Problems for Multivariate Statistics 02409

Compiled by: Bjarne Kjær Ersbøll

September 7, 2010

Problem 7.

Consider the following observations from a $N_{3}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$ distribution:

$$
\left(\begin{array}{l}
5.1 \\
3.5 \\
6.3
\end{array}\right),\left(\begin{array}{l}
4.9 \\
3.0 \\
5.8
\end{array}\right),\left(\begin{array}{l}
4.6 \\
3.2 \\
7.1
\end{array}\right),\left(\begin{array}{l}
5.0 \\
3.1 \\
6.3
\end{array}\right),\left(\begin{array}{l}
5.4 \\
3.6 \\
6.5
\end{array}\right)
$$

Estimate $\boldsymbol{\mu}$ and $\boldsymbol{\Sigma}$. Find the axes in the contour ellipsoide.

Problem 8.
Let $\boldsymbol{x}=\binom{x_{1}}{x_{2}}$ be normally distributed with parameters:

$$
\boldsymbol{\mu}=\binom{3}{6}
$$

and

$$
\boldsymbol{\Sigma}=\left(\begin{array}{ll}
4 & 4 \\
4 & 9
\end{array}\right)
$$

Determine the conditional distribution of $\left(x_{1} \mid x_{2}\right)$ and $\left(x_{2} \mid x_{1}\right)$. Plot the conditional means as functions of the conditional variables.

Problem E6

A laboratory method gives the possibility of determining the weight $\%$ of clay $\left(x_{1}\right)$, "fine" sand $\left(x_{2}\right)$ and "coarse" sand $\left(x_{3}\right)$ in a gravel sample. (This does not determine all types of gravel i.e. $x_{1}+x_{2}+x_{3}$ is allways smaller than 100). Such a determination is of great help in finding out what the gravel can be used for.

Below the empirical variance covariance matrix for x_{1}, x_{2}, x_{3} based on 31 determinations of the composition of gravel from different locations has been given.

$$
\hat{\boldsymbol{\Sigma}}=\left(\begin{array}{rrr}
6.8491 & -5.1952 & -1.5193 \\
-5.1952 & 6.8433 & 1.5384 \\
-1.5193 & 1.5384 & 2.3077
\end{array}\right)
$$

The eigenvalues and eigenvectors for $\hat{\boldsymbol{\Sigma}}$ are estimated at:

$$
\lambda_{1}=12.50, \boldsymbol{p}_{1}=\left(\begin{array}{r}
0.6917 \\
-0.6917 \\
-0.2075
\end{array}\right)
$$

$$
\begin{aligned}
& \lambda_{2}=1.65, \boldsymbol{p}_{\mathbf{2}}=\left(\begin{array}{r}
0.6952 \\
0.7156 \\
-0.0677
\end{array}\right), \\
& \lambda_{3}=1.85, \boldsymbol{p}_{\mathbf{3}}=\left(\begin{array}{r}
-0.1953 \\
0.0974 \\
-0.9759
\end{array}\right) .
\end{aligned}
$$

Investigate if it can be assumed that 2 and 3 principal components do not contribute equally in explaining the variation of the material.

Try to give a verbal description of gravel samples where the first principal component is "large" and of samples where it is "small".

Problem E20

In an investigation of the general moral in a school class, Hartshore and May have found, the following correlations between outcome of 3 possibilities which measure the degree of dishonesty in situations involving "copying", "help" and "looking over the shoulder":

$$
\left(\begin{array}{ccc}
1 & 0.4 & 0.4 \\
0.4 & 1 & 0.4 \\
0.4 & 0,4 & 1
\end{array}\right)
$$

1) Find the linear combination of the possibilities which describes the largest possible fraction of the total variation and give the fraction.
2) Give a verbal interpretation of the linear combination.

Tip. You could consider using the fact that the roots of the equation $x^{3}-3 \rho^{2} x+2 \rho^{3}=0$ are: $\rho, \rho,-2 \rho$.

Problem E11

In an analysis of the development (in time) of the strength of portland cement, correlations between the following 3 variables (based on 102 observations) were estimated.
$C_{3} A=$ the amount of tricalciuminat in the cement in percent.
BLAINE $\quad=$ a measure of the specific surface and therefore also a
measure of the "fine-grain'edness" of the crushed
(powdered)cement. A large BLAINE number corresponds to finely powdered cement.
STYRKE $28=$ the strength of the cement after 28 days of hardening.

The obtained correlations were:

	$C_{3} A$	BLAINE	STYRKE 28
$C_{3} A$	1	0.192	-0.168
BLAINE	0.192	1	0.320
STYRKE 28	-0.168	0.320	1

It should be mentioned that a number of analyses of the distributions of the variables showed that they can be assumed normally distributed.

Using relevent statistical tests you should now give your opinion on the degree of correlation between $C_{3} A$-content and 28-day-strength.

1) Unconditionally.
2) For fixed value of BLAINE.
3) Also, give a (verbal) description and conclusion of the results of the analyses under 1) and $2)$.

Problem 29
Growth experiment with lucerne.
Experiment.
In the period $1968-69$, at Højbakkegård, the experimental farm at the Royal Veterinary and Agricultural University of Denmark, a growth experiment with lucerne was performed. The offspring of a total of 176 cross-fertilisations was investigated. Nine variables were measured. The values given in the following for each of the nine variables are averages of between 15 and 20 plants (most values are averages of 20 plants).

