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The general class of continuous time Markov chains (Markov jump processes) are treated in Section
6.6 albeit restricted to the case of finite state space. The theory generalises but is more demanding
for a fully rigorous treatment in the countable state space case.

Three different characterisations are discussed. The first characterisation is through the semi-group
property expressed via the Chapman-Kolmogorov equation in (c) Page 327. The second characterisa-
tion is the infinitesimal characterisation given at the bottom of Page 328. Finally, the process can be
understood as a randomisation of the time between state transitions in a discrete time Markov chain,
where the parameter of the exponential distribution depends on the current state of the (embedded)
Markov chain. This third characterisation is described at the top of Page 329.

The first result of primary importance is Equation (6.68) 000 = πππA or element-wise rephrased into
πjqj =

∑
i 6=j πiqij that expresses that the “the probabilistic flow” out of a state is equal to the flow

into the state “in equilibrium”. A slightly more technical rephrasing is that the expected number of
jumps out of j per time unit is equal to the expected number of jumps into j under the invariant or
stationary distribution. Equation (6.68) can be referred to as the global balance equations. For some
models, e.g. Birth and Death Processes, the more restrictive local balance equations πiqij = πjqji
hold. The Markov jump process is reversible when the local balance equations hold. The second
important result is P (t) = exp (At) expressed in Equation (6.67).

A main application of Markov jump processes is queueing theory. The basic concepts of queueing
theory like the queue length and waiting time are introduced in Section 9.1 and related in this section
through The Queueing Formula (Little’s law) L = λW . A number of classical yet important queueing
models M/M/1, M/M/∞, and M/M/s are described in Section 9.2. These queueing models in Section
9.2 with countable state space can all be formulated as Birth and Death Processes. The invariant
queue length distribution of the M/M/1 is geometric, while the invariant queue length distribution of
the M/M/∞ queue is Poisson. The finite variants with blocked customers have truncated geometric
and truncated Poisson distributions.

Poisson Arrivals See Time Averages (the PASTA property) as explained in the Wikipedia page on
The Arrival Theorem is important and quite useful but not explicitly covered by Pinsky and Karlin.

The M/G/1 queue is treated in Section 9.3. Neither the queueing process nor the workload process
are Markov processes. However, the processes embedded at time epochs immediately after departures
are Embedded Markov processes. The first moment of these processes are expressed in the Pollaczek-
Khinchine formula (9.35) and (9.36).

Must read and nice to read
All material in Section 6.6 up to the Example Industrial Mobility and the Peter Principle should
be studied. The rest of the section contains two examples that are nice to know but not essential.
In Chapter 9 all of sections 9.1-9.3 is relevant material. I will probably not have time to cover the
M/G/∞ model in class.

https://en.wikipedia.org/wiki/Arrival_theorem
https://en.wikipedia.org/wiki/Arrival_theorem
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Some important definitions and results

Finite state Markov jump process (continuous time Markov chain) (6.58) p.327

Pij(t) = Pr {X(t+ s) = j|X(s) = i} , Pik(s+ t) =

N∑
j=0

Pij(s)Pjk(t),

N∑
j=0

Pij(t) = 1, lim
t→0+

Pij(t) =

{
1 i = j
0 i 6= j

Infinitesimal description bottom of p.328

Pr{X(t+ h) = j|X(t) = i} = qijh+ o(h), Pr{X(t+ h) = i|X(t) = i} = 1− qih+ o(h), with qi =
∑
j 6=i

qij

Exponential sojourn times and embedded Markov chain description top of p.329

Matrix differential equations (6.66) and (6.67) p.329

P ′(t) = P (t)A = AP (t), P (t) = eAt, with eAt =

∞∑
n=0

Antn

n!

Global balance equations (6.68) p.330

000 = πππA, πjqj =
∑
i6=j

πiqij , j = 0, 1, . . . , N

The queueing equation (Little’s law) 9.1.1 p.448

L = λW, L0 = λW0 with W = W0 + mean service time

Shorthand (Kendall) notation p.449 A/B/c

Queue length distribution for M/M/1 queue (9.11) and (9.12) p.453

πk =

(
1− λ

µ

)(
λ

µ

)k
, L = E(X(t)) =

λ

µ− λ
, assuming time invariant solution

Waiting time distribution for M/M/1 queue bottom of page 454 and (9.15) p.455

Pr{T ≤ t} = 1− e−t(µ−λ), W = E(T ) =
1

µ− λ
Queue length distribution for M/M/∞ queue (9.16) p.456

πk =

(
λ
µ

)k
k!

e−
λ
µ , L = E(X(t)) =

λ

µ
, assuming time invariant solution

Performance measures for M/M/s queue (9.19) p.458

L0 =
π0
s!

(
λ

µ

)s λ
sµ(

1− λ
sµ

)2 W0 =
L0

λ
, W = W0 +

1

µ
, L = λW = L0 +

λ

µ

Embedded Markov chain for M/G/1 queue (9.24) p.462

Xn =

{
Xn−1 − 1 +An if Xn−1 > 0

An if Xn−1 = 0
= (Xn−1 − 1)+ +An, Xn queue length after nth departure

Performance measures for M/G/1 queue (Pollaczek–Khinchine formula) (9.35) p.464 and (9.36) p.465

L = ρ+
λ2(τ2 + v2)

2(1− ρ)
, W = v +

λ(τ2 + v2)

2(1− ρ)
, v = E(Yn), τ2 = Var(Yn), Yn is a generic service time, ρ = λv


