Solution to exercise 27

Question 1: The system can be modeled as a continuous time Markov chain with 3 states:

1. Idle
2. Busy with no order in the book
3. Busy with one order in the book

We find the generator

$$
G=\left[\begin{array}{ccc}
-\lambda & \lambda & 0 \\
\mu & -\lambda-\mu & \lambda \\
0 & \mu & -\mu
\end{array}\right]
$$

where $\lambda=1$ is the arrival rate of requests, and $\mu=4$ is the rate of completing jobs.

First, we find the steady-state distributions as in general for a birth-death process:

$$
\pi_{i}=c \cdot \rho^{i} \quad \text { for } i=1,2,3
$$

where $\rho=\lambda / \mu$ and $c=\left(\rho+\rho^{2}+\rho^{3}\right)^{-1}$ is a normalization constant making the probabilities sum to one, $\pi_{i}+\pi_{2}+\pi_{3}=1$.

Alternatively, we could find the stationary distribution directly numerically e.g. using matlab:

```
piv = null(G');
piv = piv/sum(piv);
piv(3)
```

This gives a numeric value of 0.0476 which is $1 / 21$.

Next, we realize that the fraction of customers arriving when the system is in state 2 must equal the fraction of time spent in state 2 , and thus the stationary probability of state $2, \pi_{2}$. This is the PASTA property (Poisson arrivals see time averages). To see this, assume that the system is stationary. The probability of a new customer arriving in the time interval $(t, t+h]$ is independent of which state the system is in at time t. So given that a customer arrives, the probability that the system is in state 2 is still π_{2}.

So the fraction of customers rejected is $\pi_{2}=1 / 21$ or approximately 0.05 .

Question 2: The fraction of time where the equipment is in use is equal to the probability that the system at a given fixed time is in state 2 or 3 , i.e. $\pi_{2}+\pi_{3}=5 / 21$ or approximately 0.24 .

Question 3: The states are

0 : Idle

1: In use, no order in book
2: Rented, no order in book
3: In use, order in book
4: Rented, order in book

The generator is

$$
\boldsymbol{G}=\left[\begin{array}{ccccc}
\star & \lambda & \lambda & \cdot & \cdot \\
\mu & \star & \cdot & \lambda & \cdot \\
\mu & \cdot & \star & \cdot & \lambda \\
\cdot & \mu & \cdot & \star & \cdot \\
\cdot & \mu & \cdot & \cdot & \star
\end{array}\right]
$$

From this we can find the transition probabilities: Given that we are in state i at time t, the probability that we are in state j at a later time $t+h$, is the (i, j) element in $\boldsymbol{P}(t)=\exp (\boldsymbol{G} h)$. It is possible to obtain analytical expressions for these, for example using maple, but the result is of little use. In stead we display the transition probabilities from state 1 to the 5 states as functions of t :

```
>> G2 = [0,1,1,0,0;4,0,0,1,0;4,0,0,0,1;0,4,0,0,0;0,4,0,0,0];
>> G2 = G2 - diag(sum(G2,2));
>> tt = linspace(0,2,100);
>> for i=1:length(tt),
        t=tt(i);
        Pt=expm(G2*t);
        mu(i,:) = Pt(1,:);
    end
>> plot(tt,mu)
>> legend('p11','p12','p13','p14','p15')
>> xlabel('Time')
>> ylabel('Transition probabilities')
```


Question 4: The easiest to solve for the stationary probabilities using e.g. matlab.

```
>> piv2 = null(G2');
>> piv2 = piv2'/sum(piv2)
```

piv2 =
0.6154
0.1846
0.1231
0.0462
0.0308

If you solve the system with maple or by hand you will find

$$
\pi=\frac{1}{65}(40,12,8,3,2)
$$

Question 5: The utilization is $1-\pi_{0}=5 / 13 \approx 0.3846$.

This should be compared with the value 0.24 which we found in the previous, without rentals.

Question 6: Requests for work that arrive while the system is in state 3 and 4 are not accepted. The probability of this is $\pi_{3}+\pi_{4}=1 / 13$ or approximately 0.08 . Requests for rentals are rejected unless they arrive in state 0 , so the probability of rejection is $1-\pi_{0}=5 / 13 \approx 0.38$. Combining, the probability of rejection for a random customer is $3 / 13 \approx 0.23$. This should be compared with the 0.05 found above.