Variable	Unit	Explanation
(1) type of growth	rank 1-9	1 = lying down
		$9=$ standing
(2) regrowth after winter	-"-	1 = worst
		$9=$ best
(3) ability to creep	_"-	1 = no runners
		$9=$ most runners
(4) vigorousity	-"-	$1=$ weakest
		$9=$ strongest
(5) time of flowering	-"-	$1=$ latest
		$9=$ earliest
(6) height of plant	cm	
(7) weight of seed	g per plant	
(8) weight of plant	$\mathrm{g} \operatorname{per}$ (dried)	
	plant	
(9) percent seed	calculated from	
	7) and (8)	

For the variables (1) to (5) the unit used is a rank between 1 and 9 . This is done because it is difficult to measure these variables directly. Experience shows this gives satisfactory results.

Data. The following table shows a few of the 176 observations.

Plant- group	type of growth	regrowth after	ability to creep winter	vigorous- ity	time of flowering	height of plant	weight of seed	weight of plant	percent seed
$\#$	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)
1	4.11	5.00	3.05	6.17	3.67	50.00	3.47	120.10	2.75
2	3.08	4.75	4.75	7.50	5.17	61.50	0.82	111.33	0.75
3	3.12	4.00	3.35	6.53	3.94	55.29	0.86	97.47	0.81
\vdots									
176	4.00	4.40	4.60	7.40	2.90	50.00	0.66	153.50	0.44

The experiments were performed in order to answer the following questions:

1) The growth of the plants is described above using 9 variables. If we consider the variables as en entity, which characteristics show the greatest variation?
2) Can one describe the variation of the growth using fewer than 9 variables?

A principal component analysis was therefore performed. This gave the following results:

Eigenvalues:
$3.1270 \quad 2.3416 \quad 1.2166$

Cumulated percent of eigenvalues:
$0.3475 \quad 0.6076 \quad 0.7428$

Eigenvectors:

1	2	3	4	5	6	7	8	9

Vector 1
-.0182 . 2665 . 1731 . 3788 . 3527 . 4516 . 3885 . 4162 . 3204

Vector 2
$\begin{array}{lllllllll}. & 0148 & -.4346 & -.4662 & -.3638 & .2130 & .0518 & .4108 & -.1734\end{array} .4633$

Vector 3
.7465 . 1993 . $3601-.1011$. 2418 -. 3056 . $1033-.2611$. 1799

This was followed by a factor analysis which resulted in:
$\frac{\text { Rotated factor matrix (3 factors) }}{\text { Variable } 1}$

0.17201	-0.13516	0.79480

Variable 2
$-0.2246 \quad-0.84236 \quad 0.05135$

Variable 3
-0.13652 $-0.81818 \quad 0.26920$

Variable 4
$0.12099-0.80729-0.32196$

Variable 5
$0.72809-0.17618 \quad 0.07281$

Variable 6
$0.56871-0.34554-0.56106$

Variable 7
$0.93280 \quad 0.05221-0.08480$

Variable 8
$0.31501-0.58527-0.50336$

Variable 9
$0.91295 \quad 0.16875 \quad 0.03397$

	Communalities
Variable	Original
1	0.67956
2	0.71271
3	0.76053
4	0.77002
5	0.56646
6	0.75763
7	0.88004
8	0.69514
9	0.86310

1) Give an interpretation of the factors found.

Problem E44

In some attempts of geological studies by means of "remote sensing" one has used the measurements from the American Landsat-4 satellite. This satellite measures simultaneously the values of 7 spectral bands in the electromagnetic spectrum of square areas (so-called pixels) of $35 m \times 35 m$ on the surface of the earth.

There is special interest in differentiating between two types of geology:
bed group 10 (a type of slate) and
bed group 13 (a type of quartsite).

One assumes that 3 of the 7 bands of the satellite are especially suited to differentiate between the two bed groups. They are:

$$
\begin{aligned}
& X_{1}=\text { Band } 1 \sim 0.45-0.52 \mu \mathrm{~m} \\
& X_{2}=\text { Band } 3 \sim 0.63-0.69 \mu \mathrm{~m} \\
& X_{3}=\text { Band } 4 \sim 0.76-0.90 \mu \mathrm{~m}
\end{aligned}
$$

From an area on Ymer Island in East Greenland one has measured 493 pixels from bed group 10 and 73 pixels from bed group 13.

The estimated mean vectors, where μ_{1} is from: bed group 10 and μ_{2} from bed group 13 and the common variance-covariance matrix are given below. Furthermore other measures are given as a help.

$$
\begin{aligned}
\hat{\boldsymbol{\mu}}_{1} & =\left(\begin{array}{r}
75.9 \\
45.3 \\
41.8
\end{array}\right), \quad \hat{\boldsymbol{\mu}}_{2}=\left(\begin{array}{l}
78.2 \\
39.5 \\
44.1
\end{array}\right) \\
\hat{\boldsymbol{\Sigma}} & =\left(\begin{array}{rrr}
26.9 & 13.5 & 3.9 \\
13.5 & 17.5 & 12.2 \\
3.9 & 12.2 & 16.6
\end{array}\right) \\
\hat{\boldsymbol{\Sigma}}^{-1} & =\left(\begin{array}{rrr}
0.0788 & -0.0987 & 0.0543 \\
-0.0987 & 0.2415 & -0.1547 \\
0.0543 & -0.1547 & 0.1615
\end{array}\right) \\
\hat{\boldsymbol{\Sigma}}^{-1}\left(\hat{\boldsymbol{\mu}}_{1}-\hat{\boldsymbol{\mu}}_{2}\right) & =\left(\begin{array}{r}
-0.88 \\
1.98 \\
-1.39
\end{array}\right) \\
\hat{\boldsymbol{\mu}}_{1}^{\prime} \hat{\boldsymbol{\Sigma}}^{-1} \hat{\boldsymbol{\mu}}_{1} & =310.4, \quad \hat{\boldsymbol{\mu}}_{2}^{\prime} \hat{\boldsymbol{\Sigma}}^{-1} \hat{\boldsymbol{\mu}}_{2}=396.5
\end{aligned}
$$

1) Are these measurements reasonable to use in an attempt to differentiate between bed group 10 and bed group 13 ?
2) Would it be reasonable to drop bands 1 and 3 and use only band 4 in an attempt to differentiate between bed group 10 and bed group 13?
3) If one uses all the information from all 3 bands, what is then the Bayes-classification rule, assuming equal priors?
4) What is the Bayes-classification rule corresponding to using prior probabilities which are proportional to the number of observations?
5) Using the rule found under 3), what will

$$
\boldsymbol{x}=\left(\begin{array}{l}
74 \\
43 \\
40
\end{array}\right)
$$

be classified as?

