to the text book by Oscar Kempthorne (1952): The Design and Analysis
of Experiments, Wiley, New York. This book has a somewhat more mathematical review
of the experimental structures and models that we will deal with here. In fairness, it
should be said that it was actually R. A. Fischer and others who, around 1935, formulated
important parts of the basis for Kempthorne’s presentation.

3.1 Complete pk factorial experiments

We now consider experiments with k factors each on p levels, where p is everywhere as-
sumed to be a prime number. In addition, complete randomisation is generally assumed.
In cases where experiments are discussed in which there is used blocking, complete ran-
domisation is assumed within blocks.

The factors are always called A, B, C, etc. Factor A is the first factor, B the second factor
etc. In addition (to the greatest possible extent) we use the indices i, j, k, etc. for the
factors A, B, C, etc., respectively.

The experiment is generally called a pk factorial experiment, and the number of possible
different factor combinations is precisely p × p × . . . × p = pk.

For an experiment with 3 factors, A, B, and C, the standard mathematical model is:

Yijkν = µ + Ai + Bj + ABi,j + Ck + ACi,k + BCj,k + ABCi,j,k + Eijkν

where i, j, k = (0, 1, .., p − 1) and ν = (1, 2, .., r).

The index ν = (1, 2, .., r) gives the number of repetitions of each single experiment in the
experiment. The other indices assume the values (0, 1, 2,.., p − 1). It should be noted
that the index always runs from 0 up to and including p − 1.

c©hs. Design of Experiments, Course 02411, IMM, DTU 48



For such experiments we introduce a standard notation for the single experiments in the
same way as with the 2k experiment. In the case where p = 3 and k = 3 we have
the following table, which shows all the single experiments in the complete 33 factorial
experiment:

A A A
0 1 2 0 1 2 0 1 2

B=0 (1) a a2 c ac a2c c2 ac2 a2c2

B=1 b ab a2b bc abc a2bc bc2 abc2 a2bc2

B=2 b2 ab2 a2b2 b2c ab2c a2b2c b2c2 ab2c2 a2b2c2

C=0 C=1 C=2

As previously, we use one of these expressions as the term for a certain ”treatment” or
factor combination in a single experiment, as well as for the total response from the single
experiments done with this factor combination. Thus, for example

ab2c =
r∑

ν=1

Y121ν = T121· or just T121

For the 2k factorial experiment, we arranged these terms in what was called a standard
order. We can also do this for the pk experiment in general. These standard orders are:

2k : (1), a, b, ab, c, ac, bc, abc, d, ad, bd, abd, cd, . . .
3k : (1), a, a2, b, ab, a2b, b2, ab2, a2b2, c, ac, a2c, .., a2b2c2, d, . . .
5k : (1), a, a2, a3, a4, b, ab, a2b, a3b, a4b, b2, ab2, a2b2, a3b2, a4b2, . . . , a4b4,
c, ac, a2c, . . . , a4b4c4, d, ad, . . .
7k : (1), a, a2, . . . , a6, b, ab, a2b, . . . , a6b6, c, ac, . . . , a6b6c6, d, ad, . . .

For example in the 3k factorial experiment, a new factor is added by multiplying all the
terms until now with the factor in the first power and in the second power and adding
both these new rows to the original order.

These terms, of course, can perfectly well be used as names for factor combinations in
completely general factorial experiments, but the results we will show are only generally
applicable to experiments that can be formulated as pk factorial experiments where p is
a prime number.

Before we continue, it would be useful to look more closely at a 32 factorial experiment
and show how the total variation in this experiment can be described and found with the
help of a Graeco-Latin square. In addition we will introduce some mnemonic terms for
new artificial effects, which will later prove to be practical in the construction of more
sophisticated experimental designs.
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Example 3.1 : Making a Graeco-Latin square in a 32 factorial experiment

The experiment has 3×3 = 9 different single experiments:

A=0 A=1 A=2
B=0 (1) a a2

B=1 b ab a2b
B=2 b2 ab2 a2b2

The mathematical model for the experiment is

Yijν = µ + Ai + Bj + ABi,j + Eijν , i = (0, 1, 2) , j = (0, 1, 2) , ν = (1, . . . , r)

2∑
i=0

Ai =
2∑

j=0

Bj =
2∑

i=0

ABi,j =
2∑

j=0

ABi,j = 0

In this experiment we can introduce two artificial factors, which we can call X and Z. We
let these factors have indices s and t, respectively, which we determine with

s = (i + j)3 and t = (i + 2j)3

where the designation (.)3 now stands for ”modulo 3”, i.e. ”remainder of (.) after division
by 3”.

We will now see how the indices s and t for the defined new effects X and Z vary throughout
the experiment with the indices i and j of the two original factors A and B.

This is shown in the table below, as i + j and i + 2j are still calculated ”modulo 3”.

i j s = (i + j)3 t = (i + 2j)3
0 1 2 0 0 0 0 1 2 0 1 2
0 1 2 1 1 1 1 2 0 2 0 1
0 1 2 2 2 2 2 0 1 1 2 0

Ai Bj Xi+j Zi+2j

We note that if we fix one of the levels for one of the 4 indices, each of the other 3 indices
appears precisely with the values 0, 1 and 2 within this level. As an example of this, we
consider the single experiments where Z’s index t = (i + 2j)3 = 1:

i j s = (i + j)3 t = (i + 2j)3
1 0 1 1

2 1 0 1
0 2 2 1

Ai Bj Xi+j Zi+2j
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In the design shown, the 4 factors A, B, X and Z are obviously in balance in relation to
each other. The design is a Graeco-Latin square with the introduced factors X and Z
inside the square and with the factors A and B at the sides. Since the variation between
the 9 single experiments or ”treatments” in the experiment has a total of 9-1 degrees
of freedom, and the 4 factors are in balance, as described, it can be shown that these 4
factors can describe the whole variation between the single experiments.

A and B are identical with the original main effects, and it can be shown that X and
Z together precisely make up the interaction term ABi,j in the ”natural” mathematical
model of the experiment.

We will not prove this result, but only illustrate it with an example, where we imagine
that a 32 experiment with one observation per cell has resulted in the following data:

A=0 A=1 A=2 sum-B sum-X sum-Z
B=0 (1)=10 a=15 a2=18 43 X=0 35 Z=0 33
B=1 b=8 ab=12 a2b=16 36 X=1 34 Z=1 36
B=2 b2=5 ab2=9 a2b2=11 25 X=2 35 Z=2 35

sum-A 23 36 45 104 104 104

The usual two-sided analysis of variance for these data with the factors A and B gives:

ANOVA
Source of Sum of Degrees of F-value
variation squares freedom

A 81.556 (3-1)=2
B 54.889 (3-1)=2

AB 1.778 (3-1)(3-1)=4
Residual 0.000 0

Total 138.223 (9-1)=8

To the right of the data table are sums for the two artificial factors X and Z. For example
the (X = 0) sum is found as 10 + 16 + 9 = 35, i.e. the sum of the data where the index
(i + j)3 = 0 as X has the index = (i + j)3.

From this we find the following sums of squares and degrees of freedom, where the 4
factors A, B, X and Z constitute a Graeco-Latin square:

SSQ(treatments) = 102 + 152 + 182 + 82 + .. + 112 − 1042/9 = 138.222 , f=9-1
SSQ(A) = (232 + 362 + 452)/3 − 1042/9 = 81.556 , f=2
SSQ(B) = (252 + 362 + 432)/3 − 1042/9 = 54.889 , f=2
SSQ(X) = (352 + 342 + 352)/3 − 1042/9 = 0.222 , f=2
SSQ(Z) = (332 + 362 + 352)/3 − 1042/9 = 1.556 , f=2
SSQ(A) + SSQ(B) + SSQ(X) + SSQ(Z) = 138.223 , f=8
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It is seen (except for the rounding) that for the interaction AB and corresponding degrees
of freedom we have:

SSQ(AB-interaction) = SSQ(X) + SSQ(Z) , and f(AB-interaction) = f(X) + f(Z)

Further, it can be generally shown that for the interaction term it applies that

ABi,j = Xi+j + Zi+2j , i = (0, 1, 2) , j = (0, 1, 2)

This can be illustrated by finding the estimates for the interaction terms as well as for
the artificial effects X and Z. As an example we can find the interaction estimate for
(A=1,B=2), i.e. AB1,2.

µ̂ = 104/9 = 11.556 , Â1 = 36/3− 104/9 = 0.444 , B̂2 = 25/3− 104/9 = −3.222

=⇒ ÂB1,2 = Y1,2 − µ̂ − Â1 − B̂2 = 9.000 − 11.556 − 0.444 − (−3.222) = 0.222

X̂1+2 = X̂3 → X̂0 = 35/3 − 104/9 = 0.111

Ẑ1+2·2 = Ẑ5 → Ẑ2 = 35/3 − 104/9 = 0.111

so that X̂1+2 + Ẑ1+2·2 = ÂB1,2, as postulated (remember that indices are still calculated
”modulo 3”). Try to work out whether it is correct that AB2,2 = X2+2 + Z2+2·2, when
these are estimated.

In order to use the results of the example generally, it is practical to introduce some more
mnemonic names for the two introduced effects X and Z. We thus set

Xi+j = ABi+j and Zi+2j = AB2
i+2j

Correspondingly, we write the original model on the form

Yijν = µ + Ai + Bj + ABi+j + AB2
i+2j + Eijν

where
ABi+j + AB2

i+2j = ABi,j , i = (0, 1, 2) , j = (0, 1, 2)

It applies that with this new formal notation:
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2∑
i=0

Ai =
2∑

j=0

Bj =
2∑

r=0

ABr =
2∑

s=0

AB2
s = 0 , r = (i + j)3 , s = (i + 2j)3

where all indices are still calculated “modulo 3”.

The two effects ABi+j and AB2
i+2j in this way designate the artificially introduced effects,

which enable a decomposition of the usual interaction term ABi,j from the traditional
model formulation. The exponent ”2” on AB2 should only be considered as a mnemonic
help and not as an expression of raising to a power of 2.

Finally note how the indices and names for the introduced artificial effects match.

End of example 3.1

Such artificial effects can be defined for general pk factorial experiments. To be able to
keep the effects in order, we introduce a ”standard order” for effects. For an experiment
where all factors have p levels, the artificial effects will likewise all have p levels:

2k : I, A, B, AB, C, AC, BC, ABC, D, AD, BD, ABD, CD, ACD, BCD, ABCD, E, AE, ..

3k : I, A, B, AB, AB2, C, AC, AC2, BC, BC2, ABC, ABC2, AB2C, AB2C2, D, AD, AD2,
BD, BD2, . . . , AB2C2D2, E, . . .

5k : I, A, B, AB, AB2, AB3, AB4, C, AC, AC2, . . . , BC, . . . , AB4C, . . . , AB4C4, D, . . .

These effects have indices according to the same rules that were used in the previous
example. That is, for example, that in the 5k experiment with factors A, B and C, each
with 5 levels, the effect AB3C has index = (i + 3j + k)5, i.e. (i + 3j + k) modulo 5.
Factor A is the first factor, B the second factor and C the third factor.

Note that this standard order can be derived from the standard order for single experi-
ments by changing to upper-case letters and leaving out the terms where the exponent
on the first factor in the effect is greater than 1. For example, AB3C should be included,
while for example B2CD should be left out.

Example 3.2 : Latin cubes in 33 experiments

Let there be a completely randomised 33 experiment with r repetitions of each single
experiment. We have in the usual model formulation:

Yijkν = µ + Ai + Bj + ABi,j + Ck + ACi,k + BCj,k + ABCi,j,k + Eijkν

where i = (0, 1, 2) , j = (0, 1, 2) , k = (0, 1, 2) and ν = (1, 2, . . . , r)

The cells of the experiment or single experiments make up a cube, the length of its edge
being 3.
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It thus looks like this:

A A A
0 1 2 0 1 2 0 1 2

B=0 (1) a a2 c ac a2c c2 ac2 a2c2

B=1 b ab a2b bc abc a2bc bc2 abc2 a2bc2

B=2 b2 ab2 a2b2 b2c ab2c a2b2c b2c2 ab2c2 a2b2c2

C=0 C=1 C=2

With the stated arithmetic rules for indices used on the standard order for the introduced
artificial effects for a 33 factorial experiment, we can now find the index values for all the
effects. The index values are found as shown in the following tables:

i=0 i=1 i=2 i=0 i=1 i=2 i=0 i=1 i=2
j=0 0 1 2 0 1 2 0 1 2 index for
j=1 0 1 2 0 1 2 0 1 2 Ai

j=2 0 1 2 0 1 2 0 1 2
k=0 k=1 k=2

i=0 i=1 i=2 i=0 i=1 i=2 i=0 i=1 i=2
j=0 0 0 0 0 0 0 0 0 0 index for
j=1 1 1 1 1 1 1 1 1 1 Bj

j=2 2 2 2 2 2 2 2 2 2
k=0 k=1 k=2

i=0 i=1 i=2 i=0 i=1 i=2 i=0 i=1 i=2
j=0 0 1 2 0 1 2 0 1 2 index for
j=1 1 2 0 1 2 0 1 2 0 ABi+j

j=2 2 0 1 2 0 1 2 0 1
k=0 k=1 k=2

i=0 i=1 i=2 i=0 i=1 i=2 i=0 i=1 i=2
j=0 0 1 2 0 1 2 0 1 2 index for
j=1 2 0 1 2 0 1 2 0 1 AB2

i+2j

j=2 1 2 0 1 2 0 1 2 0
k=0 k=1 k=2

i=0 i=1 i=2 i=0 i=1 i=2 i=0 i=1 i=2
j=0 0 0 0 1 1 1 2 2 2 index for
j=1 0 0 0 1 1 1 2 2 2 Ck

j=2 0 0 0 1 1 1 2 2 2
k=0 k=1 k=2

i=0 i=1 i=2 i=0 i=1 i=2 i=0 i=1 i=2
j=0 0 1 2 1 2 0 2 0 1 index for
j=1 0 1 2 1 2 0 2 0 1 ACi+k

j=2 0 1 2 1 2 0 2 0 1
k=0 k=1 k=2
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i=0 i=1 i=2 i=0 i=1 i=2 i=0 i=1 i=2
j=0 0 1 2 2 0 1 1 2 0 index for
j=1 0 1 2 2 0 1 1 2 0 AC2

i+2k

j=2 0 1 2 2 0 1 1 2 0
k=0 k=1 k=2

i=0 i=1 i=2 i=0 i=1 i=2 i=0 i=1 i=2
j=0 0 0 0 1 1 1 2 2 2 index for
j=1 1 1 1 2 2 2 0 0 0 BCj+k

