Solution for exercise 19, exercise 3 final exam 2/11995

Question 1 From the two state Markov chain we find

$$
\frac{\omega_{2}}{\omega_{1}+\omega_{2}}
$$

Question 2

$$
\lambda \frac{\omega_{2}}{\omega_{1}+\omega_{2}}
$$

Question 3 The time between two arrivals can be described by a phase type distribution (time to absorption in finite Markov chain) with representation $\vec{\alpha}=(1,0)$ and:

$$
T=\left[\begin{array}{cc}
-\left(\omega_{1}+\lambda\right) & \omega_{1} \\
o \omega_{2} & -\omega_{2}
\end{array}\right]
$$

The process is a renewal process.
Question 4

$$
\left(\frac{\omega_{2}}{\omega_{1}+\omega_{2}}\right)^{2}
$$

By independence
Question 5 As the processes are independent, the number og processes i state i at a random point in time be binominally distributed.

$$
\binom{N}{i}\left(\frac{\omega_{2}}{\omega_{1}+\omega_{2}}\right)^{i}\left(\frac{\omega_{1}}{\omega_{1}+\omega_{2}}\right)^{N-i}
$$

Question 6 As the processes are independent the mean and variance of the total number in the time interval $] 0 ; t]$ can be found as the sum of the values for the separaate processes. So the requested proportion for N processes is the same as the proportion for a single process. The mean number of events in the stationary renewalprocess in the interval till t is $\frac{\lambda \omega_{2} t}{\omega_{1}+\omega_{2}}$, and we find

$$
1+\frac{2 \lambda \omega_{1}}{\left(\omega_{1}+\omega_{2}\right)^{2}}\left(1-\frac{1}{\left(\omega_{1}+\omega_{2}\right) t}\left(1-e^{-\left(\omega_{1}+\omega_{2}\right) t}\right)\right)
$$