Problem E9.
A team of medical doctors has been working on finding an easier way of diagnosing two similar but different diseases A and B .

Presently the team is working on the hypothesis that it is possible to distinguish A from B based on 2 relatively simple measurements on a patient. The measures are called x_{1} and x_{2}.

Based on an old but difficult diagnosis technique the team has sure knowledge of 106 patients with the disease A and 81 with the disease B . Measurements of x_{1} and x_{2} on all these patients gave the following empirical means for x_{1} and x_{2} :

	Disease	
	A	B
	$n_{1}=106$	$n_{2}=81$
\bar{x}_{1}	380	400
\bar{x}_{2}	120	90

and the following empirical variance-covariance matrix common for A and B :

	x_{1}	x_{2}
x_{1}	25	40
x_{2}	40	100

(x_{1} and x_{2} are assumed normal).

1) Test if there is a difference between the means of the two frequency distributions $f_{1}\left(x_{1}, x_{2} \mid\right.$ $A)$ and $f_{2}\left(x_{1}, x_{2} \mid B\right)$.
2) Determine an optimal decision rule with respect to discriminating between A and B when the maximal probability of misclassification must be minimised.
3) Determine if a patient with measurements $x_{1}=390$ and $x_{2}=100$ is classified as having disease A or B.

Problem 9.
Write the following statistical models as a general linear model.

1) One sided analysis of variance with 3 groups. The number of observations in each group is 2, 4 and 3 respectively.
2) Two sided analysis of variance with 2 rows and 2 columns and 1 observation in each cell.
3) Linear regression, where the line passes through $(0,0)$. There are n observations in all.

Problem 10.
In an econometric investigation, it is assumed that a certain phenomena y can be described using a polynomial:

$$
a x^{2}+b x
$$

plus a random error. The variable x is an amount of crowns in thousands. The following corresponding values of y and x have been observed

```
x: 0, 1, 1, 2
y: \frac{1}{2}, 0, - - 左, -2
```

Estimate a and b and their respective errors.

Problem E 19.
While examining the sulphur emission in Europe one has estimated the yearly emission for 3 areas by means of an ordinary "general linear model". These estimates are given together with their standard errors and the correlations between them in the table below.

Area	Emission in $\frac{10^{3} t s \mathrm{~S}}{127^{2} \mathrm{~km}^{2}}$	Standard error	Correlation
Denmark	48	8	1
East Germany	70	8	0.0
1	1		
Benelux, Ruhr \& South Germany	192	7	0.0
-0.2	1		

The estimate of the residual standard deviation was 18. Emissions are independent variables in the model. The observations are measurements of the SO_{4}-content in the air at a number of measuring stations in Europe, and the model is a linear relationship between emissions and measurements. The estimates are based on approx. 10000 observations.

By means of the model one finds - under certain meteorological conditions - that the measurement at a SO_{2}-measuring station, measuring SO_{2} content in air volumes, which have passed Denmark, crossed the Baltic, crossed East Germany, South Germany and Ruhr can be estimated by the following linear combination of the estimated emissions

$$
48 \times 0.4+70 \times 0.6+192 \times 0.8=214.80
$$

where the unit on the figures $0.4,0.6$ and 0.8 make the unit on the result equal $\mathrm{SO}_{2} \mu \mathrm{~g} / \mathrm{m}^{3}$ air.

1) Find - assuming $0.4,0.6$ and 0.8 are exact - a 95% confidence interval for the expected value corresponding to $0.4,0.6$ and 0.8 .
2) Find a 95% prediction interval for an observation corresponding to the above mentioned values.
3) Comment the two results found under 1) and 2).

Problem 12.

In the law for common schools, $\underline{\S} 50$ _rules are given to specify when the commune is obliged to provide transport to the school.

Here, the communes transport obligation is given as the sum of the pupils distances (as the crow flies) from home to school for those pupils who have the right of transport.

We wish to investigate the following models, which describe a school transport-obligation:

$$
\begin{array}{cll}
I & T F & =a+b \cdot E \cdot \sqrt{A}+c \cdot E \\
I I & & T F
\end{array}=d+f \cdot E \cdot \sqrt{A}+g \cdot \sqrt{A} .
$$

where:

$$
\begin{aligned}
T F & =\text { transport obligation } \\
E & =\text { number of pupils having the right of transport } \\
A & =\text { area of school district }
\end{aligned}
$$

Assume $T F \in N\left(\underline{\mu}, \sigma^{2} \cdot \underline{\underline{I}}\right)$
Based on the observations given later do the following (using SAS):

1) Estimate coefficients a and b.
2) Give an estimate for the residual error in model I.
3) Check if c and/or a can be assumed to be 0 . First test $c=0$ and then $a=0$.
4) Do the same analyses (1-3) for model $I I$, now testing i) $d=0$ and ii) $g=0$.
5) Is one of the models better than the other?