j=2 2 2 2 0 0 0 1 1 1
k=0 k=1 k=2

i=0 i=1 i=2 i=0 i=1 i=2 i=0 i=1 i=2
j=0 0 0 0 2 2 2 1 1 1 index for
j=1 1 1 1 0 0 0 2 2 2 BC2

j+2k

j=2 2 2 2 1 1 1 0 0 0
k=0 k=1 k=2

i=0 i=1 i=2 i=0 i=1 i=2 i=0 i=1 i=2
j=0 0 1 2 1 2 0 2 0 1 index for
j=1 1 2 0 2 0 1 0 1 2 ABCi+j+k

j=2 2 0 1 0 1 2 1 2 0
k=0 k=1 k=2

i=0 i=1 i=2 i=0 i=1 i=2 i=0 i=1 i=2
j=0 0 1 2 2 0 1 1 2 0 index for
j=1 1 2 0 0 1 2 2 0 1 ABC2

i+j+2k

j=2 2 0 1 1 2 0 0 1 2
k=0 k=1 k=2

i=0 i=1 i=2 i=0 i=1 i=2 i=0 i=1 i=2
j=0 0 1 2 1 2 0 2 0 1 index for
j=1 2 0 1 0 1 2 1 2 0 AB2Ci+2j+k

j=2 1 2 0 2 0 1 0 1 2
k=0 k=1 k=2

i=0 i=1 i=2 i=0 i=1 i=2 i=0 i=1 i=2
j=0 0 1 2 2 0 1 1 2 0 index for
j=1 2 0 1 1 2 0 0 1 2 AB2C2

i+2j+2k

j=2 1 2 0 0 1 2 2 0 1
k=0 k=1 k=2

For example, we can look at the term BCj+k and note where it has the index value 1.
This is stated below:
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i=0 i=1 i=2 i=0 i=1 i=2 i=0 i=1 i=2
j=0 1 1 1 index for
j=1 1 1 1 BCj+k

j=2 1 1 1
k=0 k=1 k=2

For any other arbitrarily chosen term, there will be an equal number of 0’s, 1’s and 2’s in
these 9 places. As an example, we take the term ABC2, where the corresponding places
are shown below:

i=0 i=1 i=2 i=0 i=1 i=2 i=0 i=1 i=2
j=0 2 0 1 index for
j=1 1 2 0 ABC2

i+j+2k

j=2 0 1 2
k=0 k=1 k=2

We have thus constructed 13 effects, each with 3 levels (0, 1, and 2), which are in balance
with each other in the same way as with the Graeco-Latin square in the example mentioned
earlier.

It can be derived from this that we can re-write our original model with the help of the
new artificial effects:

Yijkν = µ + Ai + Bj + ABi+j + AB2
i+2j + Ck + ACi+k + AC2

i+2k + BCj+k

+BC2
j+2k + ABCi+j+k + ABC2

i+j+2k + AB2Ci+2j+k + AB2C2
i+2j+2k + Eijkν

where the terms in the model are decompositions of the conventional model terms:

Ai ⇒ Ai

Bj ⇒ Bj

ABi,j ⇒ ABi+j + AB2
i+2j

Ck ⇒ Ck

ACi,k ⇒ ACi+k + AC2
i+2k

BCj,k ⇒ BCj+k + BC2
j+2k

ABCi,j,k ⇒ ABCi+j+k + ABC2
i+j+2k + AB2Ci+2j+k + AB2C2

i+2j+2k

with the usual meaning to the left and the artificial effects to the right.

In the 33 experiment, there are 27 cells or single experiments. To describe the mean values
in these cells, 27 parameters should be used, of which one is µ, so that there should be
27 − 1 = 26 degrees of freedom for factor effect.
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The 13 terms in the standard order all have 3 levels, which sum up to 0. Thus 3 − 1 = 2
free parameters (degrees of freedom) are connected to each of the 13 terms, or a total of
13 × (3 − 1) = 26 free parameters (degrees of freedom).

It is further seen that, because of the balance, all parameters are estimated by forming
the average in the same way as for the main effects and correcting with the total average.

For example:

ÂC2
0 =

1

33−1

∑
i

∑
j

∑
k

Ȳijk. × δi+2k,0 − Ȳ.... ,

where

δr,s =

{
1 for r = s
0 for r 6= s

as the indicator δi+2k,0 points out the data where the index for AC2 is 0 (zero), i.e.
(i + 2k)3=0, while Ȳijk. gives the average response in cells (i, j, k), and Ȳ.... gives the
average response for the whole experiment.

Thus, in order to estimate AC2
0 the cells where the corresponding index, namely, i + 2k

modulo 3 is 0 (zero) are included. Correspondingly, i + 2k has to be 1, respectively 2 to
go into the estimates for AC2

1 and AC2
2 , respectively:

ÂC2
0 =

1

9
(Ȳ000. + Ȳ010. + Ȳ020. + Ȳ101. + Ȳ111. + Ȳ121. + Ȳ202. + Ȳ212. + Ȳ222.) − Ȳ....

ÂC2
1 =

1

9
(Ȳ100. + Ȳ110. + Ȳ120. + Ȳ201. + Ȳ211. + Ȳ221. + Ȳ002. + Ȳ012. + Ȳ022.) − Ȳ....

ÂC2
2 =

1

9
(Ȳ200. + Ȳ210. + Ȳ220. + Ȳ001. + Ȳ011. + Ȳ021. + Ȳ102. + Ȳ112. + Ȳ122.) − Ȳ....

End of example 3.2

3.2 Calculations based on Kempthorne’s method

We have seen with examples that the introduced new effects/parameters, which obviously
do not refer directly for example to certain treatments (apart from the main effects), give
rise to a mathematical decomposition of the interactions. This procedure and the
methods derived from it are generally called ”Kempthorne’s” method, after the name of
the statistician to whom its origin is often ascribed, and who has described it (cf. the list
of literature suggestions at the beginning of these notes).
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We have illustrated that the corresponding estimates are independent because of the
described balance, and finally we saw in example 3.1, page 48, that we can also form
sums of square, which are independent and sum to the total sum of squares.

We now consider an arbitrarily chosen effect in the standard order. We generally call this
effect F:

Ft = AαBβ . . . Cγ
t

where the index is

t = i · α + j · β + . . . + k · γ , modulo p

With the notation introduced, where Yij...kν gives the response in the single experiment
no. ν with the factor combination (ij . . . k), we have that

Tij...k = aibj . . . ck =
r∑

ν=1

Yij...kν

and estimates are:

F̂l =

∑
ij...k Tij...k × δl,t

N/p
−

∑
ij...k Tij...k

N

for l = (0, 1, . . . , p − 1) , where t = (i · α + j · β + . . . + k · γ)p and N = r · pk

SSQ(F ) =

∑p−1
l=0

(∑
ij...k Tij...k × δl,t

)2

N/p
−

(∑
ij...k Tij...k

)2

N
= (N/p) ·

p−1∑
l=0

F̂ 2
l

where we still use the indicator

δr,s =

{
1 for r = s
0 for r 6= s

,

The effect estimate can be expressed in words

F̂l =
sum of data, where t = l

number of data, where t = l
− average af all data , l = (0, 1, . . . , p − 1)

Example 3.3 : Estimation and SSQ in the 32-factorial experiment
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If we again consider the 32 experiment in example 3.1 page 48, where we let Tij give the
sum of data in cells (i, j) for example, we find:

Âi =
Ti0 + Ti1 + Ti2

r · 32−1
− T..

r · 32

SSQ(A) = r · 32−1
2∑

i=0

Â2
i

B̂j =
T0j + T1j + T2j

r · 32−1
− T..

r · 32

ÂB0 =
T00 + T21 + T12

r · 32−1
− T..

r · 32

ÂB1 =
T10 + T01 + T22

r · 32−1
− T..

r · 32

ÂB2 =
T20 + T11 + T02

r · 32−1
− T..

r · 32

SSQ(AB) = r · 3((ÂB0)
2 + (ÂB1)

2 + (ÂB2)
2)

ÂB2
0 =

T00 + T11 + T22

r · 32−1
− T..

r · 32

ÂB2
1 =

T10 + T21 + T02

r · 32−1
− T..

r · 32

ÂB2
2 =

T20 + T01 + T12

r · 32−1
− T..

r · 32

SSQ(AB2) = r · 3((ÂB2
0)

2 + (ÂB2
1)

2 + (ÂB2
2)

2)

where the innermost 2 exponent is symbolic-mnemonic, while the outermost here is the
usually squaring.

End of example 3.3
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3.3 General formulation of interactions and artificial effects

Consider a pk factorial experiment with factors A, B, ..., C, and p is a prime number.

The interaction between any factors is decomposed as we have seen in the previous ex-
amples:

ABi,j = ABi+j + AB2
i+2j + . . . + ABp−1

i+(p−1)j

A general notation can be introduced for the interaction effects in a factor structure by
introducing an operator ”×” in the following way

A × B = AB + AB2 + . . . + ABp−1

and A × I = A. Later we will need the further arithmetic rule that

(A + B)α = Aα + Bα

so that for example

(A × B)α = (AB + AB2 + . . . + ABp−1)α = (AB)α + (AB2)α + . . . + (ABp−1)α

In addition an even more general operator ”∗” can be introduced, working in the following
way:

A ∗ B = A + B + A × B

In this way the operator ”∗” generates all the terms in the standard order for the factors
on which it works.

For any complete pk factorial experiment, the factor model can then be written

Y = µ + A ∗ B ∗ . . . ∗ C + E

= µ + A + B + A × B + . . . + C + A × C + B × C + . . . + A × B × . . . × C + E

If p = 3, the decomposition is as previously. For example

A × B = AB + AB2

A × B × C = (AB + AB2) × C = ABC + ABC2 + AB2C + AB2C2
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Suppose one begins with B as the first factor. In the 32 case this would give the decom-
position

BAj,i = B × A = BAj+i + BA2
j+2i

but then it emerges that the indices for this set of artificial effects vary synchronously
with the indices for the effects ABi+j and AB2

i+2j .

We can illustrate this with the following

Example 3.4 : Index variation with inversion of the factor order

Take a 32 experiment and consider the following table:

A B AB AB2 BA BA2

i j i + j i + 2j j + i j + 2i
0 0 0 0 0 0
1 0 1 1 1 2
2 0 2 2 2 1
0 1 1 2 1 1
1 1 2 0 2 0
2 1 0 1 0 2
0 2 2 1 2 2
1 2 0 2 0 1
2 2 1 0 1 0

Note that for the indices of the two terms AB2 and BA2, it applies that

(i + 2j)3 = 0 ⇐⇒ (j + 2i)3 = (2i + j)3 = 0

(i + 2j)3 = 1 ⇐⇒ (j + 2i)3 = (2i + j)3 = 2

(i + 2j)3 = 2 ⇐⇒ (j + 2i)3 = (2i + j)3 = 1

as we still calculate ”modulo 3”.

This means that the indices for AB2 and BA2 vary synchronously so that AB2
0 ≡ BA2

0,
AB2

1 ≡ BA2
2, and AB2

2 ≡ BA2
1 or said in another way: In order to extract the proper sum

of squares we only need one of them, of which we have chosen AB2.

End of example 3.4

The example illustrates the rule that we should only include effects where the exponent
on the first factor in the effect equals 1. In certain situations, however, one can come to
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effects that do not fulfil this condition. But fortunately it is easy to find the effect from
the standard order with which it can be replaced.

3.4 Standardisation of general effects

We consider a general non-standardised effect. As example we can take an effect such as
CA2B4D3 from a 3k factorial experiment. To find the effect from the standard order with
an index variation that varies synchronously with this, one proceeds as follows:

1. Arrange the factors in the factor order A, B, C, D, ... etc

CA2B4D3 −→ A2B4CD3

2. Reduce all exponents modulo p

A2B4CD3 −→ A2BCD0 −→ A2BC (p=3 her)

3. If the exponent on the first factor in the effect (here A) is 1, we are finished. Oth-
erwise, the whole effect is lifted to the second power and the exponents are again
reduced modulo p:

A2BC −→ A4B2C2 −→ AB2C2

4. Step 3 is repeated until the first factor in the effect has the exponent 1.

With the help of this algorithm, one can always make the exponent on the first factor
in a Kempthorne effect be 1, and by using a fixed order of factors, one gets an unequiv-
ocal standard order. For example we see that the index for the effect CA2B4D3 varies
synchronously with the index for the effect AB2C2 - calculated modulo 3.

Example 3.5 : Generalised interactions and standardisation

If we have two effects in a 35 experiment, for example ABC2 and ABDE, we find their
generalised interaction as (where p = 3)

ABC2 × ABDE = ABC2(ABDE) + ABC2(ABDE)2 = ABCD2E2 + CDE

where we have also used the above-mentioned squaring method to get the exponent 1 on
the first factor in the effect.

In this connection it can be useful to remember that in a square experiment, one factor
can be moved ”out of the square” and out to the edge, whereby the edge in question
”moves into the square”. From the 32 experiment dealt with in example 3.1 page 48:
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i → 0 1 2 0 1 2 0 1 2 0 1 2
j 0 0 1 2 0 0 0 0 1 2 0 1 2
↓ 1 0 1 2 1 1 1 1 2 0 2 0 1

2 0 1 2 2 2 2 2 0 1 1 2 0
Ai Bj ABi+j AB2

i+2j

The main effects Ai and Bj constitute the edges in the square and ABi+j and AB2
i+2j are

”inside the square”. If we now move ABi+j and AB2
i+2j out to the sides, we see that Ai

and Bj move ”into the square”:

i + j → 0 1 2 0 1 2 0 1 2 0 1 2
i + 2j 0 0 1 2 0 0 0 0 2 1 0 2 1
↓ 1 0 1 2 1 1 1 2 1 0 1 0 2

2 0 1 2 2 2 2 1 0 2 2 1 0
ABi+j AB2

i+2j Ai Bj

Examples: (i + j = 1 and i + 2j = 2) ⇒ (i = 0 and j = 1), (i + j = 2 and i + 2j = 0) ⇒
(i = 1 and j = 1).

AB × AB2 = AB(AB2) + AB(AB2)2 = A2B3 + A3B5 = A2 + B2 = A + B

Therefore, by using the rules above, we could have foreseen that A and B would come
into the square as generalised interactions for the artificial effects AB and AB2.

The four effects A, B, AB and AB2 together form the elements in what is called a group.
In brief, it distinguishes itself by the fact that with the introduced arithmetic rules we
can create new elements from other elements, and all elements created will belong to the
group.

End of example 3.5

Example 3.6 : Latin squares in 23 factorial experiments and Yates’ algorithm

In chapter 2 we went through the 2k experiment, while here - exemplified with the 3k

experiment - we have introduced more general pk experiments. We will now show briefly
how the introduced more general methods look in a 2k experiment.

