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Week 4 02407 Stochastic Processes
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This week we study the Poisson Process. The Poisson Process is one of the fundamental build-
ing blocks in Probability theory and stochastic processes. You might already be familiar with its
properties, however, we will most likely study them in more depth than you have seen before.

Three different ways of defining the Poisson process on the line are introduced.

Independent increments As Definition bottom of Page 225 in terms of independent Poisson dis-
tributed increments.

Intensity/infinitesimal probabilities In terms of infinitesimal probabilities Definition Page 234

Sequence of independent exponential intervals In terms of independent exponential sojourn
times Theorem 5.5 Page 243.

These are the three most important definitions, they are all equivalent, which might not be completely
clear from the text book.

Section 5.1.1 recalls basic results for the Poisson distribution, while Section 5.1.2, containing the
definition of the Poisson process as an integer valued stationary stochastic process with independent
increments, is the most important subsection of Section 5.1. Poisson processes with randomly varying
intensity as described in Section 5.1.4 are important and there is a vast literature on those. Some
exercises later in the course will treat a special case.

Binomial probabilities are well approximated by Poisson probabilities for µ = np with n large and
µ moderate (much smaller than n(1 − p)). The law of rare events - Theorem 5.3 - of Section 5.2
generalises this concept and motivates why the Poisson process is frequently a surprisingly precise
model of real world phenomena, like the central limit theorem explains the usability of the normal
distribution. The law of rare event is used to motivate the definition of the Poisson process from
infinitesimal probabilities. Pinsky and Karlin introduces the Poisson counting process as a process of
the increments, however, this is slightly subtle, and you can safely concentrate on the Poisson process
{X(t); t ≥ 0} as the formulation in terms of N((tk, tk+1]) is only justified by slightly more elegant
derivations at places.

The third characterisation in terms of independent exponential inter event times is presented in
Section 5.3. The essence of that section is contained in the three theorems 5.4-5.6.

Theorem 5.6 of Section 5.3 provides a bridge to Section 5.4. The Poisson process can be thought of
- or is - the model of complete randomness which is reflected in Theorem 5.7. Knowing that we have
n points from a Poisson process tells us that the position of each individual point - say the kth point
has position Uk - is given by the uniform distribution. The naturally sorting of the points provided by
their successive occurrences gives us the arrival times Wk which is then given as the order statistics
of the Uks, Wk = U(k). Various applications are presented as examples throughout the remainder of
the section. The sections 5.4.1 and 5.4.2 contain a couple of more elaborate examples.

With a minor change the definition of the Poisson process from the independent increment prop-
erty carries over to more complex index sets. The definition in terms of infinitesimal probabilities -
intensities - can likewise be generalised while the the third approach with exponential inter arrival
times is hard to generalise although it should be possible in Euclidean spaces (I think). The more
general index set is the topic of Section 5.5.
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If we associate a random variable Yk with the kth point we obtain the compound Poisson Process

as the cumulated values Z(t) =
∑X(t)
k=1 Yk, with the Yks being mutually independent and independent

of X(t). The process of the pairs (W1, Y1), (W2, Y2), . . . is called a marked Poisson process. For fixed
t the compound Poisson process can be analysed as a random sum. Recall the transform methods are
convenient particularly to obtain higher order moments. The two definitions are the most important
material of Section 5.6.

Must read and nice to read
Most of the material is definitely worth reading. However, as there is a lot of material so I will give
some suggestions for lighter reading In Section 5.1 is 5.1.1 known material, while 5.1.3 and 5.1.4 can
be read lightly. The proof of Theorem 5.2.3 in Section 5.2 is nice but is not essential as long as you
understand the result. The proof, however, contains important arguments and will definitely help
improve your skills in probabilistic reasoning. I recommend that you study either 5.4.1 or 5.4.2 with
some care but not necessarily both sections. Section 5.5 can be read lightly. The two last examples
of Section 5.6 can be read lightly and even be skipped, if you are really pressed for time.

Some important specific definitions and results

Definition of Poisson process p.225

{X(t); t ≥ 0} with independent increments X (tn)−X (tn−1) ∼ Pois (λ (tn − tn−1)) , X(0) = 0

Theorem 5.3 The law of rare events (5.7) p.233∣∣∣∣Pr{Sn = k} − µk

k!
e−µ

∣∣∣∣ ≤ n∑
i=1

p2i , Sn =

n∑
i=1

Zi, Zi ∈ {0, 1}, Pr(Zi = 1) = pi

Definition of Poisson counting process p.234

Definition of Poisson counting process p.236

N ((t0, t1]) , N ((t1, t2])N ((tm−1, tm]) independent N((s, t]) ∼ Pois(λ(t− s))
Theorem 5.4 Time to nth event is gamma distributed (5.12) p.242

fWn
(t) =

λ(λt)n−1

(n− 1)!
e−λt, Wn is time of nth event, fW1

(t) = λe−λt

Theorem 5.5 Independent exponentially distributed sojourn times (5.14) p.243

fSk
(t) = λe−λt, Sk = Wk+1 −Wk, W0

def
= 0

Theorem 5.6 Conditional distribution is binomial (5.16) p.244

Pr{X(u) = k|X(t) = n} =

(
n

k

)(u
t

)k ( t− u
t

)n−k
, 0 < u ≤ t, 0 ≤ k ≤ n

Theorem 5.7 Uniformity of time epochs Conditioned on total number (5.18) p.248

fW1,...,Wn|X(t)=n(w1, . . . , wn) =
n!

tn
, 0 <≤ w1 ≤ · · · ≤ wn ≤ t

Definition of Compound Poisson process (5.31) p.264

Z(t) =

X(t)∑
k=1

Yk, G(y) = Pr(Yk ≤ y), Yk mutually independent and independent of X(t)

Definition of Marked Poisson process p.267

The sequence of pairs, (W1, Y1), (W2, Y2), . . .