$\begin{gathered} \text { School } \\ \quad \# \end{gathered}$	$\frac{\text { Pupils to }}{\text { transport }}$	Areal School District	$\frac{\text { Transport }}{\text { obligation }}$
1	286	155.0	2127
2	58	85.0	442
3	75	97.5	516
4	167	196.4	1458
5	22	24.6	130

Problem E1
As part of large rationalisation investigation the board of a company has been interested in comparing the acidity of a product from 2 of the company's factories. Because of the special product, the pH -measurement has a large error, so the pH -measurment was measured 6 times at each factory. The results were:

	Result of 6 measurements of pH					Sum of measurements	Sum of squares of measurements
Factory A	1.33	1.11	-0.73	0.99	-0.29	1.43	3.82
Factory B	-1.05	-0.29	1.29	0.55	0.09	1.83	2.42

Since factory B's analysis lab only has an old pH -meter, it can be assumed that the variance of the measurement from factory B are twice as big as the variance of the measurements from factory A .

One is now interested in knowing if the two analysed samples have the same pH -value and secondly if a common value might be 0 .

Formulate a suitable model for the analysis of the observations, and perform a statistical analysis in order to solve the above mentioned problems.

Problem 13.
Given the linear model

$$
\begin{array}{ll}
E\left(Y_{i}\right)=\alpha+\beta x_{i} & =1,2,3,4 \\
& x_{1}=-2 \\
x_{2} & =-1 \\
x_{3} & =1 \\
x_{4} & =2 \\
&
\end{array}
$$

One has the following observations:

$$
Y_{1} \ldots Y_{4}=3,6,4,5
$$

Investigate, assuming normality, the hypothesis $\beta=0$.

Problem 53

We consider data from exercise 17 and the model from Anderson \& Bancrofts book. In the following table parameters are estimated using all the observations and using only the 26 first observations.

	27 obs.	26 obs.	S. E. 27 obs.	S. E. 26 obs.
\hat{b}_{0}	82.1733	82.2390	20.3383	20.7216
\hat{b}_{1}	2.4629	2.3498	4.7221	4.8178
\hat{b}_{2}	-75.3781	-77.3402	39.1439	40.1277
\hat{b}_{3}	1.5839	1.5922	3.1222	3.1810
\hat{b}_{12}	-1.3742	0.4259	21.2645	22.0454
$\hat{\sigma}^{2}$	101.94354	105.81677	-	-

Furthermore the standard deviations of the estimates are given in the two cases. Finally, the error of the residual of observation 27 is estimated at 9.3312.

1) Find the predicted value \hat{y}_{27} and determine an estimate of the standard deviation of this value.
2) Find a 95% confidence interval for the expected mean of y_{27} and find a 95% prediction interval corresponding to:

$$
\left(1, x_{1}, x_{2}, x_{3}, x_{1} x_{2}\right)=(1.205,-0.474,7.6,0.9717)
$$

3) Compare these intervals with y_{27}.
4) How much does the predicted value change if observation 27 is deleted?
5) What is DFFITS estimated at?
6) What is DFBETAS for $x_{1} x_{2}$ estimated at?

Problem 17.

Below are given data from an investigation of the amount of vitamin B_{2} in beetroot-leaves. The data originate from "Annual Progress Report on the Soils-weather Project, 1948" by J.T. Wakeley, University of North Carolina (Raleigh) Institute of Statistics Mimeo Series 19 (1949). The variables shown in the table are:
$X_{1}=$ influx of sun-light in relative gram-calories per minute during the last half day with sunlight. (Coded by division by 100)
$X_{2}=$ average ability of the soil (in which the beetroots are grown) to retain moisture. Note: 3 different types of soil were used (special measuring unit).
$X_{3}=$ air-temperature in degrees Fahrenheit. (Coded by division by 10)
$Y=$ milli-grams of vitamin B_{2} per gram beetroot leaf.

In the book "Statistical Theory and Research" R.L. Anderson and T.A. Bancroft find a regression equation of the form:

$$
Y=b_{0}+b_{1} X_{1}+b_{2} X_{2}+b_{3} X_{3}+b_{12} X_{1} X_{2}+\varepsilon
$$

The problem is now to try to construct a regression equation from the data given. You could consider including 2 nd order terms (e.g. $X_{1}^{2}, X_{1} X_{2}$ etc.). In all it is possible to construct 512 regression equations given three independent variables, their squared values, and all possible products of two variables. Compare the equation you find with the one proposed by Anderson and Bancroft.

X_{1}	X_{2}	X_{3}	Y
1.76	0.070	7.8	110.4
1.55	0.070	8.9	102.8
2.73	0.070	8.9	101.0
2.73	0.070	7.2	108.4
2.56	0.070	8.4	100.7
2.80	0.070	8.7	100.3
2.80	0.070	7.4	102.0
1.84	0.070	8.7	93.7
2.16	0.070	8.8	98.9
1.98	0.020	7.6	96.6
0.59	0.020	6.5	99.4
0.80	0.020	6.7	96.2
0.80	0.020	6.2	99.0
1.05	0.020	7.0	88.4
1.80	0.020	7.3	75.3
1.80	0.020	6.5	92.0
1.77	0.020	7.6	82.4
2.30	0.020	8.2	77.1
2.03	0.474	7.6	74.0
1.91	0.474	8.3	65.7
1.91	0.474	8.2	56.8
1.91	0.474	6.9	62.1
0.76	0.474	7.4	61.0
2.13	0.474	7.6	53.2
2.13	0.474	6.9	59.4
1.51	0.474	7.5	58.7
2.05	0.474	7.6	58.0

Problem E24
In the production of "ftalsyreanhydrid" we use - among other things - "naftalen" to start of with. If one wants a maximal productivity in a chemical reactor, it is of prime importance, that the feeding speed of naftalen is chosen correctly. At too small a speed one gets to small a production, and at too large a speed the process can be "dampened" so that the production-yield
again drops.
In 7 experiments the following corresponding observations of feeding speed and productivity per hour were found. Both variables are given in a relative scale.