With three factors, A, B, and C, the mathematical model in the introduced formulation,
with p = 2, is:

Yijkν = µ + Ai + Bj + ABi+j + Ck + ACi+k + BCj+k + ABCi+j+k + Eijkν

c©hs. Design of Experiments, Course 02411, IMM, DTU 63



where i, j, k = (0, 1) and ν = (1, .., r).

The usual restrictions are:

1∑
i=0

Ai =
1∑

j=0

Bj =
1∑

i+j=0

ABi+j =
1∑

k=0

Ck =
1∑

i+k=0

ACi+k =
1∑

j+k=0

BCj+k =
1∑

i+j+k=0

ABCi+j+k = 0

The connection between the traditional model formulation and the formulation introduced
here is (as also shown on page 54 for the 3k experiment) that (with the usual formulation
to the left and the new formulation to the right):

Ai ⇒ Ai

Bj ⇒ Bj

ABi,j ⇒ ABi+j

Ck ⇒ Ck

ACi,k ⇒ ACi+k

BCj,k ⇒ BCj+k

ABCi,j,k ⇒ ABCi+j+k

If data are analysed with the help of Yates’ algorithm, one must ensure that the effect
estimates get the correct sign. Yates’ algorithm always gives estimates corresponding to
the level where all factors in the parameter are on level ”1”. For the ABC interaction,
Yates’ algorithm gives that

ÂBC1,1,1 = [ABC kontrast]/(2k · r)

If the data are analysed according to the introduced model, it is found that

ÂBC1,1,1 ⇒ ÂBC1+1+1 → ÂBC3 → ÂBC1

that is, that the algorithm finds the ABCi+j+k-parameter level ”1”.

If on the other hand, the interaction AB is considered, Yates’ algorithm finds

ÂB1,1 ⇒ ÂB1+1 → ÂB2 → ÂB0 = −ÂB1

that is plus ABi+j parameter level ”0” or minus its level ”1”.

It thus generally applies that Yates’ algorithm used for a 2k factorial experiment for
the introduced general effects with an uneven number of factors gives the parameters’
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level ”1”, while the algorithm for parameters with an even number of factors gives the
parameters’ level ”0”.

End of example 3.6

3.5 Block-confounded pk factorial experiment

In this section we will generalise the methods that were introduced in section 2.2 page 18,
and we start with the following

Example 3.7 : 23 factorial experiment in 2 blocks of 4 single experiments

We consider a 23 factorial experiment with factors A, B and C and with r repetitions per
factor combination.

The traditional mathematical model for this experiment is

Yijkν = µ + Ai + Bj + ABi,j + Ck + ACi,k + BCj,k + ABCi,j,k + Eijkν

where i, j, k = (0, 1) and ν = (1, .., r)

We have previously seen that such an experiment can be laid out in two blocks by choosing
to confound one of the factor effects with blocks, and we have seen that this is formalised
by choosing a defining contrast. The effect corresponding to this will be confounded with
blocks. In order to use the introduced method for analysis of pk factorial experiments, we
will write the model on the general form, which for p = 2 is:

Yijkν = µ + Ai + Bj + ABi+j + Ck + ACi+k + BCj+k + ABCi+j+k + Eijkν

where i, j, k, = (0, 1) and ν = (1, ..., r)

To divide the experiment into two parts, we now choose a

Defining relation : I = ABC

where, as an example, we choose to confound the 3-factor interaction ABC with blocks.

This effect has index = (i + j + k)2, which thus takes the values 0 or 1. We let the block
number follow this index, i.e. that in Block 0 are placed the experiments where it applies
that (i + j + k)2 = 0. Correspondingly, experiments where (i + j + k)2 = 1 are put in
block 1. To find the principal block, we must in other words find all the solutions to the
equation:
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(i + j + k) (modulo 2) = 0

We try :
i = 0 , j = 0 =⇒ k = 0 : experiment = (1)

i = 1 , j = 0 =⇒ k = 1 : experiment = ac

i = 0 , j = 1 =⇒ k = 1 : experiment = bc

i = 1 , j = 1 =⇒ k = 0 : experiment = ab

The last solution could be found by adding the two previous solutions to each other:

i j k
1 + 0 + 1 = 2 → 0 ac
0 + 1 + 1 = 2 → 0 bc
1 + 1 + 2 → 0 = 2 → 0 ac × bc = ab

One notes that this index addition corresponds to ”multiplying” the two solutions ac and
bc by each other.

The other block is constructed by finding the solutions to (i+j+k)2 = 1. These solutions
are (a, b, c, abc).

In this way the blocking is found:

Block 0 Block 1
(1) ab ac bc a b c abc

We note that this solution is exactly the same as the one we found in section 2.2 using
for example the tabular method.

End of example 3.7

We have now seen a simple example of the use of Kempthorne’s method to make block
experiments. The principle is still that we let the block variable vary synchronously with
the levels for the factor effect that we will confound with blocks.

Example 3.8 : 32 factorial experiment in 3 blocks

Suppose we have the experiment

A=0 A=1 A=2
B=0 (1) a a2

B=1 b ab a2b
B=2 b2 ab2 a2b2
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where we again write the model on the general form, which for p = 3 is :

Yijν = µ + Ai + Bj + ABi+j + AB2
i+2j + Eijν

We now want to carry out the experiment be in 3 blocks, each with 3 single experiments.
For that purpose we can let the block index follow the index for the artificial effect ABi+j ,
whereby it is still possible to estimate the two main effects A and B:

Defining relation :I = AB

Index = i + j :

i=0 i=1 i=2
j = 0 0 1 2
j = 1 1 2 0
j = 2 2 0 1

Block 0 Block 1 Block 2
(1) ab2 a2b a b a2b2 a2 b2 ab

Block 0 is given with all solutions to the equation (i + j)3 = 0. The other two blocks are
given with (i + j)3 = 1 and (i + j)3 = 2 respectively.

The design could have been computed directly using the following tabular method:

i j code Block=(i + j)3

0 0 (1) 0
1 0 a 1
2 0 a2 2
0 1 b 1
1 1 ab 2
2 1 a2b 0
0 2 b2 2
1 2 ab2 0
2 2 a2b2 1

If we only wanted the principal block we can use the method shown in the previous
example, which consists of solving the equation:

(i + j) modulo 3 = 0
i = 0 ⇒ j = 0 Experiment : (1)
i = 1 ⇒ j = −1 → −1 + 3 = 2 Experiment : ab2

i = 2 ⇒ j = −2 → −2 + 3 = 1 Experiment : a2b
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It is seen that the principal block has the appearance:

Block 0
(1) x x2 where x = ab2 ⇒ x2 = (ab2)2 = a2b4 = a2b

where x can represent any chosen solution to (i + j)3 = 0 except (i, j) = (0, 0).

The other two blocks are can be found by the above tabular method or, equivalently, by
solving the equations (i + j)3 = 1 and (i + j)3 = 2 respectively. For example, the term a
is the solution to (i + j)3 = 1 in that i = 1, and j = 0 correspond to a.

The block that contains the experiment a can be constructed by ”multiplying” a on the
principal block found:

Block 0 Block 1
a× (1) ab2 a2b =⇒ a a2b2 b

principal block

The last block is constructed by finding a solution to the equation (i+j)3 = 2, for example
a2 and multiplying this on the principal block :

Block 0 Block
a2× (1) ab2 a2b =⇒ a2 b2 ab

principal block

It is easy to show that with this blocking, the only effect in our model that is confounded
with the block effect is precisely the ABi+j effect.

If we wanted an alternative block grouping, where the AB2 effect was confounded with
blocks, we would use the defining relation I = AB2 and determine the principal block by
solving the index equation (i + 2j) = 0. One solution is ab, and the principal block is

therefore (1), ab, (ab)2 = (1) , ab, a2b2 . After this one finds the blocking

Block 0 Block 1 Block 2
(1) ab a2b2 a a2b b2 a2 b ab2

principal block
(i + 2j)3 = 0

Try it yourself!

End of example 3.8
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We have seen how a pk factorial experiment can be divided into p blocks so that an effect
chosen in advance is confounded with blocks.

We can generalise this method to a division into pq blocks, where q < k. To do this, we
start by dividing a 23 experiment into 2 × 2 = 22 = 4 blocks.

Example 3.9 : Division of a 23 factorial experiment into 22 blocks

Let there be a 23 factorial experiment with factors A, B and C. With the introduced
formulation the model is, in that p = 2:

Yijkν = µ + Ai + Bj + ABi+j + Ck + ACi+k + BCj+k + ABCi+j+k + Eijkν

where all indices i, j, k = (0, 1) and ν = (1, .., r)

To define 4 (= 2×2) blocks, we use 2 defining relations, for example

I1 = AB and I2 = AC

as previously shown on page 25.

The structure of the 4 blocks can be illustrated

I1 = AB
i + j = 0 i + j = 1

I2 = AC i + k = 0 Block (0,0) Block (1,0)
i + k = 1 Block (0,1) Block (1,1)

If the index for both ABi+j and ACi+k is 0 for example, the single experiments are placed
in block (0,0).

In this way, or by using the tabular method, one finds the blocking :

I1 = AB
i + j = 0 i + j = 1

I2 = AC i + k = 0 (1) abc b ac
i + k = 1 ab c a bc

If the block effects are modelled as a 2×2 design, we can write that the blocks contribute
with

Blocks = ξ + Ff + Gg + FGf+g , where f = (i + j)2 and g = (i + k)2
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It is clear that the effect AB varies synchronously with F and that the two effects are
confounded. Correspondingly, AC is confounded with G. That part of the block variation,
which is here called FG, has the index (f + g)2 = ((i + j) + (i + k))2 = (j + k)2, which is
precisely the index for the term BC in the model for the response of the experiment.

Therefore it can be concluded that the effect BC will also be confounded with blocks,
which can also be seen from the following table, where the index of the BC effect is 0 on
one diagonal and 1 on the other one:

I1 = AB
i + j = 0 i + j = 1

I2 = AC i + k = 0 j + k = 0 j + k = 1
i + k = 1 j + k = 1 j + k = 0

More formally we can write:

Blocks = AB + AC + AB × AC = AB + AC + BC

End of example 3.9

3.6 Generalisation of the division into blocks with several defin-
ing relations

Let I1 = AαBβ . . . Cγ denote a defining relation, that divides a pk factorial experiment
into p blocks. Further, let I2 = AaBb...Cc denote a defining relation that likewise divides
the pk experiment into p blocks.

In the division of the experiment into p×p blocks on the basis of these defining relations,
both effects

I1 = Aα Bβ ... Cγ and I2 = Aa Bb... Cc

will be confounded with blocks. In addition, their generalised interaction will be con-
founded with blocks so that besides I1 and I2 the effects given in the expression:

I1 × I2 = (Aα Bβ... Cγ) × (Aa Bb... Cc)

will be confounded with blocks. All terms in the expression:

I1 ∗ I2 = I1 + I2 + I1 × I2 = I1 + I2 + I1 I2 + I1 (I2)
2 + ... + + I1 (I2)

(p−1)
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are confounded with blocks.

We can generally write up the confoundings for any division of a pk factorial experiment
in pq blocks.

If we have the corresponding defining relations given by I1, I2, I3,.., Iq, all the effects in
the equation

I1 ∗ I2 ∗ I3 ∗ ... ∗ Iq = I1 + I2 + I1 × I2 + I3 + ... + I1 × I2 × I3 × ... × Iq

will be confounded with blocks. The operators ”∗” and ”×” work as stated in section 3.3
page 58

Example 3.10 : Dividing a 33 factorial experiment into 9 blocks

Let there be a 33 factorial experiment with factors A, B and C.

As an example we divide the experiment into 3 × 3 blocks using

I1 = ABC2 and I2 = AC

Thereby, ABC2 and AC together with their generalised interaction are confounded with
blocks, that is, all the effects in the expression (where p = 3):

ABC2 ∗ AC = ABC2 + AC + ABC2 × AC

= ABC2 + AC + ABC2(AC) + ABC2(AC)2 = ABC2 + AC + AB2 + BC

In the analysis of variance table, the sums of squares for ABC2, AC, AB2 and BC there-
fore also contain possible block effects and thus they cannot be interpreted as expressing
factor effects alone.

The principal block in this experiment is found by solving the equations (p = 3):

(i + j + 2k)3 = 0 and (i + k)3 = 0

One finds for example i = 1 ⇒ k = 2 ⇒ j = 1, that is abc2. The principal block contains
33/32 = 3 single experiments. This means that it satisfies to find one solution in order
to determine the block. If this solution is called ”x”, the principal block experiments are
(1), x and x2.
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In our case, we then for x = abc2 get the three experiments (1), abc2 and (abc2)2 = a2b2c.
One can check that (i = 2, j = 2, c = 1) is also a solution to the two index equations.

The other blocks are found by finding the solutions to the index equations for the right-
hand sides equal to (0,1,2) in the case of both equations, i.e. a total of 9 different cases,
corresponding to the 3×3 blocks.

For a any one of these blocks, it applies that they can be found when just one experiment
is found in the block. By multiplying this experiment on the principal block, the whole
block is determined.

End of example 3.10

Example 3.11 : Division of a 25 experiment into 23 blocks

Let the factors be A, B, C, D and E, which all appear on 2 levels. To divide the experiment
into 2 × 2 × 2 blocks, 3 defining relations are used, f.ex.

I1 = ABC, I2 = BDE and I3 = ABE

Thereby all effects in the following expression are confounded with blocks:

I1 ∗ I2 ∗ I3 = I1 + I2 + I1 × I2 + I3 + I1 × I3 + I2 × I3 + I1 × I2 × I3

That is, in addition to ABC, BDE and ABE, the following terms (since p = 2):

(I1 × I2) = ABC BDE = ACDE
(I1 × I3) = ABC ABE = CE
(I2 × I3 ) = BDE ABE = AD
(I1 × I2 × I3) = ABC BDE ABE = BCD

The design can be found by the tabular method (se f.ex. page 23).

If only the principal block is wanted we can solve the equations

(i + j + k)2 = 0 , (j + l + m)2 = 0 , (i + j + m)2 = 0

One block contains 25/23 = 22 = 4 single experiments. Therefore 2 solutions have to be

found. If these solutions are called x and y, the principal block is: (1) , x , y and xy

An ingenious way to find these solutions is to try with (i = 1,j = 0) and (i = 0,j = 1),
which correspond to the elements a and b in the factor structure for factors A and B. The
method works if the main effects A and B are not confounded with each other or with
blocks.
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We find

(i = 1, j = 0) ⇒ k = 1, m = 1, l = 1, the experiment is x = acde
(i = 0, j = 1) ⇒ k = 1, m = 1, l = 0, the experiment is y = bce

The principal block is therefore

Principal block Block(0,0,0)
(1) x y xy = (1) acde bce abd

Note that all experiments in the principal block have an even number of letters in common
with the 3 defining contrasts, ABC, BDE and ABE. The remaining blocks can now be
found by multiplying with elements that are not in the principal block.

