Assignment on Canonical Discriminant Functions

Consider 3 normal populations corresponding to mean values

$$
\boldsymbol{\mu}_{1}=\left[\begin{array}{c}
-1 \\
4
\end{array}\right], \quad \boldsymbol{\mu}_{2}=\left[\begin{array}{l}
4 \\
5
\end{array}\right], \quad \boldsymbol{\mu}_{3}=\left[\begin{array}{l}
3 \\
6
\end{array}\right]
$$

and the common dispersion matrix

$$
\boldsymbol{\Sigma}=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right] .
$$

1. Verify that the matrix corresponding to the variation between group means is

$$
B=\sum_{i=1}^{3}\left(\mu_{i}-\bar{\mu}\right)\left(\mu_{i}-\bar{\mu}\right)^{\prime}=\left[\begin{array}{cc}
14 & 4 \\
4 & 2
\end{array}\right]
$$

Here $\bar{\mu}$ is the average of the three mean values
Consider a random variable \boldsymbol{X} following one of the three distributions and introduce the linear combination

$$
Y=\boldsymbol{d}^{\prime} \boldsymbol{X}=\left(d_{1} d_{2}\right)\left[\begin{array}{l}
X_{1} \\
X_{2}
\end{array}\right]=d_{1} X_{1}+d_{2} X_{2} .
$$

For $i=1,2,3$ the mean and variance of Y are equal to

$$
\begin{gathered}
v_{i}=E(Y \mid i)=\boldsymbol{d}^{\prime} \boldsymbol{\mu}_{i} \\
\sigma_{Y}^{2}=V(Y \mid i)=\boldsymbol{d}^{\prime} \mathbf{\Sigma} \boldsymbol{d}
\end{gathered}
$$

2. Verify for $\overline{\boldsymbol{v}}$ equal to the average of the $\boldsymbol{v}_{\boldsymbol{i}}$-values that (3-1) \times (the empirical variance of the v_{i}-values) is

$$
\sum_{i=1}^{3}\left(v_{i}-\bar{v}\right)^{2}=\boldsymbol{d}^{\prime} \boldsymbol{B} \boldsymbol{d}
$$

Consider the vectors \boldsymbol{d}_{1} and \boldsymbol{d}_{2} and $((3-1) \times)$ the ratio between the empirical variance of the $v_{i^{-}}$ values and the variance of Y

$$
\frac{\sum_{i=1}^{3}\left(v_{i}-\bar{v}\right)^{2}}{\sigma_{Y}^{2}}=\frac{d_{k}^{\prime} B \boldsymbol{d}_{k}}{d^{\prime} \Sigma \boldsymbol{d}}, \quad k=1,2 .
$$

3. Determine the vectors $\boldsymbol{d}_{\boldsymbol{k}}$ so that the ratio is maximized for $\boldsymbol{k}=1$ and maximized under the constraint $\boldsymbol{d}_{\mathbf{1}}^{\prime} \Sigma d_{\mathbf{2}}=\mathbf{0}$ for $k=2$.
4. Same question as above, but now for the case

$$
\boldsymbol{\Sigma}=\left[\begin{array}{ll}
9 & 0 \\
0 & 1
\end{array}\right]
$$

kc fecit October 2013