Feeding speed	5	20	35	50	65	80	95
Productivity/hour	10	30	40	55	70	65	50

1) Determine a suitable relationship between feeding speed and productivity.
2) Estimate - using the result from 1) the feeding speed which will maximise the productivity.
3) Find a confidence interval for this productivity. It can be assumed that the feeding speed is non-stochastic in nature.

Problems E50+E51+E52
In all problems we consider a data set published by Hermon Bumpus in 1898. After a severe storm on Feb. 1. 1898 a number of dying sparrows were taken to the biological laboratory at Browns University, Rhode Island. About half of the birds did not survive the impact of the storm and Bumpus used the incidence to study the effect of "natural selection" (in Darwin's sense) among birds.

The data set, which we will use in the following is only part of Bumpus' original data.
The data set comprises measurements of 5 parameters of 49 female sparrows together with an indicator of if they survived or not. A listing of data and the results of some analyses are found in the enclosure. The variable names are:

$$
\begin{aligned}
\text { BIRD } & =\text { bird number } \\
\text { SURVIVE } & =\text { survived }(\mathrm{Y}=\text { yes, } \mathrm{N}=\text { no }) \\
\text { TOTAL } & =\text { total length } \\
\text { ALAR } & =\text { wing span } \\
\text { BEAK HEAD } & =\text { length of beak and head } \\
\text { HUMERUS } & =\text { length of upper arm" } \\
\text { STERNUM } & =\text { length of breast bone }
\end{aligned}
$$

All lengths in mm.

E50
In this problem we mostly consider output from "proc reg".

1a) Give the analysed model in a notation, which corresponds to the one used in the "statistic 2 " book.

1b) Give the necessary assumptions in order to determine a least squares solution from the given output.

1c) Give the necessary assumptions in order to determine a maximum likelihood solution from the given output.

2a) Give, using these assumptions, the unbiased estimate of the residual variance and the maximum likelihood estimate of the other parameters in the model.

2b) Give the residual for observation 3, and indicate how the estimate of the residual variance in 2 a) is found.

2c) Give the multiple correlation coefficient, and indicate how it is found.
3) Give the observation, which has the most critical value of Cook's D, and do a statistical evaluation of if is is extreme.

E51
In this problem we mostly consider output from "proc discrim". The option "simple" requests the computation of simple statistics (e.g. means and variances) for all data and per class.

Given a new storm of the same type and strength as that of Feb. 1. 1898, it would be nice to be able to classify a bird in one of two groups: "will survive" and "will not survive".

1a) Using the information collected by Bumpus we now want a Bayes classification rule for linear discriminant analysis, where the prior probabilities are assumed equal.

1b) Using the rule found in 1a) we now want to classify observation 49.
2) Perform a test to show if it is reasonable to use the given measurements to discriminate between surviving and non-surviving birds.
3) We assume that ALAR is sufficient to perform a classification. Using the loss-function below we now want a (linear) minimax classification rule. (it is sufficient to find "c" with 1 decimal.)

Loss-function:

		We choose	
will	will not		
survive	survive		

E52
In this problem we mostly consider output from the 2 versions of "proc princomp".

1a) Briefly describe the difference between analysing the data by means of principal components on the variance-covariance matrix and on the correlation matrix.

1b) Give a (brief) description of the consequences it has for the first eigenvector in the two analysed cases.

2a) Consider the analysis performed on the variance-covariance matrix. Give for observation 1 the value of the first principal component. Give the variance of the first principal component.

2b) Consider the analysis performed on the correlation matrix. Give for observation 1 the value of the first principal component. Give the variance of the first principal component.

3a) Consider the analysis performed on the variance-covariance matrix. Perform a test for if the 3 smallest eigenvalues could be equal.

3b) Give a (brief) interpretation of principal component 1 and 2 in this case.

* SAS - program til eksamen i 0411 Statistik 2, 2,

SAS - program til eksamen i 0411 Statistik 2, 2. januar 1991. *
print data=sasdata.bumpus
itlel 'Datalist. Alle laengder er i mm .
title2 'BIRD =fugl nummer (bird number)
title3 'SURVIVE =overlevet, $Y=j a$ N=nej (survived, $Y=y e s ~ N=n o)$
title4, TOTAL =total laengde (total length)
title5 'ALAR =laengde af vinger udstrakt (wing span)
title6 'BEAKHEAD=laengde af naeb og hoved (length of beak and head)
itle7 'HUMERUS $=1 a e n g d e ~ a f ~ " o v e r a r m s k n o g l e n " ~$

proc reg data=sasdata.bumpus;
model total=alar beakhead humerus sternum / covb r influence; title1 'proc reg'
proc discrim data=sasdata.bumpu
simple wcov wcorr pcov pcorr pool=yes
var total alar beakhead humerus sternum;
title1 'proc discrim'
proc princomp data=sasdata.bumpus cov, var total alar beakhead humerus sternum;
proc princomp data=sasdata.bumpus
var total alar beakhead humerus sternum,
title1 'proc princomp - 2';

Aug 312003 13:34 Enclosure - SAS outpu

BIRD $\begin{gathered}\text { Datalist. Alle laengder er i } \\ =\text { fugi } \\ \text { mummer } \\ \text { (bird }\end{gathered}$. (All lengths in mm.) BIRD
SURVIVE
$=$ fugl nummer
over SURVIVE $=$ overlevet, $Y=j a$ N=nej (survived, $Y=y e s$
TOTAL \quad total laengde (total length)
ALAR $\quad=1$ laengde af vinger udstrakt (wing span) BEAKHEAD $=1$ laengde af naeb og hoved (length of beak and head) HUMERUS =laengde af "overarmsknoglen" (length of "upper arm") STERNUM =laengde af brystben (length of breastbone)