For the block corresponding to the equations

(i + j + k)2 = 1 , (j + l + m)2 = 0 , (i + j + m)2 = 0

that is block (1,0,0), there is a solution: (i, j, k, l, m) = (1, 0, 0, 1, 1) = ade (start with
(i, j) = (1, 0), which is the easiest method). The rest of the block is found by multiplying
this solution onto the principal block:

Principal block Block(1,0,0)
ade× (1) acde bce abd =⇒ ade c abcd be

The remaining 6 blocks can be found by setting the right-hand sides of the equations to
(0,1,0), (1,1,0), (0,0,1), (1,0,1), (0,1,1) and (1,1,1), respectively.

End of example 3.11

Example 3.12 : Division of 3k experiments into 33 blocks

Let there be a 3k factorial experiment and suppose that I1, I2 and I3 define a division of
the experiment into 3× 3 × 3 = 27 blocks.

The confounding is thereby given with

I1 ∗ I2 ∗ I3 = I1 + I2 + I1 × I2 + I3 + I1 × I3 + I2 × I3 + I1 × I2 × I3

= I1 + I2 + I1 I2 + I1 I2
2 + I3 + I1 I3 + I1 I2

3 + I2 I3 + I2 I2
3 + I1 (I2 × I3) + I1 (I2 × I3)2

where exponents are reduced modulo 3. For the two last terms we have:

c©hs. Design of Experiments, Course 02411, IMM, DTU 73



I1(I2 × I3) = I1(I2 I3 + I2 I2
3 ) = I1 I2 I3 + I1 I2 I2

3

and
I1 (I2 × I3)2 = I1 (I2 I3 + I2 I2

3 )2 = I1 I2
2 I2

3 +I1 I2
2 I4

3 = I1 I2
2 I2

3 +I1 I2
2 I3

The terms found will all be confounded with blocks. Each of the corresponding effects
has precisely 3 levels, i.e. the variation between these 3 levels has 2 degrees of freedom. A
total of 13 terms with 2 degrees of freedom are found, i.e. a total of 26 degrees of freedom,
which correspond exactly to the variation between 27 blocks.

The design can be found by the tabular method (se f.ex. page 65).

End of example 3.12

3.6.1 Construction of blocks in general

We have seen above that in a pk factorial experiment, one defining relation, I1, divides the
experiment into p blocks, while q relations, for example I1, ..., Iq, divide the experiment
into pq blocks each containing precisely pk−q single experiments.

This corresponds to the fact that in one block are just as many single experiments as
there are in a complete pk−q experiment, that is, an experiment with k − q factors each
on p levels.

We first construct the principal block among these pq blocks, and, on the basis of this,
the remaining blocks can be determined, as is shown in the examples.

The method we will use is in brief:

1): : Let there be q defining contrasts I1, I2, ..., Iq, and again let all the single experi-
ments be designated with (1), a, a2, . . . , ap−1, b, ab, . . . , ap−1b, b2, ab2, . . . , ap−1bp−1,. . . ,
etc.

2): Determine k − q of these single experiments, which are in the principal block. For
example they can be: f1 ,f2,...,fk−q. It is required for these single experiments that
the corresponding solutions to the index equations are linearly independent.

3): The principal block can now be constructed by using these single experiments as
”basic experiments” and making a complete pk−q factorial experiment, i.e. the
standard order for the single experiments on the basis of f1, ,f2,...,fk−q:

(1), f1, f1
2, . . . , f1

p−1, f2, f1f2, f1
2f2, . . . , f1

p−1f2
p−1, . . . , f1

p−1f2
p−1 · ·fk−q

p−1
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This collection of single experiments then makes up the principal block. During the
formation, all exponents are reduced modulo p.

4): Change the level for one of the index equations and thereby find a new single ex-
periment that is not in the principal block and multiply the experiment on all the
experiments in the principal block. In this way a new block is formed.

5): Continue with 4) until all blocks are formed.

In order to assure that all the single experiments in the principal block are different, we
must require for the original (k − q) solutions that they are linearly independent (where
all are still calculated modulo p).

Otherwise the principal block will not be completely determined, and the same single
experiments will be found several times when trying to find the experiments in the block.

With the same kind of argumentation, it can be shown how, on the basis of one experiment
belonging to an alternative block, the rest of that block can be formed by multiplying it
onto the principal block.

For example if, with the help of a spreadsheet or a computer program, one wants to
find a block distribution, the simplest method is to run through all single experiments
in standard order and for each single experiment calculate the value of the indices of the
defining contrasts, that is to use the tabular method.

Example 3.13 : Dividing a 34 factorial experiment into 32 blocks

Let the notation be as usual. The single experiments are given by:

(1) , a , a2 , b , ab , a2b , b2 , ab2 , a2b2 , . . . , a2b2c2d2

Take for example the defining relations :

I1 = ABi+j and I2 = BCD2
j+k+2l

The principal block consists of the experiments where both (i+j)3 = 0 and (j+k+2l)3 = 0.
In one block there are 34−2 = 32 single experiments.

The complete design can be constructed and written out by means of the tabular method
(see page 65).

If we want the principal principal block, for example, we must just determine two ”linearly
independent” single experiments and from that form the rest as a 32 experiment.

Thus: Find two linearly independent solutions to:
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i + j = 0 and j + k + 2l = 0

Try with i = 0 ⇒ j = 0 ⇒ k + 2l = 0 and choose (k = 1, l = 1), for example, giving
(i, j, k, l) = (0, 0, 1, 1) as a usable solution. The experiment is cd.

Then try for example with i = 1 ⇒ j = 2, (j + k + 2l) = 0 ⇒ (k + 2l)3 = (−2)3 =
(−2 + 3)3 = 1 where we for example choose l = 0 and k = 1. Note that one can always
add an arbitrary multiple of ”3” to a (negative) number when one has to find ”modulo
3” of the number. That is to say that generally (x)p = (x + kp)p where (.)p here denotes
”(.) modulo p”.

Thus (i, j, k, l) = (1, 2, 1, 0) is a usable combination and the experiment is ”ab2c”.

Check the independence by verifying that cd(ab2c)λ 6= (1) for all λ (the relevant λ’s are 1
and 2): OK.

Now call f1 = cd and f2 = ab2c. The principal block then is

(1) f1 f 2
1 (1) cd (cd)2

f2 f1f2 f 2
1 f2 = ab2c cdab2c (cd)2ab2c

f 2
2 f1f

2
2 f 2

1 f 2
2 (ab2c)2 cd(ab2c)2 (cd)2(ab2c)2

by ordering the elements, multiplying out and reducing all exponents modulo 3, the block
is found:

(1) cd c2d2

ab2c ab2c2d ab2d2

a2bc2 a2bd a2bcd2

To find an alternative block, we look for a single experiment that is not in the block
already found. We can for example take ”a”.

The new block is then:

(1) cd c2d2 a acd ac2d2

a× ab2c ab2c2d ab2d2 =⇒ a2b2c a2b2c2d a2b2d2

a2bc2 a2bd a2bcd2 bc2 bd bcd2

or by multiplying with b :

(1) cd c2d2 b bcd bc2d2

b× ab2c ab2c2d ab2d2 =⇒ ac ac2d ad2

a2bc2 a2bd a2bcd2 a2b2c2 a2b2d a2b2cd2
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End of example 3.13

Example 3.14 : Dividing a 53 factorial experiment into 5 blocks

A 53 experiment consists of a total of 125 single experiments. With the division into 5
blocks, there are 25 single experiments in each block.

The factors are A, B and C, and as defining relation we choose for example

I = ABC3
i+j+3k

In the principal block, where p = 5, it applies that

i + j + 3k = 0 (modulo 5)

Since the size of the block is 5 × 5 = 52, we have to find 2 linearly independent solutions
to this equation. For example,

(i, j, k) = (1, 0, 3) ∼ ac3 and (i, j, k) = (0, 1, 3) ∼ bc3

can be used. As a start, the principal block is thereby

(1) ac3 a2c6 a3c9 a4c12

bc3 abc6 a2bc9 a3bc12 a4bc15

b2c6 ab2c9 a2b2c12 a3b2c15 a4b2c18

b3c9 ab3c12 a2b3c15 a3b3c18 a4b3c21

b4c12 ab4c15 a2b4c18 a3b4c21 a4b4c24

and after reduction of the exponents modulo 5, one finally gets

(1) ac3 a2c a3c4 a4c2

bc3 abc a2bc4 a3bc2 a4b
b2c1 ab2c4 a2b2c2 a3b2 a4b2c3

b3c4 ab3c2 a2b3 a3b3c3 a4b3c
b4c2 ab4 a2b4c3 a3b4c1 a4b4c4

It can be interesting to note that this is a 5 × 5 Latin square, which with C inside the
square is:
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A=0 A=1 A=2 A=3 A=4
B=0 0 3 1 4 2
B=1 3 1 4 2 0
B=2 1 4 2 0 3
B=3 4 2 0 3 1
B=4 2 0 3 1 4

which for instance shows that the three factors are mutually balanced within the block
found. The same will naturally apply within the other 4 blocks in the experiment. One
of these blocks can be easily constructed for example by multiplying the principal block
with an experiment that is not included in the principal block. By multiplying with a,
for example, we find

a a2c3 a3c a4c4 c2

abc3 a2bc a3bc4 a4bc2 b
ab2c1 a2b2c4 a3b2c2 a4b2 b2c3

ab3c4 a2b3c2 a3b3 a4b3c3 b3c
ab4c2 a2b4 a3b4c3 a4b4c1 b4c4

which is thus also a Latin square.

The remaining blocks can be found in the same way, but naturally one can also let a
program construct all the blocks by calculating the value of the index (i + j + 3k) for all
single experiments and placing the experiments according to whether (i+j +3k) (modulo
5) is 0, 1, 2, 3 or 4, that is by the tabular method.

End of example 3.14

3.7 Partial confounding

Partial confounding in 2k factorial experiments was introduced in section 2.3 page 26.

We will give another example of partial confounding in a 2k experiment, where we now
for the sake of illustration use Kempthorne’s method to form the relevant blocks.

Example 3.15 : Partially confounded 23 factorial experiment

Again we consider an experiment with 3 factors A, B and C, each on 2 levels. We assume
that the experiments can only be done in blocks which each contain 4 single experiments.
To be able to estimate all the effects in the model

Yijk = µ + Ai + Bj + ABi+j + Ci + ACi+k + BCj+k + ABCi+j+k + E
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it is necessary to do a partially confounded factorial experiment.

Suppose that in the first experimental series we choose to confound the three-factor in-
teraction ABC.

To divide the experiment into 2 blocks, we have to find 2 solutions to the index equation
since the block size is 23−1 = 2 × 2.

Therefore we have to find 2 solutions to the equation (i + j + k)2 = 0 .

By trial and error, we find for example x = ac and y = bc.

The principal block is then

block 1
(1) x y xy = (1) ac bc ab

(i + j + k)2 = 0

By multiplying with a, we get the other block, which of course consists of the remaining
single experiments in the complete 23 factorial experiment:

block 2
a× (1) x y xy = a c abc b

(i + j + k)2 = 1

Analysis of this first block-confounded experiment can be done with Yates’ algorithm,
which gives a result that can also be expressed in matrix form in the usual way:



I(1)

A(1)

B(1)

AB(1)

C(1)

AC(1)

BC(1)

ABC(1) = blocks


=



1 1 1 1 1 1 1 1
−1 1 −1 1 −1 1 −1 1
−1 −1 1 1 −1 −1 1 1

1 −1 −1 1 1 −1 −1 1
−1 −1 −1 −1 1 1 1 1

1 −1 1 −1 −1 1 −1 1
1 1 −1 −1 −1 −1 1 1

−1 1 1 −1 1 −1 −1 1





(1)
a
b
ab
c
ac
bc
abc


The index (.)(1) on the contrasts refers to this first experiment.

We then do another experiment, but this time we choose to confound the effect AB. The
blocking of the experiment is thus:

block 3 block 4
(1) ab abc c and a b ac bc

(i + j)2 = 0 (i + j)2 = 1
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For this experiment we can find contrasts in the same way as in the first experiment. And
finally we will combine the two experiments. We have the following sources of variation:

1) Factor effects which are not confounded

2) Factor effects which are partially confounded

3) Blockeffects , i.e. variation between the totals of the 4 blocks

4) Residual variation

Analysis of the two experiments gives respectively:



I(1)

A(1)

B(1)

AB(1)

C(1)

AC(1)

BC(1)

ABC(1) = blocks


and



I(2)

A(2)

B(2)

AB(2) = blocks
C(2)

AC(2)

BC(2)

ABC(2)



where index (.)(2) corresponds to the second experiment.

We can find sums of squares and degrees of freedom corresponding to the four sources of
variation:
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1) Unconfounded factor effects
SSQA = ([A(1)] + [A(2)])

2/(2 · 23) , f = 1
SSQB = ([B(1)] + [B(2)])

2/(2 · 23) , f = 1
SSQC = ([C(1)] + [C(2)])

2/(2 · 23) , f = 1
SSQAC = ([AC(1)] + [AC(2)])

2/(2 · 23) , f = 1
SSQBC = ([BC(1)] + [BC(2)])

2/(2 · 23) , f = 1

2) Partially confounded
factor effects
SSQAB (half precision) = [AB(1)]

2/(23) , f = 1
SSQABC (half precision) = [ABC(2)]

2/(23) , f = 1

3) Block effects and confounded
factor effects
Between experiments = ([I(1)] − [I(2)])

2/(2 · 23) , f = 1
SSQ

AB+blocks(3-4) = [AB(2)]
2/(23) , f = 1

SSQ
ABC+blocks(1-2) = [ABC(1)]

2/(23) , f = 1

4) Residual variation:
Between A-estimates (SSQA,Uncert.) = ([A(1)] − [A(2)])

2/(2 · 23) , f = 1

Between B-estimates (SSQB,Uncert.) = ([B(1)] − [B(2)])
2/(2 · 23) , f = 1

Between C-estimates (SSQC,Uncert.) = ([C(1)] − [C(2)])
2/(2 · 23) , f = 1

Between AC-estimates (SSQAC,Uncert.) = ([AC(1)] − [AC(2)])
2/(2 · 23) , f = 1

Between BC-estimates (SSQBC,Uncert.) = ([BC(1)] − [BC(2)])
2/(2 · 23) , f = 1

5) Total variation = SSQtot with degrees of freedom f = 15

Generally, the variation can be calculated between for example RA A estimates that are
all based on contrasts from ( RA different) 2k experiments with r repetitions (in which
they are all unconfounded) with the expression:

SSQA,Uncert. =
[A(1)]

2 + . . . + [A(RA)]
2

2k · r − ([A(1)] + . . . + [A(RA)])
2

RA · 2k · r

In the example, RA = 2, k = 3 and r = 1. For other non-confounded estimates, naturally,
corresponding expressions are found. See, too, page 29.

