Solution for exercise 9.3.2 in Karlin and Pinsky

We analyse two different scenarios. We choose the que length as criterium to choose the methode we prefer. This is valid since $W = \frac{L}{\lambda}$ and the arrival rate in both cases is the same

In case A we choose L_A for the wainting line and use as parameters $\tau_A^2 = 0, 2$ and $v_A = 0, 5$ in case B we choose L_B aws the que length and we have $\tau_B^2 = 0, 9$ and v = 0, 4. Using equation 9.35 on p.464 in Karlin and Pinsky we get:

$$L_A = \frac{2\lambda v + \lambda^2 \tau^2 - (\lambda v)^2}{2(1 - \lambda v)}$$

= $\frac{2 \cdot 1 \cdot 0, 5 + 1^2 \cdot 0, 2 - (0, 5)^2}{2(1 - 1 \cdot 0, 5)}$
= $\frac{1 + 0, 2 - 0, 25}{1}$
= $0, 95$
$$L_B = \frac{2 \cdot 1 \cdot 0, 4 + 1^2 \cdot 0, 9 - (0, 4)^2}{2(1 - 1 \cdot 0, 4)}$$

= $\frac{0, 8 + 0, 9 - 0, 16}{1, 2}$
= $\frac{1, 54}{1, 2} > 0, 95$

Therefore we chosse procedure A

Since the system only is stable if $\lambda \cdot v < 1$ we know it becomes unstable for system A before system B and therefore it would be wise to switch.