Obs	bird	survive	total	alar	beakhead	humerus	sternum
1	1	Y	156	245	31.6	18.5	20.5
2	2	Y	154	240	30.4	17.9	19.6
3	3	Y	153	240	31.0	18.4	20.6
4	4	Y	153	236	30.9	17.7	20.2
5	5	Y	155	243	31.5	18.6	20.3
6	6	Y	163	247	32.0	19.0	20.9
7	7	Y	157	238	30.9	18.4	20.2
8	8	Y	155	239	32.8	18.6	21.2
9	9	Y	164	248	32.7	19.1	21.1
10	10	Y	158	238	31.0	18.8	22.0
11	11	Y	158	240	31.3	18.6	22.0
12	12	Y	160	244	31.1	18.6	20.5
13	13	Y	161	246	32.3	19.3	21.8
14	14	Y	157	245	32.0	19.1	20.0
15	15	Y	157	235	31.5	18.1	19.8
16	16	Y	156	237	30.9	18.0	20.3
17	17	Y	158	244	31.4	18.5	21.6
18	18	Y	153	238	30.5	18.2	20.9
19	19	Y	155	236	30.3	18.5	20.1
20	20	Y	163	246	32.5	18.6	21.9
21	21	Y	159	236	31.5	18.0	21.5
22	22	N	155	240	31.4	18.0	20.7
23	23	N	156	240	31.5	18.2	20.6
24	24	N	160	242	32.6	18.8	21.7
25	25	N	152	232	30.3	17.2	19.8
26	26	N	160	250	31.7	18.8	22.5
27	27	N	155	237	31.0	18.5	20.0
28	28	N	157	245	32.2	19.5	21.4
29	29	N	165	245	33.1	19.8	22.7
30	30	N	153	231	30.1	17.3	19.8
31	31	N	162	239	30.3	18.0	23.1
32	32	N	162	243	31.6	18.8	21.3
33	33	N	159	245	31.8	18.5	21.7
34	34	N	159	247	30.9	18.1	19.0
35	35	N	155	243	30.9	18.5	21.3
36	36	N	162	252	31.9	19.1	22.2
37	37	N	152	230	30.4	17.3	18.6
38	38	N	159	242	30.8	18.2	20.5
39	39	N	155	238	31.2	17.9	19.3
40	40	N	163	249	33.4	19.5	22.8
41	41	N	163	242	31.0	18.1	20.7
42	42	N	156	237	31.7	18.2	20.3
43	43	N	159	238	31.5	18.4	20.3
44	44	N	161	245	32.1	19.1	20.8
45	45	N	155	235	30.7	17.7	19.6
46	46	N	162	247	31.9	19.1	20.4
47	47	N	153	237	30.6	18.6	20.4
48	48	N	162	245	32.5	18.5	21.1
49	49	N	164	248	32.3	18.8	20.9

Aug 312003 13:34		Enclosure - SAS output					Page 4
			reg				4
		The REG Model endent	Procedure MODEL1 riable: to				
		Output	Statistics				
Obs	-2-1 012	Cook's ${ }_{\text {D }}$	RStudent	Hat Diag	$\begin{array}{r} \text { Cov } \\ \text { Ratio } \end{array}$	DFFITS	
1	**	0.021	-1.3959	0.0516	0.9477	-0.3255	
2	,	0.008	-0.6186	0.0916	1.1815	-0.1965	
3	***	0.019	-1.6981	0.0328	0.8384	-0.3128	
4	**	0.015	-1.0180	0.0659	1.0661	-0.2704	
5	****	0.015	-1.3510	0.0394	0.9487	-0.2737	
6	**	0.017	1.1687	0.0576	1.0180	0.2888	
7	*	0.005	0.6349	0.0550	1.1330	0.1532	
8	**	0.172	-2.0206	0.1842	0.8737	-0.9602	
9	**	0.020	1.0307	0.0868	1.0873	0.3177	
10		0.006	0.3755	0.1631	1.3186	0.1657	
11		0.001	-0.1708	0.0800	1.2152	-0.0503	
12	*	0.009	0.8502	0.0600	1.0979	0.2148	
13		0.000	-0.0447	0.0683	1.2038	-0.0121	
14	*	0.018	-0.8080	0.1218	1.1847	-0.3009	
15	*	0.017	0.8973	0.0966	1.1318	0.2934	
16		0.000	0.1988	0.0372	1.1598	0.0391	
17	*	0.005	-0.6983	0.0516	1.1180	-0.1628	
18	**	0.025	-1.3012	0.0699	0.9943	-0.3567	
19		0.010	0.4816	0.1716	1.3183	0.2192	
20	*	0.007	0.5253	0.1162	1.2293	0.1904	
21	*	0.021	0.8812	0.1195	1.1650	0.3246	
22	**	0.016	-1.1604	0.0564	1.0190	-0.2836	
23	*	0.003	-0.6567	0.0338	1.1045	-0.1228	
24		0.000	-0.1147	0.0975	1.2411	-0.0377	
25		0.007	-0.4806	0.1339	1.2610	-0.1890	
26	**	0.067	-1.3141	0.1654	1.1039	-0.5849	
27		0.000	-0.0368	0.0863	1.2276	-0.0113	
28	**	0.059	-1.4630	0.1236	1.0040	-0.5495	
29 30	**	0.099	1.3350	0.2200	1.1740	0.7091	
30 31		0.002	0.2792	0.1229	1.2675	0.1045	
31 32	****	0.454 0.012	2.1076 1.3299	0.3554 0.0324	1.0645 0.9478	1.5649 0.2434	
33	*	0.006	-0.6733	0.0645	1.1379	-0.1768	
34	*	0.030	0.6342	0.2684	1.4637	0.3842	
35 36	*	0.032	-1.5149	0.0672	0.9273	-0.4065	
36 37		0.012	-0.5741	0.1538	1.2761	-0.2448	
37 38	*	0.005 0.007	0.3583 0.7727	0.1684 0.0550	1.3291 1.1080	0.1612 0.1864	
39		0.000	-0.1558	0.0852	1.2228	-0.0475	
40	*	0.016	-0.6315	0.1637	1.2810	-0.2794	
41		0.062	2.4668	0.0536	0.6116	0.5873	
42		0.000	-0.1768	0.0706	1.2027	-0.0487	
43		0.013	1.1616	0.0460	1.0075	0.2550	
44	*	0.005	0.5979	0.0631	1.1488	0.1552	
45		0.002	0.4018	0.0673	1.1805	0.1079	
46		0.023	1.0376	0.0976	1.0986	0.3413	
47	**	0.025	-0.8947	0.1346	1.1822	-0.3529	
48 49	${ }_{*}^{*}$	$\begin{aligned} & 0.008 \\ & 0.028 \end{aligned}$	$\begin{aligned} & 0.5552 \\ & 1.2640 \end{aligned}$	$\begin{aligned} & 0.1100 \\ & 0.0827 \end{aligned}$	$\begin{aligned} & 1.2163 \\ & 1.0190 \end{aligned}$	$\begin{aligned} & 0.1952 \\ & 0.3794 \end{aligned}$	

