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Question 1 The model is a discrete time Markov chain. A possible definition of states could

be

0: The programme has stopped.
1-4: The programme is operating safely in level i.

5-8: The programme is operating in level i-4, the critical error is not detected.

The transition matrix A is
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Question 2 With reasonable assumptions on P (i.e. irreducible) we get
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Question 3 The system becomes stable by reaching on of the states 1-4. The process is
ergodic from then on. The procces is reversibel ergodic Markov chain in discrete

time.

Question 4 We obtain the following steady state equations

The sum >}, 3! can be obtained by using >3 , 3!
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