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We studied discretely indexed Markov processes with discrete state space in Chapter 4 (Markov
Chains). These processes can be analysed with a relatively moderate mathematical level. Discretely
indexed Markov processes on a general state space requires somewhat more advanced techniques,
see [4]. These processes are also termed Markov chains, where the properties of the state space is
usually understood from the context. The theory is underlying the statistical discipline Markov Chain
Monte Carlo (MCMC), although only a limited number of professionals working with MCMC will have
studied the theoretical development of such processes.

In Chapter 6 we will be exposed to continuously indexed Markov processes on a discrete state
space. These processes are frequently referred to as Continuous time Markov Chains (CTMC), however
personally I find the term Markov Jump processes better suited [1, 2]. The one-dimensional Poisson
process of Chapter 5 is the basic example of such processes. An in-depth treatment of Markov jump
processes (Continuous time Markov chains) requires surprisingly advanced mathematical techniques.
This requirement stems from the needs of a proper analysis of the equation

P{X(t) = j|{X(u)}0≤u≤s} = P{X(t) = j|X(s)}.

An ultimate, but rarely studied, source is [3]. Alternatively one can start from the embedded Markov
chain of jumps and an assumption of exponential sojourn times in each state. The traditional way
of performing this analysis is to make some further assumptions to obtain what is called a standard
process.

Pinsky and Karlin has chosen to present infinite (countable) state space models only for the special
case of birth-and-death processes while the general continuous time Markov chains are assumed to be
on finite state spaces in their presentation.

The starting point in Section 6.1 on the pure birth process is the characterisation of the Poisson
process in terms of infinitesimal probabilities/intensity postulates. These intensities are made depen-
dent on the number of points that have occurred so far, while the assumption of absolute randomness
is otherwise retained. Counting events by subtracting one unit (deaths) rather than adding one unit
(births) one obtains the pure death process described in Section 6.2. In Section 6.3 both positive and
negative contributions are allowed (births and deaths) to obtain the class of birth-and-death processes.
These processes are extremely useful and provide the framework for many specific stochastic models,
particularly in queueing theory, as we shall see in Chapter 9. Section 6.4 is devoted to the limiting
behaviour of birth-and-death processes.

The embedded Markov chain of a birth-and-death process is irreducible more or less by con-
struction, if not it is very easy to identify the irreducible classes. The transition probabilities in a
birth-and-death process converges i.e. limt→∞ Pij(t) = πj (Equation (6.30)) exist and are independent
of i as in the discrete (irreducible) case. If the limit is positive then the process is positive recurrent
and the limiting probability distribution also has the role of the invariant or stationary probability
distribution (Equations (6.31)).

Must read and nice to read
In Section 6.1 on the pure birth process you can read the last discussion of the Yule process on
Page 283 lightly. Example 6.2.2 on Cable Failure under Static Fatigue in Section 6.2 on pure death
processes is nice but not of ultimate importance for the flow of the text. It is probably only necessary
to study one of the examples of Section 6.4 with care, I find the example on the Repairman model
most straightforward. The rest of the material, I think, needs to be studied with some care.
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Some important specific definitions and results

Postulates of birth and death process (see also (6.1) p.278, (6.12) p.287) p.295

Pij(t) = Pr {X(t+ s) = j|X(s) = i} , Pi,i+1(t+ h) = λih+ o(h), Pi,i−1(t+ h) = µih+ o(h)

Relation between arrival times Wk, sojourn times Si, and number of births p.279

Pn(t) = Pr{Wn ≤ t < Wn+1} = Pr

{
n−1∑
i=0

Si < t ≤
n∑
i=0

Si

}
State probabilities for pure birth process (6.4,6.5) p.279,280

P0(t) = e−λ0t, Pn(t) = Pr{X(t) = n} = λn−1e
−λnt

∫ t

o

eλnxPn−1(x)dx n ≥ 1

Criterion for finiteness (avoiding explosion) (6.6) p.280

∞∑
n=0

Pn(t) = 1⇔
∞∑
n=0

1

λn
=∞

Exponentiality of sojourn times (see also (6.1) p.278, (6.12) p.287) p.297

Pr{Si ≥ t} = e−(λi+µi)t

Criterion for well-definedness of birth and death process defined by intensities (6.21) p.297

∞∑
n=0

1

λnθn

n∑
k=0

θk =∞, θ0 = 1, θn =

n−1∏
k=0

λk
µk+1

Existence of limit for irreducible birth and death process (6.31) p.304

lim
t→∞

Pij(t) = πj ≥ 0

Equivalence of invariant and limiting distribution for irreducible birth and death process (6.32,6.33) p.305

∞∑
n=0

πn = 1⇒ πj =

∞∑
i=0

πiPij(t),∀t ≥ 0

Invariant (and limiting) probabilities (6.37) p.306

π0 =

( ∞∑
k=0

θk

)−1
, πj = θkπ0 =

θj∑∞
k=0 θk

, θj =

j−1∏
k=0

λk
µk+1

Some typos
Page 305 (6.36) µJ should be µj
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