Aug 312003 13:34		Enclosure - SAS output				Page 5
			reg			5
The REG Procedure Model: MODEL1 Dependent Variable: total Output Statistics						
Obs	Intercept	alar	DFBETASbeakhead	humerus	sternum	
1	0.1662	-0.2278	-0.0091	0.0979	0.1228	
	-0.0348	-0.1015	0.0918	0.0269	0.0740	
2 3	-0.1220	0.0239	0.1737	-0.1196	0.0229	
4	-0.1151	0.0208	-0.0779	0.1572	-0.0297	
4	0.0586	-0.0737	0.0323	-0.0665	0.1711	
6	-0.1772	0.1239	-0.0213	0.0678	-0.1200	
6	0.0848	-0.0602	-0.0678	0.0963	-0.0492	
8	0.0728	0.4946	-0.8320	0.1921	-0.0527	
8	-0.2424	0.0877	0.1607	-0.0238	-0.1088	
10	0.0798	-0.0924	-0.0819	0.0969	0.0828	
10	-0.0158	0.0185	0.0152	-0.0096	-0.0375	
11	-0.0274	0.1039	-0.1332	0.0615	-0.0702	
12	0.0046	0.0022	0.0003	-0.0064	-0.0011	
	0.0814	-0.0041	0.0048	-0.1684	0.2336	
14	0.1139	-0.1758	0.1630	0.0064	-0.1064	
	0.0234	-0.0093	-0.0011	-0.0062	0.0003	
16 17	0.0369	-0.0747	0.0450	0.0543	-0.0923	
	-0.2099	0.0478	0.2521	-0.0921	-0.1255	
18	0.1324	-0.0904	-0.1482	0.1728	-0.0428	
	-0.1073	0.0578	0.1165	-0.1316	0.0726	
20	0.1026	-0.1397	0.1454	-0.1420	0.1986	
	0.0097	-0.0657	-0.1247	0.2207	-0.0569	
22 23	-0.0022	-0.0029	-0.0598	0.0640	0.0005	
23 24 24	0.0083	0.0155	-0.0280	0.0064	-0.0098	
	-0.1112	0.0226	-0.0302	0.1047	-0.0295	
25 26	0.2886	-0.3948	0.1666	0.2139	-0.3150	
27	-0.0060	0.0063	0.0033	-0.0083	0.0048	
28	0.0710	0.1978	0.1016	-0.4547	0.1109	
29	-0.1099	-0.4123	0.1550	0.3754	0.1568	
30	0.0813	-0.0302	-0.0039	-0.0313	0.0161	
31	0.4187	0.0727	-0.6537	-0.3599	1.3893	
32	-0.0178	-0.0240	-0.0794	0.1091	0.0425	
33	0.0796	-0.0871	-0.0291	0.1093	-0.0913	
	-0.1318	0.3058	-0.0705	-0.1003	-0.2216	
34 35	-0.0272	-0.1454	0.3021	-0.0461	-0.1446	
36	0.1543	-0.1809	0.0868	0.0365	-0.0673	
37	0.0998	-0.0558	0.0412	-0.0243	-0.0678	
	0.0068	0.1096	-0.1026	-0.0317	-0.0066	
38	-0.0053	-0.0040	-0.0185	0.0147	0.0299	
40	0.1689	0.0266	-0.1515	0.0218	-0.0937	
41	-0.0441	0.3705	-0.1325	-0.3194	0.0926	
42	-0.0119	0.0255	-0.0330	0.0076	0.0089	
43	0.0915	-0.1529	0.0805	0.0726	-0.0882	
44	-0.0558	-0.0098	0.0052	0.0869	-0.0775	
45	0.0607	-0.0178	0.0151	-0.0288	-0.0302	
46	-0.1478	0.1033	-0.0657	0.1575	-0.2217	
4748	-0.2026	0.1648	0.2220	-0.2858	0.0500	
	-0.1105	0.0565	0.1502	-0.1301	-0.0002	
49	-0.2967	0.2353	0.1392	-0.1368	-0.1135	
Sum of Residuals						
$\begin{array}{ll}\text { Sum of Squared Residuals } & \\ \text { Predicted Residual SS (PRESS) }\end{array}$						