We have thereby accounted for all the variation in the two experiments collectively. Note
that we have calculated sums of squares corresponding to a total of 15 sources of variance,
each with one degree of freedom. This corresponds precisely to the total variation between
the 16 single experiments, which gives rise to (16 − 1) = 15 degrees of freedom.

If there are r repetitions for each of the single experiments, all the SSQ’s have to be divided
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by r. In this case, one can, of course, find variation within each factor combination (a
total of 8 + 8 single experiments with (r − 1) degrees of freedom) and use them to
calculate a separate estimate for the remainder variation. This estimate can, if necessary,
be compared with the mentioned estimate, which was calculated above.

End of example 3.15

The example shown illustrates the principles for combining several experiments with dif-
ferent confoundings. The whole analysis can be summarised to the following. Suppose
that, in all, experiments are made in R blocks med nblock single experiments in each block.
The variation can then be decomposed in the following contributions, where Tblock i gives
the total in the i’th block:

SSQblocks = (T 2
block 1 + T 2

block 2 + . . . + T 2
block R)/nblock − (T 2

tot)/(R · nblock)
= variation between block totals

SSQeffects = SSQ for all factor effects based on experiments in which
the effects are not er confounded with blocks

SSQresid = variation between effect estimates from experiments, where
the effects are not confounded

SSQuncertainty = variation between repeated single experiments within blocks

The first contribution, SSQblocks also contains, in addition to the total variation between
blocks, the variation from confounded factor effects.

Example 3.16 : Partially confounded 32 factorial experiment

We finish this section by showing the principles for the construction and analysis of a
partially confounded 32 factorial experiment. This experiment is possibly little used in
practice, but it illustrates the general procedure well. And it shows how all the main
effects and interactions in a 3×3 experiment can be determined, even though the size of
the block is only 3.

Experiment 1 : Divide the 32 experiment into 3 blocks of 3 according to I = ABi+j

One finds:

block 1 : (1)(1) ab2
(1) a2b(1) total = T1

block 2 : a(1) a2b2
(1) b(1) total = T2

block 3 : a2
(1) b2

(1) ab(1) total = T3
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Index (1) indicates that this is experiment 1.

Experiment 2 : Now divide according to I = AB2
i+2j . This gives the blocking:

block 4 : (1)(2) ab(2) a2b2
(2) total = T4

block 5 : a(2) a2b(2) b2
(2) total = T5

block 6 : a2
(2) b(2) ab2

(2) total = T6

Index (2) indicates that this is experiment 2.

We can find the sum of squares between the 6 blocks, in that Ttot = T1 + T2 + . . . + T6 :

SSQblocks = (T 2
1 + T 2

2 + . . . + T 2
6 )/3 − T 2

tot/18

We then have

TA0 = (1)(1) + b(1) + b2
(1) + (1)(2) + b(2) + b2

(2)

TA1 = a(1) + ab(1) + ab2
(1) + a(2) + ab(2) + ab2

(2)

TA2 = a2
(1) + a2b(1) + a2b2

(1) + a2
(2) + a2b(2) + a2b2

(2)

That is, that for example TA0 = the sum of all the measurements where factor A has
been on level ”0” in the RA experiments where effect A is not confounded with blocks,
and correspondingly for levels ”1” and ”2”. With Ttot,A = TA0 + TA1 + TA0 we get quite
generally:

SSQA = (T 2
A0

+ T 2
A1

+ T 2
A2

)/(RA × 3k−1) − T 2
tot,A/(RA × 3k)

with f = (3 − 1) = 2 degrees of freedom. In our example RA = 2 and k = 2.

TB0 = (1)(1) + a(1) + a2
(1) + (1)(2) + a(2) + a2

(2)

TB1 = b(1) + ab(1) + a2b(1) + b(2) + ab(2) + a2b(2)

TB2 = b2
(1) + ab2

(1) + a2b2
(1) + b2

(2) + a2b2
(2) + a2b2

(2)
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SSQB = (T 2
B0

+ T 2
B1

+ T 2
B2

)/(RB × 3k−1) − T 2
tot,B/(RB × 3k)

with f = (3 − 1) = 2 degrees of freedom and RB = 2 and k = 2.

TAB0 = (1)(2) + ab2
(2) + a2b(2)

TAB1 = a(2) + a2b2
(2) + b(2)

TAB2 = a2
(2) + b2

(2) + ab(2)

that is, sums from the RAB experiments in which the artificial effect ABi+j is not con-
founded with blocks, i.e. the experiment consisting of blocks 4, 5 and 6. With Ttot,AB =
T4 + T5 + T6, one finds

SSQAB = (T 2
AB0

+ T 2
AB1

+ T 2
AB2

)/(RAB × 3k−1) − T 2
tot,AB/(RAB × 3k)

with f = (3 − 1) = 2 degrees of freedom and RAB = 1 and k = 2.

Finally one finds

TAB2
0

= (1)(1) + ab(1) + a2b2
(1)

TAB2
1

= a(1) + a2b(1) + b2
(1)

TAB2
2

= a2
(1) + b(1) + ab2

(1)

that is, sums from the experiments in which the artificial effect AB2
i+j is not confounded

with blocks, i.e. the experiment consisting of blocks 1, 2 and 3. With Ttot,AB2 = T1+T2+T3

one finds

SSQAB2 = (T 2
AB2

0
+ T 2

AB2
1
+ T 2

AB2
2
)/(RAB2 × 3k−1) − T 2

tot,AB2/(RAB2 × 3k)

with f = (3 − 1) = 2 degrees of freedom and RAB2 = 1 and k = 2.

The residual variation is found as the variation between estimates for effects that are not
confounded with blocks.

From the A effect one finds, where SSQA(both experiments) is the above calculated sum
of squares for effect A, while SSQA(experiment 1) and SSQA(experiment 2) are the sums
of squares for effect A calculated separately for the two experiments:
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SSQUA = SSQA(experiment 1) + SSQA(experiment 2) - SSQA(both experiments)

with f = 4 − 2 = 2 degrees of freedom.

From the B effect one finds correspondingly

SSQUB = SSQB(experiment 1) + SSQB(experiment 2) - SSQB(both experiments)

likewise with f = 4 − 2 = 2 degrees of freedom.

Since the remaining effects ABi+j and AB2
i+2j are only ”purely” estimated one time each,

we do not get any contribution to the residual variation from these effects.

In summary, we get the following variance decomposition:

Blocks and/or confounded
factor effects SSQblocks 5

Main effect Ai SSQA 2

Main effect Bj SSQB 2

Interaction ABi+j SSQAB 2 (half præcision)

Interaction AB2
i+j SSQAB2 2 (half præcision)

Residual variation SSQUA + SSQUB 2 + 2

Total SSQtotal 17

Note that we have derived variation corresponding to 17 = 18− 1 degrees of freedom.

In conclusion we can give estimates for all the effects in this experiment:

σ̂2
resid = (SSQUA + SSQUB)/4

(Â0, Â1, Â2) = (
TA0

6
− Ttot

18
,
TA1

6
− Ttot

18
,
TA2

6
− Ttot

18
)

and the main effect B is found correspondingly.
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For the interaction, the estimates are found in the blocks where they are not confounded:

(ÂB0, ÂB1, ÂB2) = (
TAB0

3
− Ttot,2

9
,
TAB1

3
− Ttot,2

9
,
TAB2

3
− Ttot,2

9
) (from experiment 2)

(ÂB2
0 , ÂB2

1 , ÂB2
2) = (

TAB2
0

3
− Ttot,1

9
,
TAB2

1

3
− Ttot,1

9
,
TAB2

2

3
− Ttot,1

9
) (from experiment 1)

and with the help of the relation ABi,j = ABi+j+AB2
i+2j one can finally find the parameter

estimates in the traditional model formula Yi,j = µ + Ai + Bj + ABi,j + E.

End of example 3.16

3.8 Construction of a fractional factorial design

We will now concern ourselves with constructing designs where the factors form Latin
squares/cubes. The presentation is a generalisation of the results in section 2.4, where we
introduced fractional 2k factorial designs. We will limit the discussion to experiments with
factors on 2 or on 3 levels, since these are the experiments that are used most frequently
in practice.

As before, mainly examples are used to show the different techniques.

Example 3.17 : Factor experiment done as a Latin square experiment

Let us assume that we have three factors, A, B and C and that we want to evaluate these
each on 3 levels. We choose to make a Latin square experiment with the factor C inside
the square. According to the same principle described in the previous section, we can for
example let C have index k = (i + j)3. This means that the main effect C will have the
same index as the Kempthorne effect AB with index (i + j)3.

The experimental design where the index for factor C is inside the square is thus:

A=0 A=1 A=2
B=0 0 1 2
B=1 1 2 0
B=2 2 0 1

Index for C

or equivalently :
(1) ac a2c2

bc abc2 a2b
b2c2 ab2 a2b2c

Instead of the 3 × 3 × 3 single experiments in the complete factor experiment, we choose
to do only the 3 × 3 single experiments in the Latin square.
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Note that if x = ac and y = bc which both correspond to a solution to the index equation
k = (i + j)3, the experiment can be written:

(1) x x2

y xy x2y
y2 xy2 x2y2

Finally, we can also by means of the tabular method write out the design:

Experiment Experiment A level B level C level code
no. sequence i j (i + j)3

1 3 0 0 0 (1)
2 7 1 0 1 ac
3 1 2 0 2 a2c2

4 9 0 1 1 bc
5 5 1 1 2 abc2

6 6 2 1 0 a2b
7 2 0 2 2 b2c2

8 4 1 2 0 ab2

9 8 2 2 1 a2b2c

In the practical execution of the experiment, the order is randomised, as exemplified in
the table.

The variation of the mean value due to the two factors A and B can be written

Ai + Bj + ABi,j = Ai + Bj + ABi+j + AB2
i+2j

where the left-hand side is the conventional meaning, while the right-hand side is the
formulation according to Kempthorne’s method.

The introduction of factor C, as mentioned, was done by giving C the index value k =
(i + j)3. If C is purely additive, i.e. if C does not interact with the other factors, the
following model will describe the response, where the influence from C is put in:

Yijkν = µ + Ai + Bj + ABi+j + AB2
i+2j + Ck=i+j + Eijkν

where index ν corresponds to possible repetitions of the 9 single experiments.

If there is interaction between the two factors A and B, that part of the interaction
described by the artificial effect ABi+j cannot be regarded as negligible (the same is true
of course for AB2

i+2j).
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If we now try to estimate the C effect, we cannot avoid having the ABi+j part of the AB
interaction confounded the C estimate, precisely because we used k = (i + j)3

The effects Ck and ABi+j in other words are confounded in the experiment.

We can also demonstrate this by direct calculation. Using Ȳtot for the average of the 9
measurements, we have, since (1) = Y0,0,0, a2b = Y2,1,0, and ab2 = Y1,2,0:

Ĉ0 = (Y0,0,0 + Y2,1,0 + Y1,2,0)/3 − Ȳtot

which has the expected value

E{Ĉ0} = E{(Y0,0,0 + Y2,1,0 + Y1,2,0)/3 − Ȳtot} = C0 + AB0

Further it is found

E{Ĉ1} = E{(Y0,1,1 + Y1,0,1 + Y2,2,1)/3 − Ȳtot} = C1 + AB1

and
E{Ĉ2} = E{(Y0,2,2 + Y1,1,2 + Y2,0,2)/3 − Ȳtot} = C2 + AB2

In this experiment we have a certain possibility of evaluating whether the AB interaction
can be regarded as negligible, because we can examine the AB2

i+2j effect. If this is neg-
ligible, one can perhaps allow oneself to conclude that the AB effect as a whole can be
zero.

In summary, one can see that only if the factors A and B do not interact, is the experiment
suitable for estimating C.

As we shall see below, we need to assume that all two-factor interactions are zero in order
to estimate the main effects A, B and C in the described (1/3) × 33 = 33−1 experiment.

End of example 3.17

We have seen above and previously in section 2.4 that it is not without problems to
put further factors into an experiment in the form of a square experiment. But with
appropriate assumptions about the lack of interactions, it can be done. In the following,
we will try to show how it is done in practice.

Example 3.18 : Confoundings in a 3−1 × 33 factorial experiment, alias relations

Consider again the above example. If we should have done an ordinary 33 factorial
experiment, it would have consisted of 3×3×3 = 27 single experiments. The experiment
we did is only 1/3 of this, namely a total of 33/3 = 33−1 = 9 single experiments.

If in general there are interactions between all the factors, the effects of the experiment
will be confounded with each other in groups of 3 effects, analogous with for example the

c©hs. Design of Experiments, Course 02411, IMM, DTU 88



23−1 experiment, where they were confounded in groups of 2. The complete mathematical
model for the 33 factorial experiment can be written, once again:

Yijkν = µ + Ai + Bj + ABi+j + AB2
i+2j + Ck + ACi+k + AC2

i+2k + BCj+k

+BC2
j+2k + ABCi+j+k + ABC2

i+j+2k + AB2Ci+2j+k + AB2C2
i+2j+2k + Eijkν

For the 9 single experiments we considered in the previous example, we used k = i + j,
corresponding to the confounding Ck = ABi+j .

This generator equation can be changed to a defining relation by multiplying on both
sides of the equation sign with C2 , and then reorganising the expressions and reducing
the exponents modulo 3. The result is C2C = C2AB −→ I = ABC2. Thus we have the

Defining relation : I = ABC2

If one now wants which effects in the general model an arbitrary effect is confounded with,
the defining relation can be used. It is multiplied with the effect in question in first and
second power (because the factors are on 3 levels and according to the rules layed out in
section 3.3). One finds for the A effect:

A × (I = ABC2) −→ A = (A)(ABC2) = (A)2(ABC2)

Since now A(ABC2) = A2BC2 → A4B2C4 → AB2C and (A)2(ABC2) = A3BC2 → BC2,
it is found that

A = AB2C = BC2

One can be convinced that indices for these three effects vary synchronously throughout
the experiment, because it is required that k = (i + j)3. ”Modulo 3” calculation gives
(try it yourself):

Effects A AB2C BC2

Indices i (i + 2j + k)3 (j + 2k)3

0 ⇒ 0 0
1 ⇒ 2 2
2 ⇒ 1 1

Of course the same calculations can be made for all effects in the experiment and one can
be convinced that it will generally hold true that all effects are confounded in groups of
3.
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The complete set of alias relations is found on the basis of the defining relation by mul-
tiplying with the effects in the underlying factor structure in first and second power:

Generator C = AB =⇒
Defining relation I = ABC2

Alias relations
A = AB2C = BC2

B = AB2C2 = AC2

AB = ABC = C
AB2 = AC = BC

For example AB2 × (I = ABC2) −→ AB2 = AC = BC.

