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Brownian motion Section 8.1.2 P.392

The litterature on Brownian motion is huge demonstrating its importance. The process can be
understood in various ways. Like the Poisson Process, Brownian motion has independent increments
(P.394) and they are both special cases of Levy processes, the most general stochastic process with
independent and identically distributed increments. The diffusion equation (8.3), first derived by
Einstein using physical arguments, can also be motivated through a symmetric simple random walk
by a proper rescaling of time and space. I have not covered Section 2.5 on martingales but you have
been exposed to a few exercises introducing the concept. Martingales constitute a broad class of
stochastic processes similar to Markov processes. Many Markov processes are or can easily be written
expressed through martingales leading to easy and elegant derivations of absorption probabilities and
distributions for first passage times. Stochastic integration is defined in terms of (semi)martingales as
we will touch very briefly in Section 8.5.4. The textbook introduces Brownian motion as a continuous
time Markov process with a transition kernel that solves the diffusion equation (8.3)
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We can solve the equation using a transform approach with Mt(θ) = E (exp (−iθX(t))) being the char-
acteristic function. Analytically the expectation is the Fourier transform of the density, and thus the

transform of the second derivative (for fixed t) is
∫∞
−∞ exp (−iθy) ∂

2p
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∫∞
−∞ exp (−iθy)p(y, t|x)dy =

−θ2Mt(θ) (by partial integration and p vanishing at infinity). So ∂M
∂t = − 1

2θ
2Mt(θ) ⇒ Mt(θ) =

exp
(
−θ2t/2

)
, thus X(t) ∼ N(0, t).

Invariance Principle Section 8.1.3 P. 396

For a random walk Sn =
∑n
i=1 Zi, Zi iid, define Bn(t) =

S[nt]√
n

, where [nt] is the largest integer not

exceeding nt. This process is piecewise deterministic and asymptotically Bn(t) is normal due to the
central limit theorem with independent increments. As a consequence, Brownian motion is a good
approximation to random walks for large n. The principle can be applied both ways in theoretical
derivations as well as for examples. The test statistic in the Kolmogorov Smirnov goodness of fit test
is based on the invariance principle (Donsker’s theorem)and the Brownian bridge in Section 8.3.3.

Gaussian Process Section 8.1.4 P.398
A Gaussain process has finite dimensional distributions that are multivariate Gaussian. They appear
in Brownian motion and its variants and are used extensively in Bayesian statistics and machine
learning as a second order method, i.e. fitting the mean field and covariance structure. Gaussian
processes can be used to express uncertainty in e.g. Krieging. The wikipedia page gives a fine brief
introduction with several references.

Maximum in finite interval - equivalently - time to first reach a level Sections 8.2.1-8.2.2 P.406
The reflection principle - Section 8.2.1 - along with the strong Markov property is invoked to derive
the distribution of the maximum. The maximum of a Brownian motion is distributionally equivalent
to the first passage time, a connection similar to the one used to define the Erlang distribution as the
distribution of a first passage time in the Poisson process. These two sections are a continuation of
our previous studies of absorption and first passage time problems.

Zeros of Brownian Motion Section 8.2.3 P.408

https://en.wikipedia.org/wiki/Donsker%27s_theorem
https://en.wikipedia.org/wiki/Gaussian_process
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Must read and nice to read
Section 8.1 and Section 8.2 are tightly written. Only the example Cable Strength Under Equal Load
Sharing starting Page 399, can be read cursorily.

Some important definitions and results

Transition density continuous time Markov process (8.1) p.322

Pr {X(t) ∈ dy|X(0) = x} = p(y, t|x)dy

Diffusion equation (8.3) with solution (8.4) p.392
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Definition of Brownian motion p.394

{B(t); t ≥ 0} with independent increments B (tn)−B (tn−1) ∼ N
(
0, σ2 (tn − tn−1)

)
, X(0) = 0

Covariance function p.396

Cov(B(s), B(t) = σ2 min{s, t}
Invariance principle (cental limit theorem) p.396
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n
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√
[nt]√
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n
→ B(t) for n→∞

Definition of multivariate Gaussian distribution p.398

XXX = (X1, . . . , Xn) ∈ N(µµµ,Γ) if

n∑
j=1

αjXj ∈ N(αααµµµ,αααΓααα′) ∀ααα ∈ Rn, f(xxx) = (2π)−
n
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Reflection around τ with B(τ) = x p.406

B∗(u) =

{
B(u) for u ≤ τ

x− [B(u)− x]

Maximum M(t) of process up to time t (8.19) and (8.20) p.407

M(t) = max
0≤u≤t

B(u), Pr{M(t) > x} = 2[1− Φ(x/
√
t)]

Distribution of first hitting time τx at x (8.21), (8.22), and (8.23) p.407

τx = min{u ≥ 0 : B(u) = x}, Pr{τx ≤} = 2[1− Φ(x/
√
t)] =
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Probability that Brownian motion reaches 0 between t and t+ s (8.25) p.407

Pr{∃u ∈ (t, t+ s[: B(u) = 0} =
2

π
arctan

(s
t

)
=

2

π
arccos

(√
t
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)

Some typos
Figure 8.1 (Page 395), Figure 8.4 (Page 406), Figure 8.5 (Page 413): The curves are not true functions,
i.e. for some values of x we have multiple values.