Aug 312003 13:34		Enclosure - SAS output				Page 7
	Within-Cl	The DISCR Correlatio	rocedure efficients	$\operatorname{Pr}>\|r\|$		
		sur	$=\mathrm{N}$			
Variable	total	alar	beakhead	humerus	sternum	
total	1.00000	$\begin{array}{r} 0.77620 \\ <.0001 \end{array}$	$\begin{array}{r} 0.67698 \\ <.0001 \end{array}$	$\begin{array}{r} 0.68242 \\ <.0001 \end{array}$	$\begin{array}{r} 0.65687 \\ 0.0001 \end{array}$	
alar	$\begin{array}{r} 0.77620 \\ <.0001 \end{array}$	1.00000	$\begin{array}{r} 0.69782 \\ <.0001 \end{array}$	$\begin{array}{r} 0.78455 \\ <.0001 \end{array}$	$\begin{array}{r} 0.62001 \\ 0.0004 \end{array}$	
beakhead	$\begin{array}{r} 0.67698 \\ <.0001 \end{array}$	$\begin{array}{r} 0.69782 \\ <.0001 \end{array}$	1.00000	$\begin{array}{r} 0.83470 \\ <.0001 \end{array}$	$\begin{array}{r} 0.56989 \\ 0.0015 \end{array}$	
humerus	$\begin{array}{r} 0.68242 \\ <.0001 \end{array}$	$\begin{array}{r} 0.78455 \\ <.0001 \end{array}$	$\begin{array}{r} 0.83470 \\ <.0001 \end{array}$	1.00000	$\begin{array}{r} 0.66779 \\ 0.0001 \end{array}$	
sternum	$\begin{array}{r} 0.65687 \\ 0.0001 \end{array}$	$\begin{array}{r} 0.62001 \\ 0.0004 \end{array}$	$\begin{array}{r} 0.56989 \\ 0.0015 \end{array}$	$\begin{array}{r} 0.66779 \\ 0.0001 \end{array}$	1.00000	
survive = Y						
Variable	total	alar	beakhead	humerus	sternum	
total	1.00000	$\begin{array}{r} 0.65447 \\ 0.0013 \end{array}$	$\begin{array}{r} 0.64251 \\ 0.0017 \end{array}$	$\begin{array}{r} 0.62392 \\ 0.0025 \end{array}$	$\begin{array}{r} 0.51036 \\ 0.0181 \end{array}$	
alar	$\begin{array}{r} 0.65447 \\ 0.0013 \end{array}$	1.00000	$\begin{array}{r} 0.62637 \\ 0.0024 \end{array}$	$\begin{array}{r} 0.74644 \\ 0.0001 \end{array}$	$\begin{array}{r} 0.27744 \\ 0.2234 \end{array}$	
beakhead	$\begin{array}{r} 0.64251 \\ 0.0017 \end{array}$	$\begin{array}{r} 0.62637 \\ 0.0024 \end{array}$	1.00000	$\begin{array}{r} 0.61805 \\ 0.0028 \end{array}$	$\begin{array}{r} 0.43364 \\ 0.0495 \end{array}$	
humerus	$\begin{array}{r} 0.62392 \\ 0.0025 \end{array}$	$\begin{array}{r} 0.74644 \\ 0.0001 \end{array}$	$\begin{array}{r} 0.61805 \\ 0.0028 \end{array}$	1.00000	$\begin{array}{r} 0.41654 \\ 0.0603 \end{array}$	
sternum	$\begin{array}{r} 0.51036 \\ 0.0181 \end{array}$	$\begin{array}{r} 0.27744 \\ 0.2234 \end{array}$	$\begin{array}{r} 0.43364 \\ 0.0495 \end{array}$	$\begin{array}{r} 0.41654 \\ 0.0603 \end{array}$	1.00000	

Aug 312003 13:34	Enclosure - SAS output	Page 10
Pairwi Constant	proc discrim The DISCRIM Procedure Generalized Squared Distances Between Groups $D^{2}(i \mid j)=\left(\bar{x}_{i}-\bar{x}_{j}\right)^{\prime} \operatorname{cov}^{-1}\left(\bar{x}_{i}-\bar{x}_{j}\right)$ neralized Squared Distance to survive Linear Discriminant Function $-.5 \overline{\mathrm{x}}_{j}^{\prime} \operatorname{cov}^{-1} \overline{\mathrm{x}}_{j} \quad \text { Coefficient vector }=\operatorname{cov}^{-1} \overline{\mathrm{x}}_{j}$ near Discriminant Function for survive	12

Aug 312003 13:34 Enclosure - SAS output

proc discrim
The DISCRIM Procedure

Data: SASDATA.BUMPUS Resubstitution Summary using Linear Discriminant Function

Generalized Squared Distance Function

$$
D_{j}^{2}(x)=\left(x-\bar{x}_{j}\right), \operatorname{cov}^{-1}\left(x-\bar{x}_{j}\right)
$$

Posterior Probability of Membership in Each survive

Number of Observations and Percent Classified into survive

From			
Survive	N	Y	Total
N	19	9	28
	67.86	32.14	100.00
Y	8	13	21
	38.10	61.90	100.00
Total	27	22	49
	55.10	44.90	100.00
Priors	0.5	0.5	

Error Count Estimates for survive

	N	Y	Total
Rate	0.3214	0.3810	0.3512
Priors	0.5000	0.5000	