Remember again, that the factors A and B constitute an underlying complete factor
structure and that factor C is introduced into this structure by means of the generator
equation C = AB. This examplifies the general method of construction of fractional
factorials.

The alias relations are most usefully written up with one relation per effect in the under-
lying factor structure and in standard order, as is shown in the table.

End of example 3.18

3.8.1 Resolution for fractional factorial designs

The term resolution describes which orders of effects are confounded with each other.

Corresponding to the example page 32 where fractional 2k factorial designs were intro-
duced, page 35 shows alias relations for a 23−1 factorial experiment. It can be seen here
that the main effects (first order effects) are confounded with 2-factor interactions (second
order effects). Such an experiment is called a resolution III experiment. It should be
noted that precisely 3 factors are present in the defining relation (I = ABC) for the
experiment.

In the above example a 33−1 factorial design is described with the defining relation I =
ABC2. This experiment too is called a resolution III experiment, since main effects are
confounded with two-factor interactions (or higher). The defining relation involves at
least 3 factors.

If all main effects in a fractional factorial design are confounded with effects of at least sec-
ond order ( 2-factor interactions), the experiment is called a resolution III experiment.
This corresponds to the fact that no effect in the defining relation of the experiment is of
a lower order than 3.
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If it holds true that no effect in the defining relation of the experiment is of a lower order
than 4, the experiment is called a resolution IV experiment.

In a resolution IV experiment, the main effects are all confounded with effects of at
least the third order, i.e. 3-factor interactions. Two-factor interactions will generally be
confounded with other 2-factor interactions and/or interactions of a higher order in a
resolution IV experiment.

In many practical circumstances, one can not assume in advance that the 2-factor inter-
actions are unimportant compared with the main actions. One will therefore often want
an experiment of resolution IV - at least .

In a resolution V experiment, the main effects are all confounded with effects of at least
the fourth order, i.e. 4-factor interactions. Two-factor interactions will generally be
confounded with 3-factor interactions and/or interactions of a higher order in a resolution
V experiment.

As a rule, experiments with a higher resolution than V will not be needed to be done, if
the factors involved are of a quantitative nature (temperature, pressure, concentration,
time, density etc.) where main effects and 2-factor interactions are most frequently of
considerably greater importance than the interactions of higher order.

3.8.2 Practical and general procedure

By means of the method outlined above, we can now construct arbitrary 1/pq×pk factorial
experiments and find the confoundings (the alias relations) in the experiment.

k factors are considered (A, B, C, ..., K) and these factors are ordered so that the first
factors are a priori attributed the greatest importance. Meaning that the experimenter
expects that factor A will prove to have the greatest importance (effect) on the response
Y, and that B has the next greatest importance etc.

This ordering of the factors before the experiment is a great help both with regard to
creating a suitable design and with regard to evaluating the results obtained.

In the review, in addition, one has to make a decision as to which factors that could be
thought to interact and which ones that can be assumed to act additively. As the general
rule, interactions between factors that have a large effect will be larger than interactions
between factors with more moderate effects.

In addition, one will generally expect that interactions of a high order will be less impor-
tant than interactions of a lower order.

In many cases one often allows oneself to assume that interactions of an order higher than
2 (i.e. 3-factor effects such as ABC, ABD, BCD etc. and effects of even higher order) are
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assumed to have considerably less importance than the main effects.

After this, the experiment is most simply constructed by starting with the complete facto-
rial experiment, which is made up of the (k−q) first (and expected to be most important)
factors and putting the remaining q factors into this factor structure by confounding with
effects regarded as negligible. The first (k − q) and often most important factors will
thereby form the underlying factor structure in the 1/pq×pk factorial experiment wanted.

Example 3.19 : A 2−2 × 25 factorial experiment

Suppose that one considers 5 factors A, B, C, D and E, which one wants to evaluate each
on 2 levels in a 1/22 × 25 factorial experiment, i.e. in 25−2 = 23 = 8 single experiments.

We imagine that a closer evaluation of the problem at hand indicates that factors A, B
and C will have the greatest effect, and we thus let the underlying factor structure consist
of precisely these factors.

The design is then generated by confounding factors D and E with effects in the underlying
factor structure:

Generators
I
A
B

AB
C

AC
BC = E

ABC = D

=⇒

Aliasrelationer
I = ABCD = BCE = ADE
A = BCD = ABCE = DE
B = ACD = CE = ABDE

AB = CD = ACE = BDE
C = ABD = BE = ACDE

AC = BD = ABE = CDE
BC = AD = E = ABCDE

ABC = D = AE = BCDE

The experiment is a resolution III experiment.

The experiment can easily be written out using the tabular method as follows (if the
principal fraction with the experiment ”(1)” is chosen)

i j k l = (i + j + k)2 m = (j + k)2 Code
0 0 0 0 0 (1)
1 0 0 1 0 ad
0 1 0 1 1 bde
1 1 0 0 1 abe
0 0 1 1 1 cde
1 0 1 0 1 ace
0 1 1 0 0 bc
1 1 1 1 0 abcd
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which is probably the easiest way to find the experiment and at the same time time write
out the whole plan, for example using a simple spreadsheet program.

We may write the plan as:

D = ABC, E = −BC
l = (i + j + k)2, m = (j + k)2

(1) ad bde abe cde ace bc abcd

where the indices are i, j, k, l and m for factors A, B, C, D and E, respectively, and the
construction of the experiment is given with the previously introduced sign notation for
2k experiments as well as with the index method that is used in the present chapter. See,
too, the example on page 38.

There are 3 alternative possibilities, namely

D = −ABC, E = −BC
l = (i + j + k + 1)2, m = (j + k)2

d a be abde ce acde bcd abc

D = +ABC, E = +BC
l = (i + j + k)2, m = (j + k + 1)2

e ade bd ab cd ac bce abcde

D = −ABC, E = +BC
l = (i + j + k + 1)2, m = (j + k + 1)2

de ae b abd c acd bcde abce

A prerequisite for obtaining a ”good” experiment by doing one of these experiments is
that factors B and C do not interact with each other (BC and ABC unimportant), and
that factors D and E do not interact with other factors at all or with each other. Factor
A can be allowed to interact with the two factors B and C, i.e. AB and AC can differ
from 0.

If these preconditions cannot be regarded as fulfilled to a reasonable degree, the experi-
ment will not be appropriate to study the 5 factors simultaneously in a fractional factorial
design with only 8 single experiments.

The alternatives will then be either to exclude one of the factors (by keeping it constant in
the experiment) and being content with a 1/2×24 experiment or to extend the experiment
to a 1/2 × 25 experiment, i.e. an experiment with 16 single experiments. The second
alternative could reasonably be constructed by putting factor E into the factor structure
consisting of factors A, B, C and D by the relation ABCD = E, with the following alias
relations:
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I = ABCDE
A = BCDE
B = ACDE

AB = CDE
C = ABDE

AC = BDE
BC = ADE

ABC = DE
D = ABCE

AD = BCE
ABD = CE
CD = ABE

ACD = BE
BCD = AE

ABCD = E

If it is assumed that all interactions of an order higher than 2 are unimportant, one gets
reduced alias relations (the full defining relation is retained)

I = ABCDE
A =
B =

AB =
C =

AC =
BC =

= DE
D =

AD =
= CE

CD =
= BE
= AE
= E

One can see that all 2-factor interactions can be tested in this design. If some of these
are reasonably small, their sums of squares could be pooled into a residual sum of squares
and used to test higher order effects.

This experiment is a resolution V experiment.

One can choose one of the two following complementary experiments:

E = −ABCD or m = (i + j + k + l)2

(1) ae be ab ce ac bc abce de ad bd abde cd acde bcde abcd

E = +ABCD or m = (i + j + k + l + 1)2

e a b abe c ace bce abc d ade bde abd cde acd bcd abcde
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End of example 3.19

3.8.3 Alias relations with 1/pq × pk experiments

When q factors are put into a factor structure consisting of (k − q) factors, q generator
equations are used. Each equation gives rise to one defining relation. That is, one finds
q defining relations with q defining contrasts: I1, I2, ... , Iq. The complete defining
relation can then symbolically be written as

I = I1 ∗ I2 ∗ . . . ∗ Iq

where the operator ”∗” is defined on page 58. By calculating the expression and replacing
all ”+” with ”=”, one finds the complete defining relation:

I = I1 = I2 = I1I2 = I1I
2
2 = . . . = I1I

p−1
2 = . . . = I1I

p−1
2 · · · Ip−1

q

corresponding to the ”standard order” for q factors, called I1, I2, ... , Iq.

The alias relations of the experiment drawn up can be found for an arbitrary effect, F,
by calculating the expression

F = F ∗ I =⇒ F = F ∗ I1 ∗ I2 ∗ . . . ∗ Iq

and F and all the effects emerging on the right-hand side of the expression will be con-
founded with each other.

From calculation of the expression and replacement of ”=” with ”+” subsequently, one
gets:

F = FI1 = . . . = FIp−1
1 = FI2 = . . . = FIp−1

2 = . . . = F (I1I
p−1
2 · · · Ip−1

q )p−1

During the calculation of the single effects in the expression, it can be helpful to use the
fact that for two arbitrary effects X and Y , it holds true that

XY α = XαY

such that in the calculation of expressions with two effects, it is often easiest to lift up the
simplest effect to the power in question. For example in a 32 factorial experiment, both
(AB2C)2(AB) and (AB2C)(AB)2 become BC. Test this.
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Example 3.20 : Construction of 3−2 × 35 factorial experiment

Let there be 5 factors A, B, C, D and E each on 3 levels. One wants to do only 1/9 of
the whole experiment, i.e. a total of 35−2 = 33 = 27 single experiments.

Again we start with a complete factor structure for three of the factors. And it is assumed
that it is reasonable to choose A, B and C. In this factor structure, a further 2 factors are
put in, namely D and E.

Design generators
I
A
B

AB
AB2

C
AC
BC

ABC
AB2C
AC2

BC2 = E
ABC2

AB2C2 = D

=⇒ I1 = AB2C2D2

I2 = BC2E2

Other alternatives can be chosen, for example to put both D and E into the 3-factor
interaction ABC (which is decomposed in 4 parts each with 2 degrees of freedom) by for
example D = AB2C2 and E = ABC2. (Try to find the characteristics of this experiment
(alias relations)).

With the confounding chosen in the table, one finds the defining relation

I = AB2C2D2 = BC2E2 = (AB2C2D2)(BC2E2) = (AB2C2D2)(BC2E2)2

which after reduction gives

I = AB2C2D2 = BC2E2 = ACD2E2 = ABD2E

The alias relations of the experiment are
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I = AB2C2D2 = BC2E2 = ACD2E2 = ABD2E = Defining relation
A = ABCD = ABC2E2 = AC2DE = AB2DE2 = BCD = AB2CE = CD2E2 = BD2E

B = AC2D2 = BCE = ABCD2E2 = AB2D2E = ABC2D2 = CE = AB2CD2E2 = AD2E

AB = ACD = AB2C2E2 = AB2C2DE = ABDE2 = BC2D2 = ACE = BC2DE = DE2

AB2 = AB2CD = AC2E2 = ABC2DE = ADE2 = CD = ABCE = BCD2E2 = BDE2

C = AB2D2 = BE2 = AC2D2E2 = ABCD2E = AB2CD2 = BCE2 = AD2E2 = ABC2D2E

AC = ABD = ABE2 = ACDE = AB2C2DE2 = BC2D = AB2C2E = DE = BC2D2E

BC = AD2 = BE = ABC2D2E2 = AB2CD2E = ABCD2 = CE2 = AB2D2E2 = AC2D2E

ABC = AD = AB2E2 = AB2CDE = ABC2DE2 = BCD2 = AC2E = BDE = CDE2

AB2C = AB2D = AE2 = ABCDE = AC2DE2 = CD2 = ABC2E = BD2E2 = BCDE2

AC2 = ABC2D = ABCE2 = ADE = AB2CDE2 = BD = AB2E = CDE = BCD2E

BC2 = ACD2 = BC2E = ABD2E2 = AB2C2D2E = ABD2 = E = AB2C2D2E2 = ACD2E

ABC2 = AC2D = AB2CE2 = AB2DE = ABCDE2 = BD2 = AE = BCDE = CD2E

AB2C2 = AB2C2D = ACE2 = ABDE = ACDE2 = D = ABE = BC2D2E2 = BC2DE2

The alias relation for example of the main effect A is found with the help of:

A = A ∗ I1 ∗ I2 = A ∗ (AB2C2D2) ∗ (BC2E2)

which gives

A = A(AB2C2D2) = A(AB2C2D2)2 = A(BC2E2) = . . . = A(AB2C2D2)2(BC2E2)2

The expressions are organised in A-B-C-D-E order and the exponents reduced modulo 3.
If necessary the exponent 1 on the first factor in the expressions is found by raising to the
power of 2 and reducing modulo 3.

In the same way, the alias relations for each of the other effects are found in the underlying
factor structure as shown in the table.

To elucidate the characteristics of the experimental design, all effects considered unimpor-
tant can be removed. This is the case for the BC effect and all other effects involving more
than 2 factors. For the sake of clarity, the effects from the underlying factor structure are
retained, but in parenthesis for assumingly unimportant effects.

In this way, the following table is found, which shows that 2-factor interactions are usually
confounded with other 2-factor interactions or with main effects.
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Reduced alias relations
I = AB2C2D2 = BC2E2

= ACD2E2 = ABD2E

A =
B = CE

AB = DE2

AB2 = CD

C = BE2

AC = DE

(BC) = AD2 = BE = CE2

(ABC) = AD

(AB2C) = AE2 = CD2

AC2 = BD

(BC2) = E

(ABC2) = BD2 = AE

(AB2C2) = D

The experiment is a resolution III experiment. One can see that it is necessary to assume
that a number of the 2-factor interactions are unimportant if the experiment is to be
suitable.

If, for example, one can furthermore ignore interactions involving factors D and E, all else
can be tested and estimated. This shows the usefulness of ordering the factors according
to importance (i.e. main effects and thus interactions from D and E relatively small).

If it holds true that D and E have only additive effects and do not interact with the
other factors, the alias relations can be reduced to the table shown on page 94, where the
experiment was constructed.

There are 3 × 3 = 9 possibilities for implementing the experiment. If, for example, we
want the fraction including ”(1), the experiment will be given by the index restrictions
(i + 2j + 2k + 2l)3 = 0 and (j + 2k + 2m)3 = 0.

If we want to write out a table of indices for the factors (that is the design), we use the
tabular method and the generator equations l = i + 2j + 2k and m = j + 2k as follows:
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Factors and levels
A B C D E Experiment
i j k l = (i + 2j + 2k)3 m = (j + 2k)3 code
0 0 0 0 0 (1)
1 0 0 1 0 ad
2 0 0 2 0 a2d2

0 1 0 2 1 bd2e
1 1 0 0 1 abe
2 1 0 1 1 a2bde
0 2 0 1 2 b2de2

1 2 0 2 2 ab2d2e2

2 2 0 0 2 a2bd2e
0 0 1 2 2 cd2e2

1 0 1 0 2 ace2

... ... ... ... ... ...

... ... ... ... ... ...
2 2 2 1 0 a2b2c2d

The experiment is 3 × 3 × 3 = 27 single experiments. One can also derive the single
experiments by solving index equations. If 3 experiments which (independently) fulfil
index equations are called x, y and z, the experiment will be:

(1) x x2

y xy x2y
y2 xy2 x2y2

z xz x2z
yz xyz x2yz
y2z xy2z x2y2z

z2 xz2 x2z2

yz2 xyz2 x2yz2

y2z2 xy2z2 x2y2z2

In the underlying factor structure A, B and C, x′ = a, y′ = b and z′ = c will be solutions,
and the corresponding index sets are (i, j, k) = (1, 0, 0), (i, j, k) = (0, 1, 0) and (i, j, k) =
(0, 0, 1).

To find three solutions x, y and z, we therefore try with

x′ : (i, j, k) = (1, 0, 0) =⇒ (l, m) = (1, 0) =⇒ x = ad
y′ : (i, j, k) = (0, 1, 0) =⇒ (l, m) = (2, 1) =⇒ y = bd2e
z′ : (i, j, k) = (0, 0, 1) =⇒ (l, m) = (2, 2) =⇒ z = cd2e2

The experiment then consists of the single experiments below:
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(1) ad (ad)2

bd2e ad(bd2e) (ad)2(bd2e)
(bd2e)2 ad(bd2e)2 (ad)2(bd2e)2

cd2e2 adcd2e2 (ad)2cd2e2

(bd2e)cd2e2 ad(bd2e)cd2e2 (ad)2(bd2e)cd2e2

(bd2e)2cd2e2 ad(bd2e)2cd2e2 (ad)2(bd2e)2cd2e2

(cd2e2)2 ad(cd2e2)2 (ad)2(cd2e2)2

(bd2e)(cd2e2)2 ad(bd2e)(cd2e2)2 (ad)2(bd2e)(cd2e2)2

(bd2e)2(cd2e2)2 ad(bd2e)2(cd2e2)2 (ad)2(bd2e)2(cd2e2)2

which are reorganised and the exponents reduced modulo 3:

(1) ad a2d2

bd2e abe a2bde
b2de2 ab2d2e2 a2b2e2

cd2e2 ace2 a2cde2

bcd abcd2 a2bc
b2ce ab2cde a2b2cd2e

c2de ac2d2e a2c2e
bc2e2 abc2de2 a2bc2d2e2

b2c2d2 ab2c2 a2b2c2d

In all, there are 9 different possibilities to construct the experiment, corresponding to the
following table:

(i + 2j + 2k + 2l)3 = 0 (i + 2j + 2k + 2l)3 = 1 (i + 2j + 2k + 2l)3 = 2
(j + 2k + 2m)3 = 0 1 = the design shown 2 3
(j + 2k + 2m)3 = 1 4 5 6
(j + 2k + 2m)3 = 2 7 8 9

The three experiments ”1”, ”4” and ”7”, for example, are complementary with regard to
the generator equation BC2 = E, i.e. the defining relation I2 = BC2E2.

The same holds true for ”2”, ”5” and ”8”, as well as for ”3”, ”6” and ”9”.

If one carries out one of these sets of complementary experiments, one breaks the con-
foundings originating in the choice of BC2 = E, and the whole experiment will then be
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a 1/3 × 34 experiment with the defining relation I1 = AB2C2D2 and the factors A, B, C
and E in the underlying factor structure.

End of example 3.20

3.8.4 Estimation and testing in 1/pq × pk factorial experiments

The important thing to realise is that 1/pq × pk factorial experiments are constructed on
the basis of a complete factor structure, i.e. the underlying complete factor structure.
The analysis of the experiment is then done in the following steps:

1) For the fractional factorial design, the underlying complete factor structure is iden-
tified.

2) Data are arranged in accordance with this underlying structure, and the sums of
squares are determined in the usual way for the factors and interactions in it.

3) The alias relations indicate how all the effects are confounded in the experiment.
Thereby the sums of squares are found for effects that are not in the underlying
factor structure.

4) By considering specific factor combinations in a single experiment, one can decide
how the index relations are between the effects that are part of the same alias
relation. In this way estimates are determined for the individual levels for the
effects that are not in the underlying structure.

As an illustration of this, we consider the following.

Example 3.21 : Estimation in a 3−1 × 33-factorial experiment

We have factors A, B and C, all on 3 levels and we assume that A, B and C are purely
additive, so that it is relevant to do a fractional factorial experiment instead of a complete
factorial experiment.

As the underlying factor structure, the (A,B) structure is chosen.

The generalised (Kempthorne) effects in this structure are A, B, AB and AB2. We choose
to confound for example with AB, i.e. ABi+j = Ck. This choice entails the following
defining relation and alias relations:

I = ABC2

A = AB2C = BC2

B = AB2C2 = AC2

AB = ABC = C
AB2 = AC = BC
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The index restriction on the principal fraction of the experiment, i.e. the fraction that
contains ”(1)”, is (i + j + 2k)3 = 0 ⇔ k = (i + j)3. Two linearly independent solutions
have to be found for this and by starting in ”a” and ”b”, one finds:

(i, j) = (1, 0) =⇒ k = (1 + 0) = 1 : the experiment is ac

(i, j) = (0, 1) =⇒ k = (0 + 1) = 1 : the experiment is bc

One possible experiment is the principal fraction in which ”(1)” is a part:

(1) ac (ac)2

bc acbc (ac)2bc
(bc)2 ac(bc)2 (ac)2(bc)2

=⇒
(1) ac a2c2

bc abc2 a2b
b2c2 ab2 a2b2c

An alternative possibility is to carry out one of the (two) other fractions, for example the
one of which the single experiment a is part. This fraction is determined by ”multiplying”
the principal fraction with a:

a ×
(1) ac a2c2

bc abc2 a2b
b2c2 ab2 a2b2c

=⇒
a a2c c2

abc a2bc2 b
ab2c2 a2b2 b2c

This experiment has the index restriction (i + j + 2k)3 = 1 ⇔ k = (i + j + 2)3.

This experiment is chosen here and data are organised and analysed now in the usual way
according to factors A and B (neglecting C):

A=0 A=1 A=2
B=0 c2 a a2c or (1) a a2

B=1 b abc a2bc2 without c : b ab a2b
B=2 b2c ab2c2 a2b2 b2 ab2 a2b2

TA0 = c2 + b + b2c , TA1 = a + abc + ab2c2 , TA2 = a2c + a2bc2 + a2b2

TB0 = c2 + a + a2c , TB1 = b + abc + a2bc2 , TB2 = b2c + ab2c2 + a2b2

TAB0 = c2 + a2bc2 + ab2c2 , TAB1 = a + b + a2b2 , TAB2 = a2c + abc + b2c

TAB2
0

= c2 + abc + a2b2 , TAB2
1

= a + a2bc2 + b2c , TAB2
2

= a2c + b + ab2c2
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SSQ(A) = ([TA0 ]
2 + [TA1 ]

2 + [TA2 ]
2) /3r − [Ttot]

2/9r , f = 3 − 1

SSQ(B) = ([TB0 ]
2 + [TB1 ]

2 + [TB2 ]
2) /3r − [Ttot]

2/9r , f = 3 − 1

SSQ(AB) = ([TAB0 ]
2 + [TAB1 ]

2 + [TAB2 ]
2) /3r − [Ttot]

2/9r , f = 3 − 1

SSQ(AB2) =
(
[TAB2

0
]2 + [TAB2

1
]2 + [TAB2

2
]2

)
/3r − [Ttot]

2/9r , f = 3 − 1

where r indicates that a total of r single measurements could be made for each single
experiment. In that case, it is assumed that these r repetitions are randomised over the
whole experiment.

Finally, the effects can be estimated:

Â0 = TA0/3r − Ttot/9r , Â1 = TA1/3r − Ttot/9r , Â2 = TA2/3r − Ttot/9r

B̂0 = TB0/3r − Ttot/9r , B̂1 = TB1/3r − Ttot/9r , B̂2 = TB2/3r − Ttot/9r

ÂB0 = TAB0/3r − Ttot/9r , ÂB1 = TAB1/3r − Ttot/9r , ÂB2 = TAB2/3r − Ttot/9r

ÂB2
0 = TAB2

0
/3r − Ttot/9r , ÂB2

1 = TAB2
1
/3r − Ttot/9r , ÂB2

2 = TAB2
2
/3r − Ttot/9r

To find the connection between C and the AB effect, the index relation is found from
the specific experiment by considering two single experiments, for example c2 (i = 0, j =
0, k = 2) and a (i = 1, j = 0, k = 0). One finds that it holds true that

Index
ABi+j 0 1 2
Ck 2 0 1

where index k = (i + j + 2)3. Therefore, Ĉ0 = ÂB1, Ĉ1 = ÂB2 and Ĉ2 = ÂB0.

The mathematical model of the experiment could be written as

Yijkν = µ + Ai + Bj + Ck=i+j+2 + Eijkν , where ν = 1, 2 . . . , r

and, if ν > 1, and there is used complete randomisation correctly, the residual sum of
squares is

SSQresid =
3∑

i=1

3∑
j=1

[
r∑

ν=1

Y 2
ijkν − r · Ȳ 2

ijk·

]
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Note that sums are made over indices i and j alone, since index k is of course given
by i and j in this 33−1 factorial experiment (which consists of 9 single experiments each
repeated r times).

The precondition of additivity between the three factors A, B and C could be tested by
testing the AB2 effect against this sum of squares.

End of example 3.21

Example 3.22 : Two SAS examples

The calculations shown in the above example are relatively easy to program. A program
can also be written for the statistical package SAS which will do the work. The follow-
ing small example with data (r = 1) illustrates how analysis of variance can be done
corresponding to factors A and B alone, i.e. the underlying factor structure.

A=0 A=1 A=2
B=0 c2=15.1 a=16.9 a2c=23.0
B=1 b=9.8 abc=12.6 a2bc2=21.7
B=2 b2c=5.0 ab2c2=10.0 a2b2=12.8

data exempel1; input A B C Y;

AB = mod(A+B,3);

AB2 = mod(A+B*2,3);

cards;

0 0 2 15.1

1 0 0 16.9

2 0 1 23.0

0 1 0 9.8

1 1 1 12.6

2 1 2 21.7

0 2 1 5.0

1 2 2 10.0

2 2 0 12.8

;

proc GLM; class A B AB AB2;

model Y = A B AB AB2;

means A B AB AB2;

run;

In the example starting on page 94 with data layout shown on page 96, a SAS job could
look like the following:

data exempel2; input A B C D E Y;
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AB = mod(A+B,3); AB2 = mod(A+B*2,3); AC = mod(A+C,3);

AC2 = mod(A+C*2,3); BC = mod(B+C,3); BC2 = mod(B+C*2,3);

ABC = mod(A+B+C,3); ABC2 = mod(A+B+C*2,3);

AB2C = mod(A+B*2+C,3); AB2C2 = mod(A+B*2+C*2,3);

cards;

0 0 0 0 0 31.0

1 0 0 1 0 16.0

2 0 0 2 0 4.0

0 1 0 0 1 23.8

1 1 0 1 1 23.6

2 1 0 2 1 9.7

.....

.....

.....

1 2 2 0 0 12.8

2 2 2 1 0 15.1

;

proc GLM ; class A B AB AB2 C AC AC2 BC BC2 ABC ABC2 AB2C AB2C2 ;

model Y = A B AB AB2 C AC AC2 BC BC2 ABC ABC2 AB2C AB2C2 ;

means A B AB AB2 C AC AC2 BC BC2 ABC ABC2 AB2C AB2C2 ;

run;

And sums of squares and estimates of effects outside the underlying factor structure
(A,B,C) can be directly found using the alias relations.

End of example 3.22

3.8.5 Fractional factorial design laid out in blocks

A fractional factorial design can be laid out in smaller blocks because of a wish to increase
the accuracy in the experiment (different batches, groups of experimental animals, several
days etc.). Other reasons could be that for the sake of saving time one wants to do the
single experiments on parallel experimental facilities (several ovens, reactors, set-ups and
such).

In the organisation of such an experiment, the fractional factorial design is first set up
without regard to these possible blocks, since it is important first and foremost to have
an overview of whether it is possible to construct a good fractional factorial design and
how the factor effects of the experiment will be confounded.

When a suitable fractional factorial design has been constructed, a choice is made of which
effect or effects would be suitable to confound with blocks, and a control is made that all
block confoundings are sensible, perhaps the whole confounding table is reviewed. In the
example on page 112, an example of this is shown.
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Both during the construction of the fractional factorial design and in the subsequent
formation of blocks for the experiment, the underlying factor structure is used, which
most practically is composed of the most important factors, called A (first factor), B
(second factor) etc.

In practice, one can naturally imagine a large number of variants of such experiments,
but the following examples illustrate the technique rather generally.

Example 3.23 : A 3−2 × 35 factorial experiment in 3 blocks of 9 single exper-
iments

Let us again consider an experiment in which there are 5 factors: A, B, C, D and E. A
fractional factorial design consists of 33 = 27 single experiments. We imagine that for
practical reasons, it can be expedient to divide these 27 single experiments into 3 blocks of
9; for example it can be difficult to maintain uniform experimental conditions throughout
all 27 single experiments.

The 1/32 × 35 factorial experiment wanted is found from two generator equations.
As previously discussed, 2 factors, D and E, are introduced into a complete 33 factor
structure for the factors A, B and C.

As in the example on page 94, we choose to put in D and E as in the following table:

Design generators
I
A
B

AB
AB2

C
AC
BC

ABC
AB2C
AC2

BC2 = E
ABC2

AB2C2 = D

=⇒ I1 = AB2C2D2

I2 = BC2E2

With this confounding, one gets (as previously) the defining relation

I = AB2C2D2 = BC2E2 = ACD2E2 = ABD2E

Construction of the experiment still follows the example on page 94, and one could perhaps
again choose the principal fraction (see page 98):
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(1) ad a2d2

bd2e abe a2bde
b2de2 ab2d2e2 a2b2e2

cd2e2 ace2 a2cde2

bcd abcd2 a2bc
b2ce ab2cde a2b2cd2e

c2de ac2d2e a2c2e
bc2e2 abc2de2 a2bc2d2e2

b2c2d2 ab2c2 a2b2c2d

To now divide this experiment consisting of the 27 single experiments into 3 blocks of 9,
one chooses yet another generating relation which indicates how the blocks are formed.

When this relation is to be chosen, one again starts with the alias relations of the exper-
iment in such a reduced form that one has an overview of how the main effects and/or
interactions of interest are confounded. If we again follow the same example, these re-
duced alias relations could be as shown in the following table, in which we now also put
in the blocks:

I = AB2C2D2 = BC2E2 = ACD2E2 = ABD2E
A =
B = CE
AB = DE2

AB2 = CD
C = BE2

AC = DE
(BC) = AD2 = BE = CE2 = blocks
(ABC) = AD
(AB2C) = AE2 = CD2

AC2 = BD
(BC2) = E
(ABC2) = BD2 = AE
(AB2C2) = D

The easiest way to write out the this experiment is shown on page 108, however
we will discuss the design a little in detail.

The choice of confounding with blocks means that all effects in the underlying factor
structure that are not confounded with an effect of interest can be used. The effect BC
could be such an effect (but, for example, not BC2, why?).

The defining contrast BC has the index value (j + k)3. The block division is then deter-
mined by whether (j + k)3 = 0, 1 or 2.
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To find the 3 blocks, one can again start with the underlying factor structure and it can
be seen that the block division is solely determined by indices for the factors B and C,
namely j and k.

As we saw in the previous example, the experiment, as described above, was also found
on the basis of the underlying factor structure, and the block number corresponding to
the single experiments is inserted in the following table:

Experiment block Experiment block Experiment block
(1) 0 ad 0 a2d2 0
bd2e 1 abe 1 a2bde 1
b2de2 2 ab2d2e2 2 a2b2e2 2

cd2e2 1 ace2 1 a2cde2 1
bcd 2 abcd2 2 a2bc 2
b2ce 0 ab2cde 0 a2b2cd2e 0

c2de 2 ac2d2e 2 a2c2e 2
bc2e2 0 abc2de2 0 a2bc2d2e2 0
b2c2d2 1 ab2c2 1 a2b2c2d 1

To find the three blocks, we could also solve the equations (modulo 3):

Generatorer: Blocks = BC D = AB2C2 E = BC2

Block 0 : j + k = 0 i + 2j + 2k + 2l = 0 j + 2k + 2m = 0
Block 1 : j + k = 1 i + 2j + 2k + 2l = 0 j + 2k + 2m = 0
Block 2 : j + k = 2 i + 2j + 2k + 2l = 0 j + 2k + 2m = 0

For example 2 solutions have to be found for ”Block 0” which consists of 3× 3 = 9 single
experiments, and after that one further solution for each of the other two blocks.

The structure of block 0 can be illustrated

(1) u u2

v uv u2v
v2 uv2 u2v2

where u and v represent solutions to the equations for block 0.

For example, with i = 1 and j = 0, it is found from j + k = 0, that k = 0. Further,
i + 2j + 2k + 2l = 0 indicates that l = 1, and from j + 2k + 2m = 0 is found that m = 0.
A solution is thereby u = ad.

With i = 0, j = 1, it is found that k = 2, l = 0 and m = 2, from which v = bc2e2 is found.
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(1) u = ad u2 = a2d2

v = bc2e2 uv = abc2de2 u2v = a2bc2d2e2

v2 = b2ce uv2 = ab2cde u2v2 = a2b2cd2e

And it can be seen that this is precisely the block 0 found above.

To find block 1, one solution is derived for j+k = 1, i+2j+2k+2l = 0 and j+2k+2m = 0.
Such a solution is i = 0, j = 0, k = 1, from which l = 2 and m = 2, corresponding to the
single experiment cd2e2.

By ”multiplying” cd2e2 on the already found block 0, block 1 is formed. Try it yourself.

Block 2 is found by solving the equations j+k = 2, i+2j+2k+2l = 0 and j+2k+2m = 0.
A solution is i = 0, j = 1, k = 1, from which l = 1 and m = 0, corresponding to the single
experiment bcd. This solution ”is multiplied” on block 0, by which block 2 appears.

When the experiment is analysed, the block effect is reflected in the BC effect together
with the other effects with which BC is confounded. In other words, the experiment is
again analysed on the basis of the underlying factor structure determined by the factors
A, B and C.

Finally the experiment could also be constructed directly on the basis of the generators
that are chosen

I
A
B

AB
AB2

C
AC
BC = Blocks

ABC
AB2C
AC2

BC2 = E
ABC2

AB2C2 = D

and calculating the factor levels and block numbers as shown in the following table by
means of the tabular method:
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Experimental design
D = (A+2B+2C)3, E = (B+2C)3

and Block = (B+C)3
No. A B C D E Block Experiment
1 0 0 0 0 0 0 (1)
2 1 0 0 1 0 0 ad
3 2 0 0 2 0 0 a2d2

4 0 1 0 2 1 1 bd2e
5 1 1 0 0 1 1 abe
6 2 1 0 1 1 1 a2bde
7 0 2 0 1 2 2 b2de2

8 1 2 0 2 2 2 ab2d2e2

9 2 2 0 0 2 2 a2b2e2

10 0 0 1 2 2 1 cd2e2

11 1 0 1 0 2 1 ace2

12 2 0 1 1 2 1 a2cde2

13 0 1 1 1 0 2 bcd
14 1 1 1 2 0 2 abcd2

15 2 1 1 0 0 2 a2bc
16 0 2 1 0 1 0 b2ce
17 1 2 1 1 1 0 ab2cde
18 2 2 1 2 1 0 a2b2cd2e
19 0 0 2 1 1 2 c2de
20 1 0 2 2 1 2 ac2d2e
21 2 0 2 0 1 2 a2c2e
22 0 1 2 0 2 0 bc2e2

23 1 1 2 1 2 0 abc2de2

24 2 1 2 2 2 0 a2bc2d2e2

25 0 2 2 2 0 1 b2c2d2

26 1 2 2 0 0 1 ab2c2

27 2 2 2 1 0 1 a2b2c2d

End of example 3.23

Finally two examples are given that illustrate the practical procedure in the construction
of two resolution IV experiments for 8 and 7 factors respectively. These experiments are
of great practical relevance, since they include relatively many factors in relatively few
single experiments, namely only 16. At the same time, the examples show division into 2
and 4 blocks, enabling the advantages such blocking can have.

Example 3.24 : A 2−4 × 28 factorial in 2 blocks

The experiment could be done in connection with a study of the manufacturing process
for a drug, for example.

We imagine that the given factors and their levels are circumstances which, during man-
ufacture, one normally aims to keep constant, or at least within given limits. It is the
effect of variation within these permitted limits that we want to study.

Eight factors are studied in a 2−4 × 28 factorial in two blocks. The 8 factors are 2 waiting
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times during two phases of the process, 3 temperatures, 2 pH values and the content of
zinc in the finished product. The factors are ordered so that factor A is considered the
most important, while B is the next most important etc.

The experiment is a resolution IV experiment. Under the assumption of negligible third
order interactions, all main effects can be analysed in this design.

The experiment is randomised within two blocks, as it is assumed that it is done in two
facilities (R0 and R1) in parallel experiments in completely random order.

The experiment is constructed as given in the following tables.

Factors and levels chosen
Factor Low level High level
A: Tidopløsning 1 + filtrering (.) 70+30 min (a) 30+70 min
B: Tblanding 1 (.) 20 ± 1 ◦C (b) 27 ± 1 ◦C
C: Tidopløsning 2 (.) 30 min (c) 100 min
D: Topløsning 2 (.) 5 ± 1 ◦C (d) 17 ± 1 ◦C
E: Tproces (.) 5 ± 1 ◦C (e) 17 ± 1 ◦C
F: pHr̊aprodukt 1 (.) 2.65 ± 0.02 (f) 3.25 ± 0.02
G: Zinkfærdig mix (.) 20.0 µg/ml (g) 26.0 µg/ml
H: pHfærdig mix (.) 7.20 ± 0.02 (h) 7.40 ± 0.02

Confoundings
I
A
B

AB
C

AC
BC

ABC = H
D

AD
BD

ABD = G
CD

ACD = F
BCD = E

ABCD = Blocks

We use the tabular method for calculating the levels of the factors and the block number
on the basis of the underlying complete factor structure consisting of factors A, B, C and
D, as shown in the following table:
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Experimental design
E=(B+C+D)2, F=(A+C+D)2, G=(A+B+D)2, H=(A+B+C)2

and Facility=(A+B+C+D)2
No. A B C D E F G H Experiment Facility Randomis.
1 0 0 0 0 0 0 0 0 (1) R0 9
2 1 0 0 0 0 1 1 1 a fgh R1 4
3 0 1 0 0 1 0 1 1 b egh R1 6
4 1 1 0 0 1 1 0 0 ab ef R0 11
5 0 0 1 0 1 1 0 1 c efh R1 16
6 1 0 1 0 1 0 1 0 ac eg R0 7
7 0 1 1 0 0 1 1 0 bc fg R0 5
8 1 1 1 0 0 0 0 1 abc h R1 10
9 0 0 0 1 1 1 1 0 d efg R1 12
10 1 0 0 1 1 0 0 1 ad eh R0 3
11 0 1 0 1 0 1 0 1 bd fh R0 1
12 1 1 0 1 0 0 1 0 abd g R1 14
13 0 0 1 1 0 0 1 1 cd gh R0 13
14 1 0 1 1 0 1 0 0 acd f R1 2
15 0 1 1 1 1 0 0 0 bcd e R1 8
16 1 1 1 1 1 1 1 1 abcd efgh R0 15

Prescriptions for the single experiments

Below are shown the factor settings for the two first single experiments and the two last
ones.

Carried out on facility R0

Testnr. FF– 1 X19
Experiment = bd(fh)

Proces parameter Level in experiment

A: Tidopløsning 1 + filtrering (.) 70+30 min

B: Tblanding 1 (b) 27 ± 1 ◦C
C: Tidopløsning 2 (.) 30 min

D: Topløsning 2 (d) 17 ± 1 ◦C
E: Tproces (.) 5 ± 1 ◦C
F: pHr̊aprodukt 1 (f) 3.25 ± 0.02

G: Zinkfærdig mix (.) 20.0 µg/ml

H: pHfærdig mix (h) 7.40 ± 0.02
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Carried out on facility R1

Testnr. FF– 2 X19
Experiment = acd(f)

Proces parameter Level in experiment

A: Tidopløsning 1 + filtrering (a) 30+70 min

B: Tblanding 1 (.) 20 ± 1 ◦C
C: Tidopløsning 2 (c) 100 min

D: Topløsning 2 (d) 17 ± 1 ◦C
E: Tproces (.) 5 ± 1 ◦C
F: pHr̊aprodukt 1 (f) 3.25 ± 0.02

G: Zinkfærdig mix (.) 20.0 µg/ml

H: pHfærdig mix (.) 7.20 ± 0.02

Carried out on facility R0

Testnr. FF– 15 X19
Experiment = abcd(efgh)

Proces parameter Level in experiment

A: Tidopløsning 1 + filtrering (a) 30+70 min

B: Tblanding 1 (b) 27 ± 1 ◦C
C: Tidopløsning 2 (c) 100 min

D: Topløsning 2 (d) 17 ± 1 ◦C
E: Tproces (e) 17 ± 1 ◦C
F: pHr̊aprodukt 1 (f) 3.25 ± 0.02

G: Zinkfærdig mix (g) 26.0 µg/ml

H: pHfærdig mix (h) 7.40 ± 0.02

Carried out on facility R1

Testnr. FF– 16 X19
Experiment = c(efh)

Proces parameter Level in experiment

A: Tidopløsning 1 + filtrering (.) 70+30 min

B: Tblanding 1 (.) 20 ± 1 ◦C
C: Tidopløsning 2 (c) 100 min

D: Topløsning 2 (.) 5 ± 1 ◦C
E: Tproces (e) 17 ± 1 ◦C
F: pHr̊aprodukt 1 (f) 3.25 ± 0.02

G: Zinkfærdig mix (.) 20.0 µg/ml

H: pHfærdig mix (h) 7.40 ± 0.02

End of example 3.24
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Example 3.25 : A 2−3 × 27 factorial experiment in 4 blocks

Suppose that there are 7 factors which one wants studied in 16 single experiments. The
first four factors, A, B, C and D are used as the underlying factor structure. The factors
E, F and G are put into this according to the table below in a resolution IV experiment.

At the same time, one could want the 16 single experiments done in 4 blocks of 4 single
experiments. Since 4 = 2×2 blocks have to be used, 2 defining equations for blocks have
to be chosen. A suggestion for the construction of the experimental design could be:

Generators
I
A
B

AB
C

AC
BC

ABC = blocks
D

AD
BD

ABD = G
CD

ACD = F
BCD = E

ABCD = blocks

With these choices, the effects ABC and ABCD, but also the effect ABC×ABCD will be
confounded with blocks. Now, since ABC×ABCD = D, this is not a good choice, because
the main effect D is obviously confounded with blocks. A better choice could be:

Generators
I
A
B

AB
C

AC
BC

ABC = blocks
D

AD
BD

ABD = G
CD

ACD = F
BCD = blocks

ABCD = E
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This choice will entail that ABC, BCD and ABC×BCD = AB will be confounded with
blocks. The experimental design can be written out using the tabular method:

Design
E=(A+B+C+D)2, F=(A+C+D)2, G=(A+B+D)2

and Block=(A+B+C)2 + 2×(B+C+D)2
Nr A B C D E F G Experiment Block
1 0 0 0 0 0 0 0 (1) 0
2 1 0 0 0 1 1 1 a efg 1
3 0 1 0 0 1 0 1 b eg 3
4 1 1 0 0 0 1 0 ab f 2
5 0 0 1 0 1 1 0 c ef 3
6 1 0 1 0 0 0 1 ac g 2
7 0 1 1 0 0 1 1 bc fg 0
8 1 1 1 0 1 0 0 abc e 1
9 0 0 0 1 1 1 1 d efg 2
10 1 0 0 1 0 0 0 ad 3
11 0 1 0 1 0 1 0 bd f 1
12 1 1 0 1 1 0 1 abd eg 0
13 0 0 1 1 0 0 1 cd g 1
14 1 0 1 1 1 1 0 acd ef 0
15 0 1 1 1 1 0 0 bcd e 2
16 1 1 1 1 0 1 1 abcd fg 3

End of example 3.25
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